JPH11112003A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH11112003A
JPH11112003A JP10178832A JP17883298A JPH11112003A JP H11112003 A JPH11112003 A JP H11112003A JP 10178832 A JP10178832 A JP 10178832A JP 17883298 A JP17883298 A JP 17883298A JP H11112003 A JPH11112003 A JP H11112003A
Authority
JP
Japan
Prior art keywords
gate insulating
film
active layer
thin film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10178832A
Other languages
Japanese (ja)
Inventor
Yuko Sai
佑 鎬 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of JPH11112003A publication Critical patent/JPH11112003A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To induce channels on a whole area, to increase on-current, to prevent an active layer from being exposed to light and to reduce off-current, by forming the active layer on a gate insulating film by detaching it from the edge of a gate electrode at a distance of a specified range. SOLUTION: A metallic film is vapor-deposited out a transparent insulating substrate 31 and it is patterned. Then, the gate electrode 32 is formed. The first gate insulating film 33-1, a first SiNx film, an amorphous silicon film and a second SiNx film are sequentially vapor-deposited. The second SiNx film is patterned by rear face exposure where the gate electrode 32 is set to be an exposure mask, and an edge stopper 35 is formed. The amorphous silicon film is similarly patterned by rear face exposure where the gate electrode 32 is set to be the exposure mask and the active layer 34 is formed. At that time, the active layer 34 is formed by detaching it from the upper edge of the gate electrode 32 for about 0.5-1.5 μm by controlling an exposure condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜トランジスタ
に関し、特に、アクティブマトリクス型液晶表示装置に
使われる薄膜トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor, and more particularly, to a thin film transistor used for an active matrix type liquid crystal display device.

【0002】[0002]

【従来の技術】一般的に、アクティブマトリクス型液晶
表示(active matrix-typeliquid crystaldisplay;AM-
LCD) 装置は薄くて多様な表示装置に使われる。こ
うしたAM-LCD装置において、薄膜トランジスタ(th
infilmtransistor;TFT)が各画素に対するスイッチ
ング素子として提供され、個々の画素電極等が独立的に
駆動されるため、デューティー(duty)比の低減に起因す
るコントラストが低減されず、またディスプレー容量が
増加してライン数が増加される時にも視野角が低減され
ていない。
2. Description of the Related Art Generally, an active matrix-type liquid crystal display (AM-
LCD) devices are used for thin and various display devices. In such an AM-LCD device, a thin film transistor (th
An in-film transistor (TFT) is provided as a switching element for each pixel, and the individual pixel electrodes and the like are driven independently, so that the contrast due to the reduction in the duty ratio is not reduced and the display capacity is increased. Even when the number of lines is increased, the viewing angle is not reduced.

【0003】図1はAM- LCD装置に使われる一般的
なTFTを示した断面図である。図1を参照すれば、ガ
ラスのような透明な絶縁基板11上にゲート電極12が
形成され、ゲート電極12が形成された絶縁基板11上
にゲート絶縁膜13が形成される。ゲート絶縁膜13上
にゲート電極12に対向する非晶質シリコンからなるア
クティブ層14が形成される。ゲート電極12上部のア
クティブ層14上にエッジストッパ15が形成される。
エッジストッパ15の上面を露出させるソース及びドレ
イン電極17-1、17-2がエッジストッパ15の両側
上部、アクティブ層14及びゲート絶縁膜13上に形成
される。アクティブ層14とソース及びドレイン電極1
7-1、17 -2間にはドーピングされた非晶質シリコン
からなる第1及び第2オーミック層16-1、16 -2が
介在され、基板全面にはパッシベーション層18が形成
される。
FIG. 1 is a sectional view showing a general TFT used in an AM-LCD device. Referring to FIG. 1, a gate electrode 12 is formed on a transparent insulating substrate 11 such as glass, and a gate insulating film 13 is formed on the insulating substrate 11 on which the gate electrode 12 is formed. Active layer 14 made of amorphous silicon is formed on gate insulating film 13 to face gate electrode 12. An edge stopper 15 is formed on the active layer 14 above the gate electrode 12.
Source and drain electrodes 17-1 and 17-2 exposing the upper surface of the edge stopper 15 are formed on both sides of the edge stopper 15, on the active layer 14 and the gate insulating film 13. Active layer 14 and source and drain electrodes 1
First and second ohmic layers 16-1 and 16-2 made of doped amorphous silicon are interposed between 7-1 and 17-2, and a passivation layer 18 is formed on the entire surface of the substrate.

【0004】[0004]

【発明が解決しようとする課題】上記した従来のTFT
において、ゲート電極12に一定の電圧が印加されれ
ば、ゲート電極12上部のアクティブ層14にチャンネ
ルが誘起され、電流がソース電極17-1からチャンネル
を通じてドレイン電極17 -2へ流れる。しかし、電流
はアクティブ層14のチャンネルだけでなく、チャンネ
ルが誘起されない部分も通過することになる。即ち、図
1に示したように、電流はソース電極17- 1、第1オ
ーミック層16-1、ソース電極17 -1下部の活性層1
4、チャンネル、ドレイン電極17-2下部の活性層1
4、第2オーミック層16 -2、及びドレイン電極17
- 2へ流れる。ここで、チャンネルが形成されないアク
ティブ層14の高い非抵抗によりTFTのオン電流が低
減される。
The above-mentioned conventional TFTs
When a certain voltage is applied to the gate electrode 12, a channel is induced in the active layer 14 above the gate electrode 12, and a current flows from the source electrode 17-1 to the drain electrode 17-2 through the channel. However, the current passes not only in the channel of the active layer 14 but also in a portion where the channel is not induced. That is, as shown in FIG. 1, the current is applied to the source electrode 17-1, the first ohmic layer 16-1, and the active layer 1 under the source electrode 17-1.
4. Active layer 1 under channel / drain electrode 17-2
4. Second ohmic layer 16-2 and drain electrode 17
-Flow to 2. Here, the on-state current of the TFT is reduced due to the high non-resistance of the active layer 14 where no channel is formed.

【0005】また、平面上でアクティブ層14の面積が
ゲート電極12の面積より大きいので、アクティブ層1
4がゲート電極12により完全に遮断されず、アクティ
ブ層14の一部がバックライト(図示せず )からの光に露
出される。これにより、光に起因する漏洩電流が誘起さ
れてオフ電流が増加される。
Since the area of the active layer 14 is larger than the area of the gate electrode 12 on the plane, the active layer 1
4 is not completely blocked by the gate electrode 12, and a part of the active layer 14 is exposed to light from a backlight (not shown). Accordingly, a leakage current due to light is induced, and the off-state current is increased.

【0006】これにより、上記したTFTを使用するA
M- LCD装置に電荷が十分に供給されなくて、結局L
CD装置の表示特性が低下される。
[0006] Thereby, the A using the TFT described above is used.
The charge is not sufficiently supplied to the M-LCD device.
The display characteristics of the CD device are degraded.

【0007】従って、本発明の目的は、上記した従来の
問題点を解決するため、TFTのオン電流を増加させる
と同時にオフ電流を低減させ、AM- LCDの表示特性
を向上させることができるTFTを提供することにあ
る。
Accordingly, an object of the present invention is to solve the above-mentioned conventional problems by increasing the on-current of the TFT and at the same time reducing the off-current, thereby improving the display characteristics of the AM-LCD. Is to provide.

【0008】[0008]

【課題を解決するための手段】上記した本発明の目的を
達成するため、本発明に係る薄膜トランジスタは上部に
ゲート電極が形成された透明な絶縁基板を含む。第1ゲ
ート絶縁膜が基板上に形成され、第2ゲート絶縁膜がゲ
ート電極上部の第1ゲート絶縁膜上に形成される。アク
ティブ層がゲート電極のエッジから所定距離をおいて離
隔され第2ゲート絶縁膜上に形成される。第1ゲート絶
縁膜上にアクティブ層の上面を露出させながらアクティ
ブ層の両側と所定部分オーバーラップされる第1及び第
2オーミック層が形成される。第1及び第2オーミック
層上にソース及びドレイン電極が形成され、エッジスト
ッパがゲート電極のエッジから所定距離をおいて離隔さ
れアクティブ層上に形成される。
In order to achieve the above object of the present invention, a thin film transistor according to the present invention includes a transparent insulating substrate on which a gate electrode is formed. A first gate insulating film is formed on the substrate, and a second gate insulating film is formed on the first gate insulating film above the gate electrode. An active layer is formed on the second gate insulating film at a predetermined distance from an edge of the gate electrode. First and second ohmic layers are formed on the first gate insulating layer so as to partially overlap both sides of the active layer while exposing an upper surface of the active layer. Source and drain electrodes are formed on the first and second ohmic layers, and an edge stopper is formed on the active layer at a predetermined distance from an edge of the gate electrode.

【0009】以上に示される本発明の実施の形態におい
ては、アクティブ層はゲート電極のエッジから0.5乃
至1.5μmに離隔される。
In the above embodiment of the present invention, the active layer is separated from the edge of the gate electrode by 0.5 to 1.5 μm.

【0010】[0010]

【発明の実施の形態】以下、添付の図面を参照しながら
本発明の実施の形態を説明する。図2Aを参照すれば、
ガラスのような透明な絶縁基板31上にMoTa、Mo
WおよびCrからなるグループ中から選ばれる一つの金
属膜が2、000ないし3、000Åの厚さに蒸着され
パターニングされゲート電極32が形成される。その
後、図2Bに示したように、図2Aの構造上にSiOx
膜からなる第1ゲート絶縁膜33-1がPECVD(Pla
smaEnhanced Chemical Vapor Deposition)またはAP
CVD(Atmospheric Pressure Chemical Vapor Deposit
ion)により、3、000乃至5、000Åの厚さで形成
される。続いて、第1ゲート絶縁膜33-1上に第1Si
Nx膜33-2a、非晶質シリコン膜34a、および第
2SiNx膜35aがPECVDまたはAPCVDによ
り順次的に蒸着される。この時、第1SiNx膜33-
2aの代りにSiON膜が使われることができ、その厚
さは第1ゲート絶縁膜33- 1に比べて相対的に薄い厚
さ、望ましくは300Åないし500Åの厚さで蒸着さ
れる。また、非晶質シリコン膜34aは400Åないし
600Åの厚さで薄く蒸着され、第2SiNx膜35a
は約3、000Åの厚さで蒸着される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Referring to FIG. 2A,
MoTa, Mo on a transparent insulating substrate 31 such as glass
One metal film selected from the group consisting of W and Cr is deposited to a thickness of 2,000 to 3,000 ° and patterned to form a gate electrode 32. Thereafter, as shown in FIG. 2B, SiOx is formed on the structure of FIG. 2A.
The first gate insulating film 33-1 made of a film is made of PECVD (Pla
smaEnhanced Chemical Vapor Deposition) or AP
CVD (Atmospheric Pressure Chemical Vapor Deposit
ion) to a thickness of 3,000 to 5,000 degrees. Subsequently, the first Si film is formed on the first gate insulating film 33-1.
The Nx film 33-2a, the amorphous silicon film 34a, and the second SiNx film 35a are sequentially deposited by PECVD or APCVD. At this time, the first SiNx film 33-
An SiON film may be used instead of 2a, and the thickness of the SiON film is relatively thinner than that of the first gate insulating film 33-1. Also, the amorphous silicon film 34a is thinly deposited to a thickness of 400 to 600 degrees, and the second SiNx film 35a is formed.
Is deposited to a thickness of about 3,000 °.

【0011】図2B及び図3Aを参照すれば、第2Si
Nx膜35aがゲート電極32を露光マスクとして利用
する後面露光またはエッジストッパ用マスクパターンを
利用する前面露光によりパターニングされ、ゲート電極
32上部の非晶質シリコン膜34a上にエッジストッパ
35が形成される。この時、露光条件はエッジストッパ
35がゲート電極32の上部エッジから1.0乃至2.
0μm、望ましくは1.5μmの距離D1をおいて離隔
されるように調節される。その後、非晶質シリコン膜3
4aがゲート電極32を露光マスクとして利用する後面
露光またはアクティブ用マスクパターンを利用する前面
露光によりパターニングされ、ゲート電極32上部の第
1SiNx膜33- 2a上にアクティブ層34が形成さ
れる。この時、露光条件はアクティブ層34がゲート電
極32の上部エッジから0.5乃至1.5μm、望まし
くは1.0μmの距離D2をおいて離隔されるように調
節される。これにより、示されていないが、平面上でゲ
ート電極32内にアクティブ層34が含まれる。
Referring to FIGS. 2B and 3A, the second Si
The Nx film 35a is patterned by rear exposure using the gate electrode 32 as an exposure mask or front exposure using a mask pattern for an edge stopper, and the edge stopper 35 is formed on the amorphous silicon film 34a on the gate electrode 32. . At this time, the exposure condition is such that the edge stopper 35 is 1.0 to 2.... From the upper edge of the gate electrode 32.
It is adjusted to be separated by a distance D1 of 0 μm, preferably 1.5 μm. Then, the amorphous silicon film 3
4a is patterned by back exposure using the gate electrode 32 as an exposure mask or front exposure using an active mask pattern, and an active layer 34 is formed on the first SiNx film 32-2a on the gate electrode 32. At this time, the exposure condition is adjusted such that the active layer 34 is separated from the upper edge of the gate electrode 32 by a distance D2 of 0.5 to 1.5 μm, preferably 1.0 μm. Thus, although not shown, the active layer 34 is included in the gate electrode 32 on a plane.

【0012】また、アクティブ層34の形成時、下部層
の第1SiNx膜33- 2aが同時にパターニングされ
第2ゲート絶縁膜33- 2が形成される。この時、第1
ゲート絶縁膜33-1の厚さが第2ゲート絶縁膜33 -2
の厚さより相対的に厚いために、第1ゲート絶縁膜33
-1に対し第2ゲート絶縁膜33 -2のみをエッチングす
るのに充分なエッチング選択比を確保することができ
る。
When forming the active layer 34, the lower first SiNx film 32-2a is simultaneously patterned to form the second gate insulating film 32-2. At this time, the first
The thickness of the gate insulating film 33-1 is equal to that of the second gate insulating film 33-2.
Is relatively thicker than the thickness of the first gate insulating film 33.
An etching selectivity sufficient to etch only the second gate insulating film 33-2 with respect to -1 can be secured.

【0013】図3Bを参照すれば、図3Aの構造上に、
ドーピングされた非晶質シリコン膜とソース及びドレイ
ン電極用金属膜が順次的に蒸着され、エッジストッパ3
5の上面が露出されるようにパターニングされ、アクテ
ィブ層34の両側と所定部分オーバーラップされる第1
及び第2オーミック層36-1、36 -2と、ソース及び
ドレイン電極37-1、37-2とが形成される。その
後、基板全面にPECVDによりパッシベーション層3
8が形成される。
Referring to FIG. 3B, on the structure of FIG. 3A,
A doped amorphous silicon film and a metal film for source and drain electrodes are sequentially deposited, and an edge stopper 3 is formed.
5 is patterned so that the upper surface of the first active layer 5 is exposed, and overlaps a predetermined portion with both sides of the active layer 34.
Then, the second ohmic layers 36-1 and 36-2 and the source and drain electrodes 37-1 and 37-2 are formed. Then, a passivation layer 3 is formed on the entire surface of the substrate by PECVD.
8 are formed.

【0014】[0014]

【発明の効果】上記のようなTFTのおいて、ゲート電
極32に一定の電圧が印加されれば、アクティブ層36
にチャンネルが誘起され、電流がソース電極37- 1か
らチャンネルを通じてドレイン電極37- 2へ流れる。
ここで、アクティブ層34の全領域にチャンネルが誘起
されるので、TFTのオン電流が増加する。又、アクテ
ィブ層34がゲート電極32により完全に遮断され、ア
クティブ層34が光に露出されないので、オフ電流が低
減する。
In the TFT as described above, if a constant voltage is applied to the gate electrode 32, the active layer 36
And a current flows from the source electrode 37-1 to the drain electrode 37-2 through the channel.
Here, since a channel is induced in the entire region of the active layer 34, the ON current of the TFT increases. Further, since the active layer 34 is completely blocked by the gate electrode 32 and the active layer 34 is not exposed to light, off current is reduced.

【0015】従って、このようなTFTをスイッチング
素子として使用するAM-LCDの表示特性が向上され
る。また、本発明は前記実施例に限定されず、本発明の
技術的要旨から逸脱しない範囲内で多様に変形させ実施
できる。
Therefore, the display characteristics of an AM-LCD using such a TFT as a switching element are improved. In addition, the present invention is not limited to the above-described embodiment, and can be variously modified and implemented without departing from the technical scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的なTFTを示した断面図である。FIG. 1 is a cross-sectional view illustrating a general TFT.

【図2】(A)乃至(B)は、本発明の実施例に係るT
FTの製造方法を説明するための断面図である。
FIGS. 2A and 2B show T according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view for explaining a method for manufacturing an FT.

【図3】(A)乃至(B)は、本発明の実施例に係るT
FTの製造方法を説明するための断面図である。
FIGS. 3A and 3B are diagrams illustrating T according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view for explaining a method for manufacturing an FT.

【符号の説明】[Explanation of symbols]

31 絶縁基板 32 ゲート電極 33−1 第1ゲート絶縁膜 33−2 第2ゲート絶縁膜 34 アクティブ層 35 エッジストッパ 36−1、36−2 第1及び第2オーミック層 37−1、37−2 ソース及びドレイン電極 31 Insulating substrate 32 Gate electrode 33-1 First gate insulating film 33-2 Second gate insulating film 34 Active layer 35 Edge stopper 36-1, 36-2 First and second ohmic layers 37-1, 37-2 Source And drain electrode

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 アクティブマトリクス型液晶表示装置に
使われる薄膜トランジスタであって、 上部にゲート電極が形成された透明な絶縁基板;前記基
板上に形成された第1ゲート絶縁膜;前記ゲート電極上
部の前記第1ゲート絶縁膜上に形成された第2ゲート絶
縁膜;前記第2ゲート絶縁膜上に形成され前記ゲート電
極のエッジから所定距離をおいて離隔されたアクティブ
層と、前記第1ゲート絶縁膜上に形成され前記アクティ
ブ層の上面を露出させながら前記アクティブ層の両側と
所定部分オーバーラップされた第1及び第2オーミック
層;及び前記第1及び第2オーミック層上に形成された
ソース及びドレイン電極を含むことを特徴とする薄膜ト
ランジスタ。
1. A thin film transistor used for an active matrix type liquid crystal display device, comprising: a transparent insulating substrate having a gate electrode formed thereon; a first gate insulating film formed on the substrate; A second gate insulating film formed on the first gate insulating film; an active layer formed on the second gate insulating film and separated by a predetermined distance from an edge of the gate electrode; First and second ohmic layers formed on the film and partially overlapping both sides of the active layer while exposing the upper surface of the active layer; and a source formed on the first and second ohmic layers; A thin film transistor including a drain electrode.
【請求項2】 前記アクティブ層は前記ゲート電極のエ
ッジから0.5乃至1.5μmに離隔されたことを特徴
とする請求項1記載の薄膜トランジスタ。
2. The thin film transistor according to claim 1, wherein the active layer is separated from an edge of the gate electrode by 0.5 to 1.5 μm.
【請求項3】 前記アクティブ層は非晶質シリコンから
なることを特徴とする請求項2記載の薄膜トランジス
タ。
3. The thin film transistor according to claim 2, wherein said active layer is made of amorphous silicon.
【請求項4】 前記ゲート電極はMoTa、MoW及び
Crからなるグループの中で選ばれる一つの物質からな
ることを特徴とする請求項1記載の薄膜トランジスタ。
4. The thin film transistor according to claim 1, wherein said gate electrode is made of one material selected from the group consisting of MoTa, MoW, and Cr.
【請求項5】 前記第1ゲート絶縁膜はSiON膜また
はSiOx膜からなることを特徴とする請求項1記載の
薄膜トランジスタ。
5. The thin film transistor according to claim 1, wherein the first gate insulating film is formed of a SiON film or a SiOx film.
【請求項6】前記第1ゲート絶縁膜の厚さは3, 000
ないし5,000Å であることを特徴とする請求項5記
載の薄膜トランジスタ。
6. The thickness of the first gate insulating film is 3,000.
The thin film transistor according to claim 5, wherein the thickness is in the range of 5,000 to 5,000 degrees.
【請求項7】 前記第2ゲート絶縁膜はSiNx膜であ
ることを特徴とする請求項1記載の薄膜トランジスタ。
7. The thin film transistor according to claim 1, wherein the second gate insulating film is a SiNx film.
【請求項8】 前記第2ゲート絶縁膜の厚さは300な
いし500Åであることを特徴とする請求項7記載の薄
膜トランジスタ。
8. The thin film transistor according to claim 7, wherein the thickness of the second gate insulating film is 300 to 500 degrees.
【請求項9】 前記第1ゲート絶縁膜はSiON膜また
はSiOx膜であり、前記第2ゲート絶縁膜はSiNx
膜であることを特徴とする請求項1記載の薄膜トランジ
スタ。
9. The first gate insulating film is a SiON film or a SiOx film, and the second gate insulating film is a SiNx film.
The thin film transistor according to claim 1, wherein the thin film is a film.
【請求項10】前記第1ゲート絶縁膜の厚さは3, 00
0乃至5,000Å であり、前記第2ゲート絶縁膜の厚
さは300乃至500Åであることを特徴とする請求項
9記載の薄膜トランジスタ。
10. The first gate insulating film has a thickness of 3,000.
10. The thin film transistor according to claim 9, wherein the thickness of the second gate insulating film is in a range of 0 to 5,000 degrees, and the thickness of the second gate insulating film is in a range of 300 to 500 degrees.
【請求項11】 前記アクティブ層上に形成され前記ゲ
ート電極のエッジから所定距離をおいて離隔されたエッ
ジストッパをさらに含むことを特徴とする請求項1記載
の薄膜トランジスタ。
11. The thin film transistor according to claim 1, further comprising an edge stopper formed on the active layer and separated from an edge of the gate electrode by a predetermined distance.
【請求項12】 前記エッジストッパは、前記ゲート電
極の上部エッジから1.0乃至2.0μmに離隔された
ことを特徴とする請求項11記載の薄膜トランジスタ。
12. The thin film transistor according to claim 11, wherein the edge stopper is separated from the upper edge of the gate electrode by 1.0 to 2.0 μm.
JP10178832A 1997-06-25 1998-06-25 Thin film transistor Pending JPH11112003A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1997/P27382 1997-06-25
KR1019970027382A KR100272266B1 (en) 1997-06-25 1997-06-25 Thin film transistor and method of manufacturing same

Publications (1)

Publication Number Publication Date
JPH11112003A true JPH11112003A (en) 1999-04-23

Family

ID=19511233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10178832A Pending JPH11112003A (en) 1997-06-25 1998-06-25 Thin film transistor

Country Status (3)

Country Link
JP (1) JPH11112003A (en)
KR (1) KR100272266B1 (en)
TW (1) TW388994B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090009728A (en) * 2007-07-20 2009-01-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
JP2009049384A (en) * 2007-07-20 2009-03-05 Semiconductor Energy Lab Co Ltd Light emitting device
JP2010129859A (en) * 2008-11-28 2010-06-10 Hitachi Displays Ltd Display
KR101323539B1 (en) * 2006-11-27 2013-10-29 엘지디스플레이 주식회사 Poly silicon thin film transistor substrate and manufacturing method thereof
JPWO2015107606A1 (en) * 2014-01-15 2017-03-23 株式会社Joled Display device and thin film transistor substrate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030061586A (en) * 2002-01-15 2003-07-22 비오이 하이디스 테크놀로지 주식회사 Thin film transistor and fabricating method thereof
KR20060026278A (en) * 2004-09-20 2006-03-23 주식회사 히타치엘지 데이터 스토리지 코리아 Pick-up driving apparatus for disk drive
KR100752367B1 (en) * 2004-10-22 2007-08-27 삼성에스디아이 주식회사 Thin film transistor and method for fabricating thereof
KR101824651B1 (en) 2011-08-30 2018-02-02 엘지디스플레이 주식회사 oxide semiconductor thin film transistor and method of manufacturing of the same
KR102045730B1 (en) * 2012-12-28 2019-12-03 엘지디스플레이 주식회사 Inverter and driving circuit and display device using the same
DE202013008907U1 (en) 2013-10-07 2014-01-21 Chung-Yen Ho Combination socket and screwdriver construction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323539B1 (en) * 2006-11-27 2013-10-29 엘지디스플레이 주식회사 Poly silicon thin film transistor substrate and manufacturing method thereof
KR20090009728A (en) * 2007-07-20 2009-01-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
JP2009049384A (en) * 2007-07-20 2009-03-05 Semiconductor Energy Lab Co Ltd Light emitting device
US8896778B2 (en) 2007-07-20 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9142632B2 (en) 2007-07-20 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2016006549A (en) * 2007-07-20 2016-01-14 株式会社半導体エネルギー研究所 Liquid crystal display device
JP2010129859A (en) * 2008-11-28 2010-06-10 Hitachi Displays Ltd Display
JPWO2015107606A1 (en) * 2014-01-15 2017-03-23 株式会社Joled Display device and thin film transistor substrate
US10204973B2 (en) 2014-01-15 2019-02-12 Joled Inc. Display device and thin-film transistors substrate

Also Published As

Publication number Publication date
KR100272266B1 (en) 2000-11-15
TW388994B (en) 2000-05-01
KR19990003501A (en) 1999-01-15

Similar Documents

Publication Publication Date Title
US4958205A (en) Thin film transistor array and method of manufacturing the same
US8158982B2 (en) Polysilicon thin film transistor device with gate electrode thinner than gate line
US5674757A (en) Process of fabricating a self-aligned thin-film transistor for a liquid crystal display
US6949391B2 (en) Method of fabricating bottom-gated polycrystalline silicon thin film transistor
KR101272488B1 (en) Thin Transistor Substrate, Method Of Fabricating The Same, Liquid Crystal Display Having The Same And Method Of Fabricating Liquid Crystal Display Having The Same
US5874326A (en) Method for fabricating thin film transistor
US8300166B2 (en) Display panel and method of manufacturing the same
US5994717A (en) Thin-film transistor and method for fabricating same and liquid crystal display device
US20070254415A1 (en) Thin film transistor substrate, method of manufacturing the same and method of manufacturing liquid crystal display panel including the same
JPH11112003A (en) Thin film transistor
US5696387A (en) Thin film transistor in a liquid crystal display having a microcrystalline and amorphous active layers with an intrinsic semiconductor layer attached to same
US7075603B2 (en) Method of fabricating a semi-transmission LCD by plasma processing and washing organic film, and LCD fabricated thereby
JPH1126768A (en) Thin film transistor for liquid, crystal display
US20210225904A1 (en) Method for manufacturing array substrate, array substrate and display panel
US20040075781A1 (en) Array substrate having polysilicon TFT for liquid crystal display device and method of manufacturing the same
JPH1187717A (en) Semiconductor device, active matrix substrate and liquid crystal display
KR101904408B1 (en) Array substrate for fringe field switching mode liquid crystal display device and method for fabricating the same
KR101626362B1 (en) Method of fabricating substrate for thin film transistor
KR20080058913A (en) Liquid crystal display device and method of fabricating the same
KR101097675B1 (en) Thin film transistor and fabricating method thereof
JPH01267616A (en) Liquid crystal display
KR100205868B1 (en) A dual gate thin film transistor and a method of fabricating the same
JP2782829B2 (en) Method for manufacturing thin film transistor
KR101765100B1 (en) Thin film transistor substrate and method for manufacturing the same and Liquid Crystal Display Device using the same
JPH075490A (en) Liquid crystal display device and its production