JPH11112061A - Formation of thin organic film - Google Patents

Formation of thin organic film

Info

Publication number
JPH11112061A
JPH11112061A JP9282781A JP28278197A JPH11112061A JP H11112061 A JPH11112061 A JP H11112061A JP 9282781 A JP9282781 A JP 9282781A JP 28278197 A JP28278197 A JP 28278197A JP H11112061 A JPH11112061 A JP H11112061A
Authority
JP
Japan
Prior art keywords
organic
substrate
solution
film
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9282781A
Other languages
Japanese (ja)
Other versions
JP3284241B2 (en
Inventor
Kimitaka Ono
公隆 大野
Kazushi Fujioka
一志 藤岡
Mikihiro Yamanaka
幹宏 山中
Satoko Mitarai
郷子 御手洗
Hiroshi Tokumoto
洋志 徳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sharp Corp
Original Assignee
Agency of Industrial Science and Technology
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sharp Corp filed Critical Agency of Industrial Science and Technology
Priority to JP28278197A priority Critical patent/JP3284241B2/en
Priority to US09/163,975 priority patent/US6225239B1/en
Publication of JPH11112061A publication Critical patent/JPH11112061A/en
Application granted granted Critical
Publication of JP3284241B2 publication Critical patent/JP3284241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a flat and compact flawless thin organic film by immersing an oxidized III-V compound semiconductor substrate into a solution containing amphiphilic organic molecules having a PH2 O3 group derivative as the terminal group so that the organic molecules are adsorbed onto the surface of the substrate. SOLUTION: In the method for forming a thin organic film, an oxidized III-V compound semiconductor substrate is immersed into a solution containing amphiphilic organic molecules having a PH2 O3 group derivative as the terminal group so that the organic molecules are adsorbed onto the surface of the substrate. More specifically, a GaAs substrate 2 is immersed after the surface thereof is cleaned, into placed in a first bath 1 (a container filled with H2 O3 P(CH2 )18 PO3 H2 solution). It is then cleaned in a second bath 3 filled with pure ethanol in order to remove excess octadecyl bisphosulfonic acid molecules. Subsequently, it is immersed into a third bath 4 (a container filled with ZrOCl2 -8H2 O) and transferred into the pure ethanol in second bath 5 in order to remove excess Zr ions by ultrasonic cleaning. Thereafter, the substrate 2 is returned back to the H2 O3 P(CH2 )18 PO3 H2 solution in a fourth bath 6 so that a layer of octadecyl bisphosulfonic acid molecule is adsorbed uniformly onto the substrate 2 and the process of second-third-second-fourth baths is repeated cyclically for the substrate 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化 III−V族化
合物半導体基板上に2次元的に規則正しく配列した単分
子及び有機累積膜を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a monomolecular and organic cumulative film two-dimensionally and regularly arranged on an oxide III-V compound semiconductor substrate.

【0002】[0002]

【従来の技術】有機単分子膜あるいは有機累積膜として
は、従来より、ラングミュアー・ブロジェット(Langmu
ir Blodgett)膜(以下、LB膜と呼ぶ。)とセルフアセ
ンブル膜(self-assembled monolayer)が知られている(A
braham Ulman:An Intorductionto Ultrarhin Organic F
ilms From LangmuirーBlodgett to SelfーAssembly,Acade
mic Press 1991)。LB膜は、親水性の原子団と疎水性
の原子団を併せ持つ、両親媒性分子を水面上に単分子膜
として展開し(L膜)、それを固体基板に移し取って幾
層にも累積したもので、この手法を開発したLangmuirと
Blodgettの名前を冠してLB膜と称している。LB膜
は、膜と基板の疎水性・親水性の違いを利用して、水面
上に展開した膜を基板上に移し取るので、膜自体の結晶
性は、膜を展開しそれを圧縮した時点で決まる。そのた
め、膜の結晶性は、基板の種類に依存せず、あらゆる基
板に膜を形成することができる。しかしながら、LB膜
の性質上、基板と単分子膜間の相互作用は極めて弱く、
複雑なデバイスを構築する上で、耐酸アルカリ性、耐久
性等に弱いという欠点を有している。また、LB膜を作
製するためには、両親媒性分子を溶液表面に展開し、そ
の分子を面内で圧縮し、その後基板上に写し取るための
専用装置が必要である。
2. Description of the Related Art Conventionally, as an organic monomolecular film or an organic cumulative film, Langmuir Blodget (Langmuir Blodget) has been used.
An ir Blodgett film (hereinafter, referred to as an LB film) and a self-assembled film (self-assembled monolayer) are known (A
braham Ulman: An Intorductionto Ultrarhin Organic F
ilms From Langmuir ー Blodgett to Self ー Assembly, Acade
mic Press 1991). The LB film develops an amphipathic molecule having both a hydrophilic atomic group and a hydrophobic atomic group as a monomolecular film on the water surface (L film), and transfers it to a solid substrate to accumulate several layers. Langmuir, who developed this method,
The LB film is named after the name of Blodgett. The LB film transfers the film developed on the water surface to the substrate by utilizing the difference in hydrophobicity and hydrophilicity between the film and the substrate. Therefore, the crystallinity of the film itself is determined when the film is developed and compressed. Is determined by Therefore, the crystallinity of the film does not depend on the type of the substrate, and the film can be formed on any substrate. However, due to the nature of the LB film, the interaction between the substrate and the monomolecular film is extremely weak.
When constructing a complicated device, it has a disadvantage that it is weak in acid-alkali resistance, durability and the like. In addition, in order to produce an LB film, a special device for developing an amphipathic molecule on a solution surface, compressing the molecule in a plane, and then copying the molecule onto a substrate is required.

【0003】一方、セルフアセンブル膜は、分子の末端
の官能基が基板構成原子と選択的に化学吸着することに
より得られる膜である。従って、その吸着機構の性質
上、単分子膜のみが自己組織化された状態で形成される
ことから、セルフアセンブル膜(selfーassembled monol
ayer) と呼ばれている。基板を分子を含む溶媒中に浸漬
するだけで膜を形成できるので大きな複雑な装置を必要
とせず、出来たセルフアセンブル膜の外側の末端基の種
類を選ぶことにより、累積膜を形成することも原理的に
は可能である。これら分子膜は、分子同士のファン・デ
ル・ワールス力により二次元的な分子集合体を形成して
おり、これらの方法を用いて分子のパッキングを規則的
な配列、即ち、二次元結晶を創製することができる。そ
して、この特徴を生かして種々の電子デバイス、光デバ
イス等を構築することができる。
On the other hand, a self-assembled film is a film obtained by selectively chemically adsorbing a functional group at a terminal of a molecule to a constituent atom of a substrate. Therefore, due to the nature of the adsorption mechanism, only a monomolecular film is formed in a self-assembled state, so that a self-assembled monol film is formed.
ayer). Since a film can be formed simply by immersing the substrate in a solvent containing molecules, a large and complicated device is not required, and it is also possible to form a cumulative film by selecting the type of the terminal groups outside the resulting self-assembled film. It is possible in principle. These molecular films form a two-dimensional molecular assembly by the Van der Waals force between molecules, and use these methods to create a regular array of molecular packing, that is, create a two-dimensional crystal. can do. Various electronic devices, optical devices, and the like can be constructed by utilizing this feature.

【0004】このセルフアセンブル膜は、LB膜のよう
に上記の欠点は無いが、分子の官能基と基板との化学吸
着を利用するので、その組み合わせに制約があり、これ
まで、酸化珪素、酸化アルミニウム、酸化銀、雲母、
金、銅、GaAs等の基板上で単分子膜が実現されてい
る。GaAs基板上に限れば、GaAs基板を塩酸処理
でAs終端化した後、窒素雰囲気中でSH基を含む有機
分子の溶融液を表面に塗布し、約100℃で5時間保持
する方法でのみセルフアセンブル膜が得られているのが
現状である。
[0004] This self-assembled film does not have the above-mentioned drawbacks unlike the LB film. However, since it utilizes chemical adsorption between a functional group of a molecule and a substrate, the combination thereof is restricted. Aluminum, silver oxide, mica,
A monomolecular film has been realized on a substrate of gold, copper, GaAs or the like. For a GaAs substrate only, a GaAs substrate is terminated with As by a hydrochloric acid treatment, and then a melt of organic molecules containing SH groups is applied to the surface in a nitrogen atmosphere, and is held at about 100 ° C. for 5 hours. At present, an assembling film has been obtained.

【0005】このようにセルフアセンブル膜はLB膜に
比べ多くの利点を備えながら、 III−V族化合物半導体
上のセルフアセンブル膜やその多層膜の例は、今までに
極めて少ないのが現状である。セルフアセンブル膜の多
くの利点を引き継いだ状態でかつ多層膜を形成すること
は、より複雑な単分子膜では実現できない特性を発現で
き、また多層膜化することで機能性の増幅作用が期待さ
れるので、極めて重要な技術である。
As described above, while the self-assembled film has many advantages as compared with the LB film, the number of examples of the self-assembled film on the III-V compound semiconductor and the multilayer film thereof has been extremely small so far. . Forming a multilayer film while inheriting many advantages of a self-assembled film can exhibit characteristics that cannot be realized with a more complex monomolecular film, and a multi-layer film is expected to amplify functionality. Therefore, it is a very important technology.

【0006】[0006]

【発明が解決しようとする課題】本発明の技術的課題
は、これまで前例がない酸化 III−V族化合物半導体基
板上に膜作製用分子を選択的に化学吸着させることによ
り、欠陥の少ない良質でかつ強固な有機単分子膜を作製
し、さらにその単分子膜上に化学吸着を利用して異なる
種類の有機分子を累積することにより、膜厚の制御を分
子長単位で可能にし、原子レベルで平坦、緻密で、ピン
ホールのない極めて良質な有機薄膜の製造方法を提供す
ることにある。
The technical problem to be solved by the present invention is to selectively chemisorb a film-forming molecule onto an oxidized III-V compound semiconductor substrate, which has never been before, to obtain a high-quality film with few defects. At the atomic level, it is possible to control the film thickness in units of molecular length by producing a strong and monolayer organic monolayer and accumulating different types of organic molecules on the monolayer using chemisorption. It is an object of the present invention to provide a method for producing an organic thin film which is flat, dense, and free from pinholes.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明の有機薄膜の製造方法は、基本的には、酸化し
た III−V族化合物半導体基板を、末端基にPH23
基誘導体をもつ両親媒性有機分子を含む溶液に浸漬し
て、基板表面上に有機分子を化学吸着させることによ
り、第1の有機単分子膜を形成することにある。この第
1の有機単分子膜は、金属イオンを含む溶液中に浸漬し
て単分子膜表面に金属イオンを吸着させ、あるいは化学
処理により表面官能基をOH基に変成せしめた後、その
金属イオンあるいはOH基に選択的に化学吸着する官能
基を持つ有機分子を含む溶液中に浸漬することにより、
上記第1の有機単分子膜上にさらに有機単分子膜を累積
することができる。
In order to solve the above-mentioned problems, the method for producing an organic thin film of the present invention basically comprises oxidizing a III-V compound semiconductor substrate with a terminal group of PH 2 O 3.
An object of the present invention is to form a first organic monomolecular film by immersing in a solution containing an amphiphilic organic molecule having a group derivative and chemically adsorbing the organic molecule on the substrate surface. The first organic monolayer is immersed in a solution containing metal ions to adsorb the metal ions on the surface of the monolayer, or to convert the surface functional groups into OH groups by chemical treatment. Alternatively, by immersing in a solution containing an organic molecule having a functional group that selectively chemisorbs to the OH group,
An organic monomolecular film can be further accumulated on the first organic monomolecular film.

【0008】また、上記方法においては、第1の有機単
分子膜上にさらに有機単分子膜を累積形成する工程を繰
り返すことにより、膜厚を有機分子長単位で制御しなが
ら、有機膜間の結合力の強い、しかも膜の面内方向が規
則正しく配列した累積膜を形成することができる。この
ような本発明の方法によれば、 III−V族化合物半導体
基板を用い、末端にPH23 基を有する分子との選択
的な化学吸着現象を利用するので、良質でかつ基板に強
固に接着された、ラテラル方向及び垂直方向の両方向に
規則正しく配列した単分子膜並びに累積多層膜が形成さ
れる。従って、膜の持つ機能性を最大限に発現させるこ
とが出来、かつ耐酸アルカリ性、耐久性、信頼性を有
し、絶縁特性の良好な膜を作製することができる。
In the above method, the step of accumulating an organic monomolecular film further on the first organic monomolecular film is repeated, so that the thickness between the organic films is controlled while controlling the film thickness in units of organic molecular length. It is possible to form a cumulative film having a strong bonding force and in which the in-plane directions of the film are regularly arranged. According to such a method of the present invention, a group III-V compound semiconductor substrate is used, and a selective chemisorption phenomenon with a molecule having a PH 2 O 3 group at a terminal is used, so that the substrate is of good quality and firmly attached to the substrate. A monomolecular film and a cumulative multilayer film, which are regularly arranged in both the lateral direction and the vertical direction, are formed. Therefore, the functionality of the film can be maximized, and a film having excellent resistance to acid and alkali, durability, and reliability and excellent insulating properties can be manufactured.

【0009】[0009]

【発明の実施の形態】本発明に係る有機薄膜の製造方法
において、酸化した III−V族化合物半導体基板上に有
機単分子膜(第1の有機単分子膜)を形成するに際して
は、上述したように、まず、末端基にPH23 基誘導
体をもつ両親媒性有機分子を希釈した有機溶媒中に、 I
II−V族化合物半導体基板酸化表面を露出させることに
より、基板上に有機分子を化学吸着させ、その分子の単
分子膜を形成する。さらに具体的に説明すると、上記第
1の有機単分子膜を形成する両親媒性有機分子として
は、他端にCOOH基やPH23 基を有する有機分子
を用いることができ、これによって形成した第1の有機
単分子膜上にさらに有機単分子膜を累積するに際して
は、上記基板を金属イオンを含む溶液中に浸漬した後、
一端にSH基を有し他端にCOOH基を有する両親媒性
分子を含む溶液、あるいは両端にPH23 基を有する
両親媒性分子を含む溶液に浸漬し、有機単分子膜を累積
させる。さらに多層に累積させるには、この工程を繰り
返せばよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of manufacturing an organic thin film according to the present invention, when forming an organic monomolecular film (first organic monomolecular film) on an oxidized III-V compound semiconductor substrate, First, in an organic solvent obtained by diluting an amphiphilic organic molecule having a PH 2 O 3 group derivative at the terminal group,
By exposing the oxidized surface of the II-V compound semiconductor substrate, organic molecules are chemically adsorbed on the substrate to form a monomolecular film of the molecules. More specifically, as the amphiphilic organic molecule forming the first organic monomolecular film, an organic molecule having a COOH group or PH 2 O 3 group at the other end can be used. When further accumulating the organic monomolecular film on the first organic monomolecular film, the substrate is immersed in a solution containing metal ions.
Immersion in a solution containing an amphipathic molecule having an SH group at one end and a COOH group at the other end or a solution containing an amphipathic molecule having a PH 2 O 3 group at both ends to accumulate an organic monomolecular film . This process may be repeated to accumulate more layers.

【0010】また、上記酸化した III−V族化合物半導
体基板を、一端にPH23 基誘導体を持ち他端にCO
OCH3 基またはCH2 =CH基を持つ両親媒性有機分
子を含む溶液に浸漬して、表面上に有機分子を化学吸着
させることにより、第1の有機単分子膜を形成すること
ができ、この場合には、さらに有機単分子膜を累積させ
るに際し、その基板を有機溶媒に溶かし込んだLiAl
4 溶液及び希塩酸で処理し、あるいは、有機溶媒に溶
かし込んだB26 溶液及び水酸化ナトリウムと過酸化
水素の混合溶液で処理することにより、表面官能基をO
H基に変成せしめた後、一端にCOOCH3 基またはC
2 =CH基を有し他端にSiCl3 基を有する両親媒
性分子を含む溶液に浸漬し、第1の有機単分子膜上にさ
らに有機単分子膜を累積させる。
Further, the oxidized III-V compound semiconductor substrate is provided with a PH 2 O 3 group derivative at one end and CO 2 at the other end.
A first organic monomolecular film can be formed by immersing in a solution containing an amphiphilic organic molecule having an OCH 3 group or a CH 2 CHCH group to chemically adsorb the organic molecule on the surface; In this case, when the organic monomolecular film is further accumulated, the substrate is dissolved in an organic solvent to form LiAl.
By treating with a H 4 solution and dilute hydrochloric acid, or with a B 2 H 6 solution and a mixed solution of sodium hydroxide and hydrogen peroxide dissolved in an organic solvent,
After conversion to H group, COOCH 3 group or C
The substrate is immersed in a solution containing an amphipathic molecule having an H 2 CHCH group and having an SiCl 3 group at the other end, and an organic monomolecular film is further accumulated on the first organic monomolecular film.

【0011】末端基にPH23 基誘導体を持つ両親媒
性有機分子として、ヘキサデシルビスフォスフォン酸
[H23 P(CH215PO32 ]を使って有機薄
膜を形成する場合に、例えば、純エタノールで10mM
に希釈したヘキサデシルビスフォスフォン酸溶液中で I
II−V族化合物半導体基板を清浄化し、自然酸化後、そ
のまま浸漬するときは、一般的にその浸漬時間は1時間
〜10日間とすることができるが、1時間〜3日間とす
るのが好ましく、1時間〜12時間とするのがより好ま
しい。なお、ここでは、16−ヘキサデシルフォスフォ
ン酸を用いて単分子膜を得る場合について述べている
が、他のPH23 基を有する分子の膜を形成する場合
についても、一般的に上述したところを適用することが
できる。
An organic thin film is formed by using hexadecylbisphosphonic acid [H 2 O 3 P (CH 2 ) 15 PO 3 H 2 ] as an amphipathic organic molecule having a PH 2 O 3 group derivative at a terminal group. In the case of, for example, 10 mM with pure ethanol
In hexadecylbisphosphonic acid solution diluted in water
When the II-V compound semiconductor substrate is cleaned and immersed as it is after natural oxidation, the immersion time can be generally 1 hour to 10 days, but is preferably 1 hour to 3 days. More preferably, it is 1 hour to 12 hours. Although the case where a monomolecular film is obtained using 16-hexadecylphosphonic acid is described here, the case where a film of a molecule having another PH 2 O 3 group is formed is also generally described above. Where applicable.

【0012】上記第1の単分子膜を形成した後、有機多
層膜を III−V族化合物半導体表面上に作製した該セル
フアセンブル膜上に累積するに際し、例えば、純エタノ
ールで1mMに希釈した銅アセテート[(CH3 CO
O)2 Cu]溶液に III−V族化合物半導体基板を浸漬
する場合、一般的にその浸漬時間は1秒〜30分とする
ことができるが、10秒〜10分間とするのが好まし
く、30秒〜5分間とするのがより好ましい。基板を取
り出して純エタノールで超音波洗浄したのち、第2層目
の有機分子膜を累積するに際し、例えば純エタノールで
10mMに希釈した15−メルカプトヘキサデシルカル
ボン酸溶液にCuイオンで処理したセルフアセンブル膜
GaAs基板を浸漬する場合、一般的にその浸漬時間は
30分〜10日間とすることができるが、40分〜1日
間とするのが好ましく、1〜4時間とするのがより好ま
しい。第2層目以降も同様な条件で基板を銅アセテート
溶液と15−メルカプトヘキサデシルカルボン酸溶液に
交互に浸漬することにより、所定の厚さの累積膜を得る
ことができる。
After the formation of the first monomolecular film, when the organic multilayer film is accumulated on the self-assembled film formed on the III-V compound semiconductor surface, for example, copper diluted to 1 mM with pure ethanol is used. Acetate [(CH 3 CO
When the III-V compound semiconductor substrate is immersed in the O) 2 Cu] solution, the immersion time can be generally from 1 second to 30 minutes, but is preferably from 10 seconds to 10 minutes. It is more preferable to set the time to seconds to 5 minutes. After removing the substrate and performing ultrasonic cleaning with pure ethanol, when accumulating the second organic molecular film, for example, a self-assembly in which 15-mercaptohexadecylcarboxylic acid solution diluted to 10 mM with pure ethanol was treated with Cu ions. When the film GaAs substrate is immersed, the immersion time can be generally from 30 minutes to 10 days, preferably from 40 minutes to 1 day, and more preferably from 1 to 4 hours. By immersing the substrate alternately in a copper acetate solution and a 15-mercaptohexadecyl carboxylic acid solution under the same conditions as in the second and subsequent layers, a cumulative film having a predetermined thickness can be obtained.

【0013】なお、ここでは、15−メルカプトヘキサ
デシルカルボン酸を用いて多層膜を累積する場合につい
て述べているが、他の有機分子累積膜を形成する場合に
ついても、一般的に上述したところを適用することがで
きる。また、上記の例では、いずれも溶液濃度を10m
Mに限定した場合について述べたが、上記のような有機
分子膜を得るためには、濃度に応じて浸漬時間を調節す
る必要がある。以下に、本発明の実施例と共に、さらに
具体的な好ましい実施の形態を例示する。
Although the case where a multilayer film is accumulated using 15-mercaptohexadecyl carboxylic acid is described here, the case where another organic molecule accumulation film is formed is generally the same as that described above. Can be applied. In each of the above examples, the solution concentration was 10 m
Although the case where the number is limited to M has been described, in order to obtain the organic molecular film as described above, it is necessary to adjust the immersion time according to the concentration. Hereinafter, more specific preferred embodiments will be exemplified together with examples of the present invention.

【0014】[実施の形態1]図1は、本発明に基づい
て有機多層薄膜を製造する実施の形態の一例を説明する
ためのものである。同図において、第1槽1は、エタノ
ール溶媒1mMオクタデシルビスフォスフォン酸[H2
3 P(CH218PO32 ]溶液を満たした容器で
あり、有機薄膜の製造に際しては、まず、H22 とH
2 SO4 の混合溶液で表面清浄化した後、純水で洗浄し
乾燥させたGaAs基板2をこの第1槽の溶液中に浸漬
する。オクタデシルビスフォスフォン酸を化学吸着する
ときの溶液の温度は、室温でもよいし、加熱されたもの
でもよい。溶媒は、エタノール溶液以外の有機溶媒を用
いてもよいし、純水であってもよいが、有機溶媒が好ま
しい。GaAs基板2は、前記第1槽1の溶液中に浸漬
後、そのまま該溶液中に数時間(例えば4時間)浸漬し
た後に溶液中から取り出し、第2槽3に満たした純エタ
ノールで洗浄して、表面に付着した過剰なオクタデシル
ビスフォスフォン酸分子を除去する(以上、ステップ
1)。
[First Embodiment] FIG. 1 is a view for explaining an example of an embodiment for manufacturing an organic multilayer thin film according to the present invention. In the figure, a first tank 1 contains an ethanol solvent 1 mM octadecylbisphosphonic acid [H 2
O 3 P (CH 2 ) 18 PO 3 H 2 ] solution. When manufacturing an organic thin film, first, H 2 O 2 and H
After the surface is cleaned with a mixed solution of 2 SO 4 , the GaAs substrate 2 washed and dried with pure water is immersed in the solution in the first tank. The temperature of the solution when octadecylbisphosphonic acid is chemisorbed may be room temperature or may be heated. As the solvent, an organic solvent other than the ethanol solution may be used, or pure water may be used, but an organic solvent is preferable. The GaAs substrate 2 is immersed in the solution of the first tank 1, immersed in the solution for several hours (for example, 4 hours), taken out of the solution, and washed with pure ethanol filled in the second tank 3. Then, excess octadecylbisphosphonic acid molecules attached to the surface are removed (Step 1 above).

【0015】次に、この基板を、第3槽4に入ったエタ
ノール希釈1mMオキシ塩化ジルコニウム[ZrOCl
2 ・8H2 O]溶液に5分間程度浸漬する。オキシ塩化
ジルコニウムとしては、粉体状のものを用いてもよい
し、液状のものを用いてもよい。Zrイオンを化学吸着
するときの溶液の温度は、室温でもよいし、加熱された
ものでもよい。溶媒は、エタノール溶液以外の有機溶媒
を用いてもよいし、純水であってもよいが、有機溶媒が
好ましい。次に、上記GaAs基板2を第3槽4の溶液
中から取り出し、第2槽5の純エタノール中に移して超
音波洗浄し、Zrクラスター等の表面に付着した過剰な
Zrイオンを除去する(以上、ステップ2)。次に、G
aAs基板2を第4槽6のエタノール溶媒1mMオクタ
デシルビスフォスフォン酸溶液に戻し、約2時間浸漬
し、表面がZrイオンで覆われたGaAs基板2の上
に、さらにオクタデシルビスフォスフォン酸分子の1層
を均一に吸着させる。その後、このGaAs基板2に対
し、第2槽→第3槽→第2槽→第4槽とサイクリックに
上述の工程を繰り返すことにより、オクタデシルビスフ
ォスフォン酸分子を1層ずつ累積することができる。
Next, this substrate was diluted with ethanol diluted 1 mM zirconium oxychloride [ZrOCl
Immersion for about 5 minutes to 2 · 8H 2 O] solution. As zirconium oxychloride, a powdery one or a liquid one may be used. The temperature of the solution when chemisorbing Zr ions may be room temperature or may be heated. As the solvent, an organic solvent other than the ethanol solution may be used, or pure water may be used, but an organic solvent is preferable. Next, the GaAs substrate 2 is taken out of the solution in the third tank 4, transferred to pure ethanol in the second tank 5, and subjected to ultrasonic cleaning to remove excess Zr ions attached to the surface of the Zr cluster or the like ( Step 2) above. Next, G
The aAs substrate 2 is returned to the ethanol solvent 1 mM octadecylbisphosphonic acid solution in the fourth tank 6 and immersed for about 2 hours. On the GaAs substrate 2 whose surface is covered with Zr ions, octadecylbisphosphonic acid molecules are further added. Adsorb one layer uniformly. Thereafter, by repeating the above-described steps on the GaAs substrate 2 in the order of the second tank → third tank → second tank → fourth tank, octadecylbisphosphonic acid molecules can be accumulated one layer at a time. it can.

【0016】図2は、上記の工程により積層した1層か
ら5層までのエリプソメトリーによる膜厚変化を表した
グラフである。繰り返し回数を増やすに従い、膜厚が同
じ厚さだけ増加していき、オクタデシルビスフォスフォ
ン酸分子が1層ずつ積層していく様子が分かる。また、
得られた5層累積膜を原子間力顕微鏡で観察したとこ
ろ、緻密でかつピンホールのない原子レベルで平坦なも
のであることが分かった。なお、本実施の形態では、G
aAs基板を使う場合について説明したが、他のIII−
V族化合物半導体基板、GaP、GaSb、InP、I
nAs、InSb等の基板でも、同様な方法を適用する
ことによって、劈開面上に緻密でピンホールのない極め
て均一な多層膜を積層することができる。
FIG. 2 is a graph showing a change in film thickness by ellipsometry from one layer to five layers laminated by the above process. It can be seen that as the number of repetitions increases, the film thickness increases by the same thickness, and the octadecylbisphosphonic acid molecules are stacked one by one. Also,
Observation of the resulting five-layer cumulative film with an atomic force microscope revealed that the film was dense and flat at the atomic level without pinholes. In the present embodiment, G
The case where the aAs substrate is used has been described.
Group V compound semiconductor substrate, GaP, GaSb, InP, I
By applying a similar method to a substrate such as nAs or InSb, a dense and extremely uniform multilayer film without pinholes can be laminated on the cleavage plane.

【0017】[実施の形態2]図3は、本発明に基づい
て有機多層薄膜を製造する実施の形態の他の一例を説明
するためのものである。同図において、第1槽8は、エ
タノール溶媒1mMオクタデシルビスフォスフォン酸
[H2 PO3 (CH218PO32 ]溶液を満たした
容器であり、有機薄膜の製造に際しては、まず、H2
2 とH2 SO4 の混合溶液で表面清浄化した後、純水で
洗浄し乾燥させたGaSb基板7をこの第1槽8の溶液
中に浸漬する。上記オクタデシルビスフォスフォン酸と
しては、粉体状のものを用いてもよいし、液状のものを
用いてもよい。オクタデシルビスフォスフォン酸を化学
吸着するときの溶液の温度は、室温でもよいし加熱され
たものでもよい。溶媒は、エタノール溶液以外の有機溶
媒を用いてもよいし、純水であってもよいが、有機溶媒
が好ましい。GaSb基板7は、前記第1槽8の溶液中
に浸漬後、そのまま該溶液中に数時間(例えば5時間)
浸漬した後に溶液中から取り出し、第2槽9に満たした
純エタノールで洗浄して、表面に付着した過剰なオクタ
デシルビスフォスフォン酸分子を除去する(以上、ステ
ップ1)。
[Embodiment 2] FIG. 3 is for explaining another example of an embodiment for manufacturing an organic multilayer thin film according to the present invention. In FIG. 1, a first tank 8 is a container filled with a 1 mM octadecylbisphosphonic acid [H 2 PO 3 (CH 2 ) 18 PO 3 H 2 ] solution in an ethanol solvent. H 2 O
After cleaning the surface with a mixed solution of 2 and H 2 SO 4 , the GaSb substrate 7 washed and dried with pure water is immersed in the solution in the first tank 8. As the octadecylbisphosphonic acid, a powdery one or a liquid one may be used. The temperature of the solution when octadecylbisphosphonic acid is chemically adsorbed may be room temperature or heated. As the solvent, an organic solvent other than the ethanol solution may be used, or pure water may be used, but an organic solvent is preferable. The GaSb substrate 7 is immersed in the solution of the first tank 8 and then left in the solution for several hours (for example, 5 hours).
After immersion, it is taken out of the solution and washed with pure ethanol filled in the second tank 9 to remove excess octadecylbisphosphonic acid molecules attached to the surface (Step 1 above).

【0018】次に、基板7を第3槽10に入ったエタノ
ール希釈1mMジルコニウムアセテート[(CH3 CO
O)4 Zr]溶液に10分程度浸漬する。ジルコニウム
アセテートとしては、粉体状のものを用いてもよいし、
液状のものを用いてもよい。ジルコニウムアセテートを
化学吸着するときの溶液の温度は、室温でもよいし、加
熱されたものでもよい。溶媒は、エタノール溶液以外の
有機溶媒を用いてもよいし、純水であってもよいが、有
機溶媒が好ましい。次に、上記GaSb基板7を第3槽
10の溶液中から取り出し、第2槽11の純エタノール
中に移して超音波洗浄し、表面に付着した過剰なZrイ
オンを除去する。
Next, the substrate 7 was placed in a third tank 10 and diluted with 1 mM zirconium acetate in ethanol [(CH 3 CO 2).
O) 4 Zr] solution for about 10 minutes. As zirconium acetate, powdery ones may be used,
A liquid may be used. The temperature of the solution when chemisorbing zirconium acetate may be room temperature or may be heated. As the solvent, an organic solvent other than the ethanol solution may be used, or pure water may be used, but an organic solvent is preferable. Next, the GaSb substrate 7 is taken out of the solution in the third tank 10, transferred to pure ethanol in the second tank 11, and subjected to ultrasonic cleaning to remove excess Zr ions attached to the surface.

【0019】次に、GaSb基板7を第4槽12に入れ
られたエタノール溶媒1mM15−メルカプトオクタデ
シルカルボン酸[HS(CH215COOH]溶液に投
入して、約4時間浸漬し、表面がZrイオンで覆われた
GaSb基板7のセルフアセンブル膜の上に、さらに1
5−メルカプトオクタデシルカルボン酸分子の1層を吸
着させる(以上、ステップ2)。この後、第2槽11に
おける洗浄を経て上記ステップ2(第3槽10への浸漬
以降)の工程を繰り返すことにより、15−メルカプト
オクタデシルカルボン酸分子を1層ずつ累積することが
できる。上記の工程を5回繰り返し、エリプソメトリー
によってその膜厚を測定したところ、約14nmとな
り、確かに1層のオクタデシルビスフォスフォン酸と1
5−メルカプトオクタデシルカルボン酸が4層形成され
ていることが確かめられた。なお、本実施の形態では、
GaSb基板を使った場合について説明したが、他の I
II−V族化合物半導体基板、GaP、GaAs、In
P、InAs、InSb等の基板でも、同様な方法を適
用することによって、劈開面上に多層膜を積層すること
ができる。
Next, the GaSb substrate 7 is put into an ethanol solvent 1 mM 15-mercaptooctadecyl carboxylic acid [HS (CH 2 ) 15 COOH] solution placed in the fourth tank 12 and immersed for about 4 hours. On the self-assembled film of the GaSb substrate 7 covered with ions,
One layer of 5-mercaptooctadecylcarboxylic acid molecules is adsorbed (step 2 above). Thereafter, by repeating the step 2 (after immersion in the third tank 10) after washing in the second tank 11, the 15-mercaptooctadecylcarboxylic acid molecules can be accumulated one layer at a time. The above steps were repeated five times, and the film thickness was measured by ellipsometry to be about 14 nm. Indeed, it was confirmed that one layer of octadecylbisphosphonic acid was
It was confirmed that four layers of 5-mercaptooctadecylcarboxylic acid were formed. In the present embodiment,
The case where a GaSb substrate is used has been described.
II-V compound semiconductor substrate, GaP, GaAs, In
By applying a similar method to a substrate such as P, InAs, and InSb, a multilayer film can be stacked on the cleavage plane.

【0020】[実施の形態3]図4は、本発明に基づい
て有機多層薄膜を製造する実施の形態の他の一例を説明
するためのものである。同図において、第1槽14は、
17−アセトキシヘプタデシルフォスフォン酸[H3
2 C(CH217PO32 ]溶液を満たした容器で
あり、有機薄膜の製造に際しては、まず、InSb基板
13をこの第1槽14の溶液中で劈開する。基板13の
表面は、実施の形態1の場合と同様にして行うことがで
きる。18−フォスフォニックトリデカノエイトとして
は、粉体状のものを用いてもよいし、液状のものを用い
てもよい。18−フォスフォニックトリデカノエイトを
化学吸着するときの溶液の温度は、室温でもよいし、加
熱されたものでもよい。溶媒は、エタノール溶液以外の
有機溶媒を用いてもよいし、純水であってもよいが、有
機溶媒が好ましい。InSb基板13は、第1槽14の
溶液中に数時間浸漬した後に該溶液中から取り出し、第
2槽15の純エタノールで洗浄して、表面に付着した過
剰な18−フォスフォニックトリデカノエイト分子を除
去する(以上、ステップ1)。
[Embodiment 3] FIG. 4 is for explaining another example of an embodiment for manufacturing an organic multilayer thin film according to the present invention. In the figure, the first tank 14 is
17-acetoxyheptadecylphosphonic acid [H 3 C
[O 2 C (CH 2 ) 17 PO 3 H 2 ] solution. When manufacturing an organic thin film, first, the InSb substrate 13 is cleaved in the solution in the first tank 14. The surface of the substrate 13 can be formed in the same manner as in the first embodiment. As 18-phosphonic tridecanoate, a powdery one or a liquid one may be used. The temperature of the solution when chemisorbing 18-phosphonic tridecanoate may be room temperature or may be heated. As the solvent, an organic solvent other than the ethanol solution may be used, or pure water may be used, but an organic solvent is preferable. The InSb substrate 13 is immersed in the solution in the first tank 14 for several hours and then taken out of the solution, washed with pure ethanol in the second tank 15, and washed with excess 18-phosphonic tridecanoate molecules attached to the surface. (Step 1).

【0021】次に、この基板13を、第3槽16に入っ
たテトラヒドロフランに溶かし込んだ1MのLiAlH
4 溶液に10分程度浸漬後、さらに第4槽17に入った
20%希塩酸溶液に浸漬することにより、表面に露出し
ているCOOCH3 基をOH基に変成する。COOCH
3 基をOH基に変成するときの溶液の温度は、室温でも
よいし、加熱されていてもよい。溶媒は、テトラヒドロ
フラン溶液以外の有機溶媒を用いてもよいし、純水であ
ってもよい。その後、上記InSb基板13を溶液中か
ら取り出し、第5槽18の純水で洗浄する。次に、In
Sb基板13を第6槽19に入れたヘキサデカン:四塩
化炭素=4:1の混合比の溶媒に溶かし込んだ1mM2
2−アセトキシドコサニルトリクロロシラン[CH3
OO(CH222SiCl3 ]溶液に投入して、約4時
間浸漬し、表面がOH基で覆われたセルフアセンブル膜
が形成されているInSb基板13の上に、さらに23
−トリクロロシルトリデカノエイトの1層を吸着させる
(以上、ステップ2)。
Next, the substrate 13 is made of 1M LiAlH dissolved in tetrahydrofuran in a third tank 16.
4 After immersion in the solution for about 10 minutes, the COOCH 3 groups exposed on the surface are converted into OH groups by further immersion in a 20% diluted hydrochloric acid solution contained in the fourth tank 17. COOCH
The temperature of the solution when the three groups are converted to OH groups may be room temperature or may be heated. As the solvent, an organic solvent other than the tetrahydrofuran solution may be used, or pure water may be used. Thereafter, the InSb substrate 13 is taken out of the solution and washed with pure water in the fifth tank 18. Next, In
1 mM 2 dissolved in a solvent having a mixing ratio of hexadecane: carbon tetrachloride = 4: 1 in which the Sb substrate 13 was placed in the sixth tank 19
2-acetoxide docosanyl trichlorosilane [CH 3 C
OO (CH 2 ) 22 SiCl 3 ] solution, and immersed for about 4 hours. On the InSb substrate 13 on which a self-assembled film whose surface is covered with OH groups is further formed,
-Adsorb one layer of trichlorosyl tridecanoate (step 2 above).

【0022】この後、第2槽20における洗浄を経て上
記ステップ2の工程を繰り返すことにより、23−トリ
クロロシルトリデカノエイトを1層ずつ累積することが
できる。上記の工程を10回繰り返し、エリプソメトリ
ーによってその膜厚を測定したところ、約32nmとな
り、確かに1層のメルカプトヘキサデシルアセテートと
23−トリクロロシルトリデカノエイトが9層形成され
ていることが確かめられた。なお、本実施の形態では、
InSb基板を使った場合について説明したが、他の I
II−V族化合物半導体基板、GaP、GaAs、GaS
b、InP、InAs等の基板でも、同様な方法を適用
することによって、劈開面上に多層膜を積層することが
できる。
Thereafter, the process of step 2 is repeated after washing in the second tank 20, whereby 23-trichlorosyltridecanoate can be accumulated one layer at a time. The above process was repeated 10 times, and the film thickness was measured by ellipsometry to be about 32 nm. It was confirmed that one layer of mercaptohexadecyl acetate and 23 layers of 23-trichlorosyltridecanoate were formed. Was done. In the present embodiment,
The case where the InSb substrate is used has been described.
II-V compound semiconductor substrate, GaP, GaAs, GaS
By applying the same method to a substrate such as b, InP, InAs, etc., a multilayer film can be stacked on the cleavage plane.

【0023】[実施の形態4]図5は、本発明に基づい
て有機多層薄膜を製造する実施の形態のさらに他の一例
を説明するためのものである。同図において、第1槽2
2は、エタノール溶媒1mM16−ヘキサデセニルフォ
スフォン酸[CH2 =CH(CH214PO32 ]溶
液を満たした容器であり、有機薄膜の製造に際しては、
まず、InAs基板21をこの第1槽22の溶液に浸漬
する。基板21の表面は、実施の形態1の場合と同様に
して作製することができる。16−ヘキサデセニルフォ
スフォン酸を化学吸着するときの溶液の温度は、室温で
もよいし、加熱されたものでもよい。溶媒は、エタノー
ル溶液以外の有機溶媒を用いてもよいし、純水であって
もよいが、有機溶媒が好ましい。InAs基板21は、
前記第1槽22の溶液中に数時間浸漬した後に該溶液中
から取り出し、第2槽23の純エタノールで洗浄して、
表面に付着した過剰な16−ヘキサデセニルフォスフォ
ン酸分子を除去する(以上、ステップ1)。
[Embodiment 4] FIG. 5 is for explaining still another example of an embodiment for manufacturing an organic multilayer thin film according to the present invention. In the figure, the first tank 2
Reference numeral 2 denotes a container filled with an ethanol solvent 1 mM 16-hexadecenylphosphonic acid [CH 2 CHCH (CH 2 ) 14 PO 3 H 2 ] solution.
First, the InAs substrate 21 is immersed in the solution in the first tank 22. The surface of the substrate 21 can be manufactured in the same manner as in the first embodiment. The temperature of the solution when chemisorbing 16-hexadecenylphosphonic acid may be room temperature or may be heated. As the solvent, an organic solvent other than the ethanol solution may be used, or pure water may be used, but an organic solvent is preferable. The InAs substrate 21
After being immersed in the solution in the first tank 22 for several hours, it is taken out of the solution, washed with pure ethanol in the second tank 23,
Excess 16-hexadecenylphosphonic acid molecules attached to the surface are removed (Step 1 above).

【0024】次に、この基板21を、第3槽24に入っ
たテトラヒドロフランに溶かし込んだ1MのB26
液に1分程度浸漬後、さらに第4槽25に入った過酸化
水素30%の0.1M水酸化ナトリウム混合溶液に浸漬
することにより、表面に露出しているCH2 =CH基を
OH基に変成する。CH2 =CH基をOH基に変成する
ときの溶液の温度は、室温でもよいし、加熱されていて
もよい。溶媒は、テトラヒドロフラン溶液以外の有機溶
媒を用いてもよいし、純水であってもよいが、有機溶媒
が好ましい。上記InAs基板21を前記溶液中に浸漬
した後には、それを溶液中から取り出し、第5槽26の
純水で洗浄する。次に、InAs基板21を第6槽27
に入ったヘキサデカン:四塩化炭素=4:1の混合比の
溶媒に溶かし込んだ1mM16−ビニルテトラデシルト
リクロロシラン[CH2 =CH(CH214SiCl
3 ]溶液に投入して、約5時間浸漬し、表面がOH基で
覆われたセルフアセンブル膜が形成されたInAs基板
21の上にさらに16−ヘキサデセニルトリクロロシラ
ンを1層吸着させる(以上、ステップ2)。
Next, the substrate 21 is immersed in a 1M B 2 H 6 solution dissolved in tetrahydrofuran in a third tank 24 for about 1 minute, and then the hydrogen peroxide 30% in a fourth tank 25 is added. By immersing in a 0.1 M sodium hydroxide mixed solution of the above, the CH 2 CHCH groups exposed on the surface are transformed into OH groups. The temperature of the solution when the CH 2 CHCH group is converted to an OH group may be room temperature or may be heated. As the solvent, an organic solvent other than the tetrahydrofuran solution may be used, or pure water may be used, but an organic solvent is preferable. After immersing the InAs substrate 21 in the solution, it is taken out of the solution and washed with pure water in the fifth tank 26. Next, the InAs substrate 21 is placed in the sixth tank 27.
1 mM 16-vinyltetradecyltrichlorosilane [CH 2 CHCH (CH 2 ) 14 SiCl dissolved in a solvent having a mixing ratio of hexadecane: carbon tetrachloride = 4: 1
3 ] The solution is immersed in the solution for about 5 hours, and one layer of 16-hexadecenyltrichlorosilane is further adsorbed on the InAs substrate 21 on which the self-assembled film whose surface is covered with OH groups is formed. , Step 2).

【0025】この後、第2槽28における洗浄を経て上
記ステップ2の工程を繰り返すことにより、16−ヘキ
サデセニルトリクロロシランを1層ずつ累積することが
できる。上記の工程を20回繰り返し、エリプソメトリ
ーによってその膜厚を測定したところ、約39nmとな
り、確かに1層の16−ヘキサデセニルフォスフォン酸
と16−ヘキサデセニルトリクロロシランの19層が形
成されていることが確かめられた。なお、本実施の形態
では、InAs、GaAs、GaSb、InP、InS
b等の基板でも、同様な方法を適用することによって、
劈開面上に多層膜を積層することができる。
Thereafter, by repeating the process of step 2 after washing in the second tank 28, 16-hexadecenyltrichlorosilane can be accumulated one layer at a time. The above steps were repeated 20 times, and the film thickness was measured by ellipsometry to be about 39 nm. Indeed, 19 layers of 16-hexadecenylphosphonic acid and 16-hexadecenyltrichlorosilane were formed. It was confirmed that it was done. In the present embodiment, InAs, GaAs, GaSb, InP, InS
For substrates such as b, by applying the same method,
A multilayer film can be stacked on the cleavage plane.

【0026】[0026]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1として説明した有機積層
薄膜の製造方法の概略説明図である。
FIG. 1 is a schematic explanatory view of a method for manufacturing an organic laminated thin film described as Embodiment 1 of the present invention.

【図2】本発明の実施例において得られた有機積層薄膜
のエリプソメトリーによる積層回数による膜厚変化を示
すグラフである。
FIG. 2 is a graph showing a change in film thickness according to the number of laminations by ellipsometry of an organic laminated thin film obtained in an example of the present invention.

【図3】本発明の実施の形態2として説明した有機積層
薄膜の製造方法の概略説明図である。
FIG. 3 is a schematic explanatory view of a method for manufacturing an organic laminated thin film described as Embodiment 2 of the present invention.

【図4】本発明の実施の形態3として説明した有機積層
薄膜の製造方法の概略説明図である。
FIG. 4 is a schematic explanatory view of a method for manufacturing an organic laminated thin film described as Embodiment 3 of the present invention.

【図5】本発明の実施の形態4として説明した有機積層
薄膜の製造方法の概略説明図である。
FIG. 5 is a schematic explanatory view of a method for manufacturing an organic laminated thin film described as Embodiment 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 1mMオクタデシルビスフォスフォン酸溶液を満
たした槽 2 GaAs基板 3,5,9,11,15,23 純エタノール溶液を
満たした槽 4 1mMオキシ塩化ジルコニウム溶液の槽 6,8 1mMオクタデシルビスフォスフォン酸溶液
の槽 7 GaSb基板 10 1mMジルコニウムアセテート溶液の槽 12 1mM17−メルカプトオクタデシルカルボン
酸溶液の槽 13 InSb基板 14 1mM17−アセトキシヘプタデシルフォスフ
ォン酸の槽 16 1MのLiAlH4 溶液の槽 17 20%希塩酸溶液の槽 19 1mM22−アセトキシドコサニルトリクロロ
シラン溶液の槽 18,20,26,28 純水の槽 21 InAs基板 22 1mM17−アセトキシヘプタデシルフォスフ
ォン酸の槽 24 1MのB26 溶液の槽 25 過酸化水素30%の0.1M水酸化ナトリウム
混合溶液の槽 27 1mM16−ビニルテトラデシルトリクロロシ
ラン
1 tank filled with 1 mM octadecylbisphosphonic acid solution 2 GaAs substrate 3,5,9,11,15,23 tank filled with pure ethanol solution 4 tank with 1 mM zirconium oxychloride solution 6,8 1 mM octadecylbisphosphonic acid Solution tank 7 GaSb substrate 10 1 mM zirconium acetate solution tank 12 1 mM 17-mercaptooctadecylcarboxylic acid solution tank 13 InSb substrate 14 1 mM 17-acetoxyheptadecylphosphonic acid tank 16 1 M LiAlH 4 solution tank 20 20% dilute hydrochloric acid solution over the tank 19 1MM22- acetoxymethyl docosanyl trichlorosilane vat 21 InAs substrate tank 18,20,26,28 pure water solution 22 1MM17- acetoxymethyl heptadecyl FOSS sulfonic acid bath 24 1M of B 2 H 6 solution tank 25 acid Bath 27 1MM16- vinyl tetradecyl trichlorosilane hydrogen 30% 0.1M sodium hydroxide mixed solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤岡 一志 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 山中 幹宏 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 御手洗 郷子 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 徳本 洋志 茨城県つくば市東1−1−4 工業技術院 産業技術融合領域研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazushi Fujioka 22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka Inside Sharp Corporation (72) Inventor Mikihiro Yamanaka 22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka Co., Ltd. (72) Inventor Satoko Mitarai 22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka Incorporated (72) Inventor Yoji Tokumoto 1-1-4 Higashi, Tsukuba, Ibaraki Pref. Inside

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】酸化した III−V族化合物半導体基板を、
末端基にPH23 基誘導体をもつ両親媒性有機分子を
含む溶液または融液に浸漬して、上記基板上に有機分子
を化学吸着させることにより、有機単分子膜を形成する
ことを特徴とする有機単分子薄膜の製造方法。
1. An oxidized III-V compound semiconductor substrate,
An organic monomolecular film is formed by immersing in a solution or melt containing an amphipathic organic molecule having a PH 2 O 3 group derivative in the terminal group and chemically adsorbing the organic molecule on the substrate. A method for producing an organic monomolecular thin film.
【請求項2】請求項1に記載の方法において、有機単分
子膜を形成する両親媒性有機分子として、他端にCOO
H基を有する有機分子を用い、第1の有機単分子膜を形
成した後、これを遷移金属イオンを含む溶液中に浸漬
し、その後、一端にSH基を有し他端にCOOH基を有
する両親媒性分子を含む溶液に浸漬し、上記第1の有機
単分子膜上にさらに有機単分子膜を累積することを特徴
とする有機薄膜の製造方法。
2. The method according to claim 1, wherein the amphiphilic organic molecule forming the organic monomolecular film has COO at the other end.
After forming a first organic monomolecular film using an organic molecule having an H group, this is immersed in a solution containing a transition metal ion, and then having an SH group at one end and a COOH group at the other end. A method for producing an organic thin film, characterized by immersing in a solution containing an amphipathic molecule and accumulating an organic monomolecular film on the first organic monomolecular film.
【請求項3】請求項1に記載の方法において、有機単分
子膜を形成する両親媒性有機分子として、他端にPH2
3 基を有する有機分子を用い、第1の有機単分子膜を
形成した後、これを遷移金属イオンを含む溶液中に浸漬
し、その後、一端にPH23 基を有し他端にPH2
3 基を有する両親媒性分子を含む溶液に浸漬し、上記第
1の有機単分子膜上にさらに有機単分子膜を累積するこ
とを特徴とする有機薄膜の製造方法。
3. The method according to claim 1, wherein the amphiphilic organic molecule forming the organic monomolecular film has PH 2 at the other end.
After forming a first organic monomolecular film using an organic molecule having an O 3 group, this is immersed in a solution containing a transition metal ion, and then having a PH 2 O 3 group at one end and PH 2 O
A method for producing an organic thin film, characterized by immersing in a solution containing an amphipathic molecule having three groups, and further accumulating an organic monomolecular film on the first organic monomolecular film.
【請求項4】請求項1に記載の方法において、有機単分
子膜を形成する両親媒性有機分子として、他端にCH2
=CH基を持つ両親媒性有機分子を含む溶液を用い、そ
れに基板を浸漬して、基板上に有機分子を化学吸着させ
ることにより、第1の有機単分子膜を形成し、これを有
機溶媒に溶かし込んだB26 溶液及び水酸化ナトリウ
ムと過酸化水素の混合溶液で処理した後、一端にCH2
=CH基を有し他端にSiCl3 基を有する両親媒性分
子を含む溶液に浸漬し、上記第1の有機単分子膜上にさ
らに有機単分子膜を累積することを特徴とする有機薄膜
の製造方法。
4. The method according to claim 1, wherein the amphiphilic organic molecule forming the organic monomolecular film has CH 2 at the other end.
= Using a solution containing an amphiphilic organic molecule having a CH group, immersing the substrate in the solution, and chemically adsorbing the organic molecule on the substrate to form a first organic monomolecular film. after treatment with a mixed solution of crowded I B 2 H 6 solution and sodium hydroxide and hydrogen peroxide dissolved in, CH 2 at one end
An organic thin film characterized by being immersed in a solution containing an amphipathic molecule having a CH group and having a SiCl 3 group at the other end, and further accumulating an organic monolayer on the first organic monolayer. Manufacturing method.
【請求項5】請求項1に記載の方法において、有機単分
子膜を形成する両親媒性有機分子として、他端にCOO
CH3 基を持つ両親媒性有機分子を含む溶液に浸漬し
て、基板上に有機分子を化学吸着させることにより、第
1の有機単分子膜を形成し、これを有機溶媒に溶かし込
んだLiAlH4 溶液及び希塩酸で処理した後、一端に
COOCH3 基を有し他端にSiCl3 基を有する両親
媒性分子を含む溶液に浸漬し、上記第1の有機単分子膜
上にさらに有機単分子膜を累積することを特徴とする有
機薄膜の製造方法。
5. The method according to claim 1, wherein the amphiphilic organic molecule forming the organic monomolecular film has COO at the other end.
A first organic monomolecular film is formed by immersing the substrate in a solution containing an amphipathic organic molecule having a CH 3 group and chemically adsorbing the organic molecule on a substrate, and LiAlH is dissolved in an organic solvent. 4 After treatment with a solution and dilute hydrochloric acid, the substrate is immersed in a solution containing an amphipathic molecule having a COOCH 3 group at one end and a SiCl 3 group at the other end, and further immersing the organic monomolecular film on the first organic monomolecular film A method for producing an organic thin film, comprising accumulating films.
【請求項6】請求項2ないし5のいずれかに記載の方法
において、第1の有機単分子膜上にさらに有機単分子膜
を累積形成する工程を繰り返すことにより、有機膜を順
次累積することを特徴とする有機薄膜の製造方法。
6. The method according to claim 2, wherein the step of accumulating the organic monomolecular film on the first organic monomolecular film is repeated to sequentially accumulate the organic films. A method for producing an organic thin film, comprising:
JP28278197A 1997-09-30 1997-09-30 Organic thin film manufacturing method Expired - Lifetime JP3284241B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28278197A JP3284241B2 (en) 1997-09-30 1997-09-30 Organic thin film manufacturing method
US09/163,975 US6225239B1 (en) 1997-09-30 1998-09-30 Organic films and a process for producing fine pattern using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28278197A JP3284241B2 (en) 1997-09-30 1997-09-30 Organic thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH11112061A true JPH11112061A (en) 1999-04-23
JP3284241B2 JP3284241B2 (en) 2002-05-20

Family

ID=17657004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28278197A Expired - Lifetime JP3284241B2 (en) 1997-09-30 1997-09-30 Organic thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP3284241B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020873A2 (en) * 2000-09-05 2002-03-14 Zeptosens Ag Method for precipitating mono and multiple layers of organophosphoric and organophosphonic acids and the salts thereof in addition to use thereof
JP2006517463A (en) * 2003-02-11 2006-07-27 プリンストン ユニヴァーシティ Monolayer using organic acid bonded to the surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020873A2 (en) * 2000-09-05 2002-03-14 Zeptosens Ag Method for precipitating mono and multiple layers of organophosphoric and organophosphonic acids and the salts thereof in addition to use thereof
WO2002020873A3 (en) * 2000-09-05 2003-01-09 Zeptosens Ag Method for precipitating mono and multiple layers of organophosphoric and organophosphonic acids and the salts thereof in addition to use thereof
JP2006517463A (en) * 2003-02-11 2006-07-27 プリンストン ユニヴァーシティ Monolayer using organic acid bonded to the surface

Also Published As

Publication number Publication date
JP3284241B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
Cho et al. Fabrication of highly ordered multilayer films using a spin self‐assembly method
Hoeppener et al. Metal nanoparticles, nanowires, and contact electrodes self‐assembled on patterned monolayer templates—a bottom‐up chemical approach
US9887361B2 (en) Methods for forming a carbon nanotube-graphene hybrid film on a substrate
Thissen et al. Wet chemical surface functionalization of oxide-free silicon
US8124179B2 (en) Thin films prepared with gas phase deposition technique
JPS60173842A (en) Forming method of pattern
KR101355933B1 (en) Method for adsorbtion of various biomaterials to chemically modified graphene
JP2967112B2 (en) Organic thin film manufacturing method
JP3752183B2 (en) How to assemble an array of particulates
JPH04367210A (en) Capacitor
JPH0488678A (en) Organic device and manufacture thereof
US6225239B1 (en) Organic films and a process for producing fine pattern using the same
JP3284241B2 (en) Organic thin film manufacturing method
JP3658486B2 (en) Method for producing organic / metal oxide composite thin film
US20060060301A1 (en) Substrate processing using molecular self-assembly
JP4035752B2 (en) Manufacturing method of fine structure
JP3572056B2 (en) Optical patterning of organic monolayer on silicon wafer
Moriguchi et al. Synthesis of size-confined metal sulfides in Langmuir-Blodgett films
JP2005051151A (en) Manufacturing method for conductive layer, substrate with conductive layer and electronic device
Osaka Creation of highly functional thin films using electrochemical nanotechnology
Guo Selective Chemistry of Metal Oxide Atomic Layer Deposition on Si Based Substrate Surfaces
Holland et al. Biologically derived nanometer-scale patterning on chemically modified silicon surfaces
KR20090092589A (en) Organic-inorganic hybrid superlattice film and fabrication method thereof
Closser New Chemistries and Applications in Molecular Layer Deposition
Jain Formation of Aminosilane and Thiol Monolayers on Semiconductor Surfaces and Bulk Wet Etching of III--V Semiconductors

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term