JPH11112042A - Manufacture of thermoelectric semiconductor sintered element - Google Patents
Manufacture of thermoelectric semiconductor sintered elementInfo
- Publication number
- JPH11112042A JPH11112042A JP9271407A JP27140797A JPH11112042A JP H11112042 A JPH11112042 A JP H11112042A JP 9271407 A JP9271407 A JP 9271407A JP 27140797 A JP27140797 A JP 27140797A JP H11112042 A JPH11112042 A JP H11112042A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric semiconductor
- sintered body
- diameter
- crystal powder
- semiconductor sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000013078 crystal Substances 0.000 claims abstract description 26
- 239000000843 powder Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 description 27
- 238000001192 hot extrusion Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910002909 Bi-Te Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱電半導体を焼結
した熱電半導体焼結素子の製造方法に関するものであ
る。The present invention relates to a method for manufacturing a thermoelectric semiconductor sintered element obtained by sintering a thermoelectric semiconductor.
【0002】[0002]
【従来の技術】電子冷却素子に使用される熱電半導体
を、Bi−Te系等の金属材料の結晶粉末からホットプ
レスにより焼結素子を押出し成形することにより製造す
る方法が例えば特開昭64−37456号公報に示され
ている。この従来の方法は、熱電半導体結晶を粉末化
し、所望の粒子径に分級した後にホットプレスを行い、
焼結体を形成し、該焼結体を切りだしてチップ状の熱電
半導体焼結素子とするものである。2. Description of the Related Art A method of manufacturing a thermoelectric semiconductor used for an electronic cooling element by extruding a sintered element from a crystal powder of a metal material such as Bi-Te by hot pressing is disclosed in, for example, Japanese Patent Application Laid-Open No. No. 37456. In this conventional method, the thermoelectric semiconductor crystal is powdered, subjected to hot pressing after classification into a desired particle size,
A sintered body is formed, and the sintered body is cut out to obtain a chip-shaped thermoelectric semiconductor sintered element.
【0003】また、平成9年5月23日の平成9年度塑
性加工春期講演会で、Bi−Te系等の金属材料の結晶
粉末を、一端にノズル状の押出し口と他端側に該押出し
口と連通するシリンダ状のキャビティーを持つダイスに
入れ、焼結温度に加熱しつつポンチで押出し、熱間押出
し加工して細い棒状とし、これを軸直角方向に切断して
電子冷却素子とする方法が報告されている。[0003] In addition, at a spring lecture meeting on plastic working on May 23, 1997, a crystal powder of a metal material such as a Bi-Te type was extruded into a nozzle-like extrusion port at one end and extruded at the other end. Put into a die with a cylindrical cavity communicating with the mouth, extrude with a punch while heating to the sintering temperature, hot extrude into a thin rod shape, cut this in the direction perpendicular to the axis to make an electronic cooling element Methods have been reported.
【0004】上記熱間押出し加工法において、ダイスの
キャビティーに挿入された結晶粉末はポンチにて加圧さ
れ、かつダイスにより加熱されてシリンダ状のキャビテ
ィーからノズル状の押出し口に押出される。この間にキ
ャビティーはロート状に内径が小さくなり、結晶粉末は
加圧され、縮径されて塑性変形し、軸方向に延されつつ
焼結する。これにより、焼結体表面のクラック発生を低
減し、機械的性質の良好な棒状の熱電半導体焼結体を製
作しようとしている。[0004] In the hot extrusion method, the crystal powder inserted into the cavity of the die is pressed by a punch, heated by the die, and extruded from the cylindrical cavity to a nozzle-like extrusion port. . During this time, the inner diameter of the cavity is reduced in a funnel shape, and the crystal powder is pressurized, reduced in diameter, plastically deformed, and sintered while being extended in the axial direction. Thus, the occurrence of cracks on the surface of the sintered body is reduced, and a rod-shaped thermoelectric semiconductor sintered body having good mechanical properties is being manufactured.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記のような
キャビティーの形状であっても、押出される熱電半導体
焼結体にクラックが発生することがある。本発明は、ク
ラックの無い表面性状の良好な所定径の棒状の焼結体を
押出すことができる熱電半導体焼結素子の製造方法を提
供することを解決すべき課題とする。However, cracks may occur in the extruded thermoelectric semiconductor sintered body even with the above-mentioned cavity shape. An object of the present invention is to provide a method of manufacturing a thermoelectric semiconductor sintered element capable of extruding a rod-shaped sintered body having a predetermined diameter and good surface properties without cracks.
【0006】[0006]
【課題を解決するための手段】発明者は押し出される棒
状の焼結体のクラック発生について多くの試行錯誤を重
ね、ダイスの温度、ポンチの移動速度(押出し速度)
等、押出し条件を変化させると、焼結体にかかる圧力が
変化してクラックが発生しやすいことが実験により判明
した。さらに、クラックは、縮径されて塑性変形すると
き、すなわちノズル状の押出し口付近で発生することも
明らかになった。The inventor repeated many trials and errors on the occurrence of cracks in the extruded rod-shaped sintered body, and determined the die temperature, the punch moving speed (extrusion speed).
Experiments have shown that when the extrusion conditions are changed, the pressure applied to the sintered body changes and cracks are likely to occur. Further, it was also revealed that cracks occur when the diameter is reduced and plastic deformation occurs, that is, near the nozzle-shaped extrusion port.
【0007】そして、クラックの発生を低減するには、
押出し口の口径を小さくしたり、ロート状に内径が小さ
くなる部分から押出し口までに抵抗通路を設けて、押出
される焼結体に常に安定的な圧力がかかるようにすれば
よいことも明らかになった。しかし、押出し口の口径
は、得ようとする焼結体の径によって設定されるため、
該押出し口の口径によってクラックを防止することはで
きない。In order to reduce the occurrence of cracks,
It is also clear that it is only necessary to reduce the diameter of the extrusion port or to provide a resistance passage from the part where the inner diameter becomes smaller to the extrusion port in a funnel shape so that a stable pressure is always applied to the extruded sintered body. Became. However, since the diameter of the extrusion port is set according to the diameter of the sintered body to be obtained,
Cracks cannot be prevented by the diameter of the extrusion port.
【0008】そこで、抵抗通路を設けることを考え、こ
の抵抗通路は長ければ長いほど、クラックのない良好な
表面性状の熱電半導体焼結体が得られる反面、ポンチの
押出荷重が増加し、押出し不能になる。反対に抵抗通路
の長さが短かいと、焼結体にかかる圧力が小さく安定し
なくなって、該ランド部を流れる焼結体が詰った状態を
維持できず、クラックが発生しやすくなる。Therefore, considering the provision of a resistance passage, the longer the resistance passage, the better the surface of the thermoelectric semiconductor sintered body without cracks can be obtained. However, the extrusion load of the punch increases and the extrusion cannot be performed. become. Conversely, if the length of the resistance passage is short, the pressure applied to the sintered body becomes small and unstable, so that the sintered body flowing through the land cannot be kept in a clogged state, and cracks are easily generated.
【0009】本発明は、かかる知見を得て完成されたも
のである。すなわち、本発明の熱電半導体焼結素子の製
造方法は、熱電半導体結晶粉末をダイスのキャビティー
内で加熱しつつ押出して棒状の熱電半導体焼結体を形成
し、得られた該熱電半導体焼結体を切断して熱電半導体
焼結素子とする熱電半導体焼結素子の製造方法であっ
て、前記ダイスの前記キャビティーが、供給された前記
熱電半導体結晶粉末を押出すパンチが挿入される円柱形
部と、該円柱形部に連通した円錐台形部と、該円錐台形
部からロート状に連通し前記熱電半導体結晶粉末を棒状
に成形して前記熱電半導体焼結体とし、その径の2.5
〜10倍の長さをもつランド部と、成形された前記熱電
半導体焼結体が押出される拡径部と、からなることを特
徴とする。The present invention has been completed based on such findings. That is, in the method for manufacturing a thermoelectric semiconductor sintered element of the present invention, the thermoelectric semiconductor crystal powder is extruded while being heated in a cavity of a die to form a rod-shaped thermoelectric semiconductor sintered body. A method for producing a thermoelectric semiconductor sintered element by cutting a body into a thermoelectric semiconductor sintered element, wherein the cavity of the die has a cylindrical shape into which a punch for extruding the supplied thermoelectric semiconductor crystal powder is inserted. Part, a truncated conical part communicating with the columnar part, and a funnel-shaped communicating part of the thermoelectric semiconductor crystal powder from the truncated conical part, forming the thermoelectric semiconductor sintered body into a rod-like body, having a diameter of 2.5 mm.
It is characterized by comprising a land portion having a length of 10 to 10 times and an enlarged portion from which the formed thermoelectric semiconductor sintered body is extruded.
【0010】上記熱電半導体焼結素子の製造方法では、
ポンチの押圧力によってランド部に押出される熱電半導
体焼結体は、該ランド部の径に一致した棒状に成形さ
れ、拡径部に導出される。ランド部で熱電半導体焼結体
は抵抗を受ける。この抵抗が大きいほどクラックの発生
は少なくなるが、ポンチの押出荷重が大きくなる。ラン
ド部の抵抗は該ランド部の長さに比例し、本発明では、
ランド部の長さがその径の2.5〜10倍の範囲に設定
されることにより、ランド部を流れる焼結体に安定に圧
力がかかるようにし、かつ押出荷重が大きくならないよ
うにしてクラックの発生を抑えた押出し成形を行うこと
ができる。[0010] In the method for manufacturing a thermoelectric semiconductor sintered element,
The thermoelectric semiconductor sintered body extruded to the land portion by the pressing force of the punch is formed into a rod shape corresponding to the diameter of the land portion, and is led out to the enlarged diameter portion. The thermoelectric semiconductor sintered body receives resistance at the lands. The greater the resistance, the less cracks are generated, but the larger the punch load. The resistance of the land is proportional to the length of the land, and in the present invention,
By setting the length of the land portion to be in the range of 2.5 to 10 times the diameter, the sintered body flowing through the land portion can be stably applied with pressure and the extrusion load can be prevented from being increased so that cracks can be generated. Extrusion can be performed while suppressing the occurrence of cracks.
【0011】前記ランド部は、前記円錐台形部に一端が
接続しその径が該円錐台形部側から徐々に絞られたテー
パ部と、該テーパ部に接続した径の一定の定径部とから
構成することができる。これにより、ランド部の入口付
近で焼結体にかかる圧力の急激な変化を緩和することが
できる。前記拡径部には該拡径部の最大径と同じ口径の
ガイド部をもつことができる。このガイド部は、拡径部
から押出される焼結体の押出し方向を矯正する。The land portion includes a tapered portion having one end connected to the frustoconical portion and having a diameter gradually reduced from the frustoconical portion side, and a constant diameter portion having a constant diameter connected to the tapered portion. Can be configured. Thereby, a sudden change in the pressure applied to the sintered body near the entrance of the land can be reduced. The enlarged diameter portion may have a guide portion having the same diameter as the maximum diameter of the enlarged diameter portion. The guide corrects the extrusion direction of the sintered body extruded from the enlarged diameter portion.
【0012】[0012]
【発明の実施の形態】本発明の熱電半導体焼結素子の製
造方法において、押出し用治具は、ポンチおよびダイス
とからなる。ダイスは、熱電半導体結晶粉末を加熱しパ
ンチが挿入される円柱形部と、該円柱形部に連通した円
錐台形部と、該円錐台形部からロート状に連通し、その
径の2.5〜10倍の長さをもつランド部と、成形され
た熱電半導体焼結体が押出される拡径部とからなるキャ
ビティーをもつ。パンチは、円柱形部に嵌合し、所定の
駆動手段によって該円柱形部内を軸方向に移動可能に構
成される。BEST MODE FOR CARRYING OUT THE INVENTION In the method of manufacturing a thermoelectric semiconductor sintered device according to the present invention, an extrusion jig comprises a punch and a die. The die has a cylindrical portion into which the punch is inserted by heating the thermoelectric semiconductor crystal powder, a frustoconical portion communicating with the cylindrical portion, and a funnel-shaped communication from the frustoconical portion, and has a diameter of 2.5 to It has a cavity consisting of a land portion having a length of 10 times and an enlarged diameter portion from which a molded thermoelectric semiconductor sintered body is extruded. The punch is fitted to the cylindrical portion and is configured to be movable in the axial direction in the cylindrical portion by a predetermined driving means.
【0013】前記円柱形部および前記円錐台形部に導入
された熱電半導体結晶粉末は、ダイスによって焼結温度
に加熱され熱電半導体焼結体となる。この焼結体は、ポ
ンチによって前記円錐台形部側に押圧され、縮径されて
塑性変形し、ランド部に押出される。ランド部は、焼結
体を所定径の棒状に成形し、成形した熱電半導体焼結体
を拡径部に送出す。拡径部は、ランド部を流れる熱電半
導体焼結体の圧力を開放する開口端とする。The thermoelectric semiconductor crystal powder introduced into the cylindrical portion and the truncated conical portion is heated to a sintering temperature by a die to form a thermoelectric semiconductor sintered body. The sintered body is pressed toward the truncated cone by a punch, reduced in diameter, plastically deformed, and extruded to a land. The land portion forms the sintered body into a rod shape having a predetermined diameter, and sends out the formed thermoelectric semiconductor sintered body to the enlarged diameter portion. The enlarged diameter portion is an open end that releases the pressure of the thermoelectric semiconductor sintered body flowing through the land portion.
【0014】前記ランド部を、前記円錐台形部に一端が
接続しその径が該円錐台形部側から徐々に絞られたテー
パ部と、該テーパ部に接続した径の一定の定径部とから
構成することができる。この場合、前記テーパ部の傾斜
角は前記円錐台形部の傾斜角より小さい方が、焼結体の
縮径が緩やかに行われ、該テーパ部での焼結体の圧力の
変動が少なくなる。The land portion includes a tapered portion having one end connected to the truncated conical portion and having a diameter gradually reduced from the truncated conical portion, and a constant diameter portion connected to the tapered portion and having a constant diameter. Can be configured. In this case, when the inclination angle of the tapered portion is smaller than the inclination angle of the truncated conical portion, the diameter of the sintered body is gradually reduced, and the fluctuation of the pressure of the sintered body at the tapered portion is reduced.
【0015】[0015]
【実施例】以下に、本発明の実施形態例を図面に基づい
て説明する。 (第1実施例)熱電半導体は、BixSbyTezSea、
BixSbyTez、BixTezSea、BixTez等で示
されるいずれかの組成物より製造される。そこで、上記
組成となる所定の原材料を秤量し、これらの原材料の純
度を高める処理を行った後、これらの混合物を溶融し、
冷却して熱電半導体結晶合金とする。Embodiments of the present invention will be described below with reference to the drawings. (First embodiment) thermoelectric semiconductors, Bi x Sb y Te z Se a,
Bi x Sb y Te z, Bi x Te z Se a, is produced from any of the compositions represented by Bi x Te z, and the like. Therefore, after weighing predetermined raw materials having the above composition and performing a process for increasing the purity of these raw materials, melting these mixtures,
After cooling, a thermoelectric semiconductor crystal alloy is obtained.
【0016】この熱電半導体結晶合金をカッターミルに
て粉砕し、熱電半導体結晶粉末とした。次に粉砕された
熱電半導体結晶粉末を所定粒径サイズに分級した。この
ようなして作製した熱電半導体結晶粉末を、図1に概略
的に示すような熱間押出し用治具1のダイス2内に入
れ、熱間押出成形を行った。The thermoelectric semiconductor crystal alloy was pulverized by a cutter mill to obtain thermoelectric semiconductor crystal powder. Next, the pulverized thermoelectric semiconductor crystal powder was classified into a predetermined particle size. The thermoelectric semiconductor crystal powder thus produced was placed in a die 2 of a hot extrusion jig 1 as schematically shown in FIG. 1 and subjected to hot extrusion.
【0017】ここで、熱間押出し用治具1について説明
する。熱間押出し用治具1は、ダイス2と、該ダイス2
内に導入された熱電半導体結晶粉末を押圧するポンチ3
と、ダイス2の外表面に取付けられたヒータ4とからな
る。ヒータ4は図示せぬ電源供給部から通電されて発熱
され、それによりダイス2が加熱されるようになってい
る。Here, the hot extrusion jig 1 will be described. The hot extrusion jig 1 includes a die 2 and the die 2.
Punch 3 for pressing thermoelectric semiconductor crystal powder introduced into
And a heater 4 attached to the outer surface of the die 2. The heater 4 is energized by a power supply unit (not shown) and generates heat, thereby heating the die 2.
【0018】ダイス2の内部にはキャビティー5が形成
されている。該キャビティー5は、図2に拡大して示す
ように、円柱形部6、円錐台形部7、ランド部8、拡径
部9およびガイド部10からなる。円柱形部6および円
錐台形部7は、熱電半導体結晶粉末が供給される空洞で
あり、円柱形部6の直径は例えば20mm程度に形成さ
れ、円錐台形部7のテーパ角(図1に示す角θ1)はほ
ぼ45度に設計されている。A cavity 5 is formed inside the die 2. The cavity 5 includes a cylindrical portion 6, a truncated conical portion 7, a land portion 8, an enlarged diameter portion 9, and a guide portion 10, as shown in an enlarged manner in FIG. The cylindrical portion 6 and the truncated conical portion 7 are cavities to which the thermoelectric semiconductor crystal powder is supplied. The diameter of the cylindrical portion 6 is formed, for example, to about 20 mm, and the taper angle of the truncated conical portion 7 (the angle shown in FIG. 1). θ1) is designed to be approximately 45 degrees.
【0019】ランド部8は径が一定の成形通路である。
拡径部9は、ランド部8の出口端に接続し、該ランド部
8の出口径より徐々に拡大するテーパ状の通路である。
ガイド部10は、前記拡径部9の最大径と同じ口径の通
路であり、その先端に押出し口11がある。該ランド部
8、拡径部9およびガイド部10は、円柱形部6と反対
側に延びている。The land 8 is a molding passage having a constant diameter.
The enlarged diameter portion 9 is a tapered passage that is connected to the exit end of the land portion 8 and gradually expands from the exit diameter of the land portion 8.
The guide portion 10 is a passage having the same diameter as the maximum diameter of the large-diameter portion 9, and has an extrusion port 11 at a tip thereof. The land portion 8, the enlarged diameter portion 9, and the guide portion 10 extend on the side opposite to the columnar portion 6.
【0020】ポンチ3は、ダイス2の円柱形部6が開口
する側に備えられ、該円柱形部6と同じ円柱形に形成さ
れている。ポンチ3の径は、円柱形部6の径とほぼ同径
とされている。そして、ポンチ3は、油圧駆動、モータ
駆動等により、矢視C(図1)方向に駆動され、円柱形
部6内を往復可能に構成されている。好ましくは、ダイ
ス2の温度は400度、熱伝半導体結晶粉末にかかる圧
力は、10ton/cm2となるように、ヒータ4の温
度およびポンチ3の押圧力が調整される。The punch 3 is provided on the side of the die 2 where the columnar portion 6 is open, and is formed in the same columnar shape as the columnar portion 6. The diameter of the punch 3 is substantially the same as the diameter of the cylindrical portion 6. The punch 3 is driven in the direction of arrow C (FIG. 1) by hydraulic driving, motor driving, or the like, and is configured to be able to reciprocate in the cylindrical portion 6. Preferably, the temperature of the heater 4 and the pressing force of the punch 3 are adjusted such that the temperature of the die 2 is 400 degrees and the pressure applied to the thermoconductive semiconductor crystal powder is 10 ton / cm 2.
【0021】上記条件下においてポンチ3を矢視C方向
に移動させると、キャビティー3内の熱電半導体結晶粉
末は、加熱されつつ、ポンチ3の押圧力によって加圧さ
れ、次第に焼結体となる。このようにして形成された焼
結体は、円錐台形部7からランド部8へと押出され、さ
らに拡径部9およびガイド部10を通って本押出し用治
具1の外部に直線状に排出され、熱電半導体焼結体Wが
製造される。そして、熱間押出しされた棒状の熱電半導
体焼結体Wを、例えば押出し方向と垂直な面で切断する
ことにより、この切断片が熱電半導体焼結体素子とされ
る。When the punch 3 is moved in the direction of arrow C under the above conditions, the thermoelectric semiconductor crystal powder in the cavity 3 is pressed by the pressing force of the punch 3 while being heated, and gradually becomes a sintered body. . The sintered body thus formed is extruded from the truncated conical portion 7 to the land portion 8, and is further discharged linearly outside the main extrusion jig 1 through the enlarged diameter portion 9 and the guide portion 10. Thus, a thermoelectric semiconductor sintered body W is manufactured. The hot extruded rod-shaped thermoelectric semiconductor sintered body W is cut, for example, in a plane perpendicular to the extrusion direction, so that the cut piece is used as a thermoelectric semiconductor sintered body element.
【0022】ところで、クラックは、円錐台形部7で縮
径されランド部8に押込まれる付近(ランド部入口付
近)で、焼結体にかかる圧力が変化することによって発
生する。本実施例では、上記ランド部8の長さを以下に
説明する長さに設定することにより、該ランド部8によ
って焼結体に安定した圧力がかかるようにして、クラッ
クの発生を抑えている。The cracks are generated by a change in the pressure applied to the sintered body in the vicinity of the area where the diameter is reduced by the truncated conical part 7 and pushed into the land part 8 (near the entrance of the land part). In the present embodiment, by setting the length of the land portion 8 to a length described below, a stable pressure is applied to the sintered body by the land portion 8 to suppress the occurrence of cracks. .
【0023】前記ランド部8はその径の2.5〜10倍
の長さとすることができる。この根拠を見いだすため、
各ランド部8の長さLの異なる資料No1〜6のダイス
で実験を試みた。次表1はその結果を示す。なお、各資
料のダイスは、円柱筒部6の径を20mm、円錐台形部
7の角度θを60度、ランド部8の径を2mmとした。The land 8 can have a length of 2.5 to 10 times its diameter. To find this ground,
An experiment was performed using dies of materials Nos. 1 to 6 having different lengths L of the respective land portions 8. Table 1 below shows the results. In the dies of the respective materials, the diameter of the cylindrical cylindrical portion 6 was 20 mm, the angle θ of the truncated conical portion 7 was 60 degrees, and the diameter of the land portion 8 was 2 mm.
【0024】 ×:有り、○:なし、△:少し有り 表1より、クラックのない良好な表面性状を有する熱電
半導体焼結体は、ランド部8の長さが5〜20mmで得
られることがわかった。10mmを超えると、押出荷重
が増加し、ダイス寿命を低下する。2mmでは微少なク
ラックが発生した。従って、特にランド部8の長さは5
〜10mmが望ましく、これより長くなると、押出荷重
が増加する。ランド部8の長さが長いと、拡径部9での
焼結体にかかる圧力の開放がランド部8の入口側へ伝わ
りにくくなって、良好な焼結体が得られる反面、押出荷
重が増加する。押出し可能でクラックを生じない範囲
は、表1より5〜20mmである。ランド部8の長さが
30mmともなると、押出不可となった。[0024] ×: Yes, ○: No, Δ: Slightly present From Table 1, it was found that a thermoelectric semiconductor sintered body having good surface properties without cracks can be obtained with a land portion 8 having a length of 5 to 20 mm. If it exceeds 10 mm, the extrusion load increases and the life of the die decreases. At 2 mm, minute cracks occurred. Therefore, in particular, the length of the land portion 8 is 5
Desirably, the extrusion load increases. If the length of the land portion 8 is long, the release of the pressure applied to the sintered body at the enlarged diameter portion 9 becomes difficult to be transmitted to the entrance side of the land portion 8, and a good sintered body can be obtained. To increase. The range of extrudable and crack-free is 5 to 20 mm from Table 1. When the length of the land portion 8 was as large as 30 mm, extrusion was impossible.
【0025】また、ガイド部10は、9拡径部から押出
される熱電半導体焼結体Wの押出し方向を矯正し、得ら
れる熱電半導体焼結体Wの真直度が高くなって、厚みの
均一な熱電半導体焼結素子を容易に生産することができ
る。 (第2実施例)本発明の第2実施例は、前記ランド部8
の入口側に図3に示すように、テーパ部12を設けたも
のである。すなわち、本実施例のランド部8は、前記テ
ーパ部12と、径が該テーパ部12の最小径と同じ一定
口径の定径部13とからなる。テーパ部12は、円錐台
形部7側から徐々に絞られた円錐台形状をなし、そのテ
ーパ角(図3に示す角θ2)は、円錐台形部7の角度θ
1より小さい。The guide portion 10 corrects the direction of extrusion of the thermoelectric semiconductor sintered body W extruded from the 9-diameter enlarged portion, and increases the straightness of the obtained thermoelectric semiconductor sintered body W so that the thickness thereof becomes uniform. A simple thermoelectric semiconductor sintered element can be easily produced. (Second Embodiment) The second embodiment of the present invention
As shown in FIG. 3, a tapered portion 12 is provided on the inlet side of the. That is, the land portion 8 of the present embodiment includes the tapered portion 12 and the constant diameter portion 13 having a constant diameter equal to the minimum diameter of the tapered portion 12. The tapered portion 12 has a shape of a truncated cone gradually narrowed from the side of the truncated cone 7, and the taper angle (the angle θ2 shown in FIG. 3) is
Less than 1.
【0026】前記ランド部8の形状によれば、円錐台形
部7から押出される焼結体が定径部13で成形を受ける
前に、テーパ部12で徐々に細径に成形されるため、ラ
ンド部8の入口付近で焼結体にかかる圧力の急激な変化
を緩和することができる。これによってクラックの発生
が一層確実に回避される。特に、この実施例では、押出
し条件の変更にも対処できるものである。According to the shape of the land portion 8, the sintered body extruded from the truncated conical portion 7 is gradually formed into a small diameter by the tapered portion 12 before being formed by the constant diameter portion 13. A sudden change in pressure applied to the sintered body near the entrance of the land portion 8 can be reduced. Thereby, the occurrence of cracks is more reliably avoided. Particularly, in this embodiment, it is possible to cope with a change in extrusion conditions.
【0027】表2は上記第2実施例において、テーパ部
12の角度θ2を0度、2.5度、7.5度と異なる資
料7〜9のダイスを用いてクラック発生の有無を調べた
実験結果を示す。なお、ランド部8の長さLはいずれの
資料も5mmとした。 表2よりランド部8の入口側にテーパ部12を設けるこ
とにより、クラックが生じないようにできることがわか
った。また、この各資料のダイスで押出条件を変更して
も、良好な熱電半導体焼結体Wが得られることがわかっ
た。Table 2 shows whether or not cracks were generated by using the dies of Reference materials 7 to 9 in which the angle θ2 of the tapered portion 12 was 0 °, 2.5 °, and 7.5 ° in the second embodiment. The experimental results are shown. In addition, the length L of the land portion 8 was set to 5 mm for each material. Table 2 shows that the provision of the tapered portion 12 on the entrance side of the land portion 8 can prevent cracks from occurring. Further, it was found that a good thermoelectric semiconductor sintered body W could be obtained even when the extrusion conditions were changed with the dies of the respective materials.
【0028】[0028]
【発明の効果】以上述べたように本発明によれば、ダイ
スのキャビティー形状、特に焼結体が棒状に押出される
ランド部の形状や長さを特定することによって、表面性
状の良好な棒状の熱電半導体焼結体を生産することがで
きる。As described above, according to the present invention, by specifying the shape of the cavity of the die, particularly the shape and length of the land portion where the sintered body is extruded in the shape of a bar, it is possible to obtain a good surface property. A rod-shaped thermoelectric semiconductor sintered body can be produced.
【図1】 本発明の熱電半導体焼結素子の製造方法に用
いる第1実施例の押出し用治具を示す概略図である。FIG. 1 is a schematic view showing an extrusion jig of a first embodiment used in a method for manufacturing a thermoelectric semiconductor sintered element of the present invention.
【図2】 図1の円弧で囲った部分を拡大した概略図で
ある。FIG. 2 is an enlarged schematic view of a portion surrounded by an arc in FIG. 1;
【図3】 本発明の熱電半導体焼結素子の製造方法に用
いる第2実施例の押出し用治具を示す概略図であり、図
1と共通の要素には同一の符号を付すものである。FIG. 3 is a schematic view showing an extrusion jig of a second embodiment used in the method of manufacturing a thermoelectric semiconductor sintered element of the present invention, and the same reference numerals are given to the same elements as those in FIG.
【符号の説明】 1…押出し用治具、2…ダイス、3…ポンチ、5…キャ
ビティー、6…円柱形部、7…円錐台形部、8…ランド
部、9…拡径部、10…ガイド部、12…テーパ部、1
3…定径部。[Description of Signs] 1 ... Jig for extrusion, 2 ... Die, 3 ... Punch, 5 ... Cavity, 6 ... Cylindrical part, 7 ... Frustoconical part, 8 ... Land part, 9 ... Expanded part, 10 ... Guide part, 12 taper part, 1
3 ... constant diameter part.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田内 比登志 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 安藤 雅祥 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hitoshi Tauchi 2-1-1 Asahi-cho, Kariya-shi, Aichi Aisin Seiki Co., Ltd. (72) Masayoshi Ando 2-1-1 Asahi-cho, Kariya-shi, Aichi Aisin Seiki Co., Ltd.
Claims (3)
ィー内で加熱しつつ押出して棒状の熱電半導体焼結体を
形成し、得られた該熱電半導体焼結体を切断して熱電半
導体焼結素子とする熱電半導体焼結素子の製造方法であ
って、 前記ダイスの前記キャビティーは、供給された前記熱電
半導体結晶粉末を押出すパンチが挿入される円柱形部
と、該円柱形部に連通した円錐台形部と、該円錐台形部
からロート状に連通し前記熱電半導体結晶粉末を棒状に
成形して前記熱電半導体焼結体とし、その径の2.5〜
10倍の長さをもつランド部と、成形された前記熱電半
導体焼結体が押出される拡径部と、からなることを特徴
とする熱電半導体焼結素子の製造方法。1. A thermoelectric semiconductor sintered element is extruded while heating a thermoelectric semiconductor crystal powder in a cavity of a die to form a rod-shaped thermoelectric semiconductor sintered body, and the obtained thermoelectric semiconductor sintered body is cut to obtain a thermoelectric semiconductor sintered element. Wherein the cavity of the die communicates with a cylindrical portion into which a punch for extruding the supplied thermoelectric semiconductor crystal powder is inserted, and the cylindrical portion. A truncated conical part, and the thermoelectric semiconductor crystal powder is communicated in a funnel shape from the truncated conical part, and the thermoelectric semiconductor crystal powder is shaped into a rod to form the thermoelectric semiconductor sintered body.
A method for manufacturing a thermoelectric semiconductor sintered element, comprising: a land portion having a length of 10 times; and an enlarged diameter portion from which the molded thermoelectric semiconductor sintered body is extruded.
が接続しその径が該円錐台形部側から徐々に絞られたテ
ーパ部と、該テーパ部に接続した径の一定の定径部とか
らなる請求項1記載の熱電半導体焼結素子の製造方法。2. The tapered portion having one end connected to the truncated conical portion and having a diameter gradually reduced from the side of the truncated conical portion, and a constant diameter portion having a constant diameter connected to the tapered portion. The method for manufacturing a thermoelectric semiconductor sintered device according to claim 1, comprising:
口径のガイド部をもつ請求項1記載の熱電半導体焼結素
子の製造方法。3. The method of manufacturing a thermoelectric semiconductor sintered element according to claim 1, wherein said enlarged diameter portion has a guide portion having the same diameter as the maximum diameter of said enlarged diameter portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9271407A JPH11112042A (en) | 1997-10-03 | 1997-10-03 | Manufacture of thermoelectric semiconductor sintered element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9271407A JPH11112042A (en) | 1997-10-03 | 1997-10-03 | Manufacture of thermoelectric semiconductor sintered element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11112042A true JPH11112042A (en) | 1999-04-23 |
Family
ID=17499630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9271407A Pending JPH11112042A (en) | 1997-10-03 | 1997-10-03 | Manufacture of thermoelectric semiconductor sintered element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11112042A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345487A (en) * | 2000-03-28 | 2001-12-14 | Komatsu Ltd | Thermoelement and manufacturing method thereof |
-
1997
- 1997-10-03 JP JP9271407A patent/JPH11112042A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345487A (en) * | 2000-03-28 | 2001-12-14 | Komatsu Ltd | Thermoelement and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090022615A1 (en) | Method of molding complex structures using a sacrificial material | |
EP1040887B1 (en) | Method of producing sintered body | |
CN116140625B (en) | Preparation method of wedge-shaped riving knife material | |
CN113500205B (en) | 3D printing method of bimetallic material | |
US4364881A (en) | Continuous extrusion method of manufacturing ceramic honeycomb structures with the aid of screw type vacuum extruding machine | |
JPH11112042A (en) | Manufacture of thermoelectric semiconductor sintered element | |
Huang et al. | Densification behavior of copper powder during the coupled multi-physics fields-activated microforming | |
JP2009299106A (en) | Method for producing composite sintered compact, and composite sintered compact | |
US6042779A (en) | Extrusion fabrication process for discontinuous carbide particulate metal matrix composites and super hypereutectic A1/Si | |
JP2000197914A5 (en) | ||
JP4161681B2 (en) | Method for manufacturing thermoelectric conversion element | |
JP5063092B2 (en) | Screw-type extruder and method for producing cylindrical ceramic member using the same | |
JP2003046149A (en) | Manufacturing apparatus for thermoelectric conversion material | |
JP3922481B2 (en) | Thermoelectric semiconductor sintered element manufacturing method and extrusion mold for thermoelectric semiconductor sintered body | |
JP2002270912A (en) | Method of manufacturing thermoelectric semiconductor member | |
JP4258086B2 (en) | Method for manufacturing thermoelectric semiconductor sintered body | |
JPH05179309A (en) | Method and die for extrusion | |
JPH11302708A (en) | Production of composite material part and composite material part | |
JP2003103340A (en) | Manufacturing method for metallic part | |
JPH0234702A (en) | Twist extruding apparatus for sintering hollow member and extruding method | |
JPS62118992A (en) | High hardness bar-like product and its production | |
JP2010199193A (en) | Thermoelectric material, and method of manufacturing the same | |
KR20240143025A (en) | Single Acting Extrusion Machine with Removable Mandrel and Dies | |
JPH03111502A (en) | Method for compacting high melting point metal material | |
JPH11186622A (en) | Method and die for manufacturing thermoelectric semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051226 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070202 |