JPH11111492A - Non-shifting type swinging plasma torch - Google Patents

Non-shifting type swinging plasma torch

Info

Publication number
JPH11111492A
JPH11111492A JP9267040A JP26704097A JPH11111492A JP H11111492 A JPH11111492 A JP H11111492A JP 9267040 A JP9267040 A JP 9267040A JP 26704097 A JP26704097 A JP 26704097A JP H11111492 A JPH11111492 A JP H11111492A
Authority
JP
Japan
Prior art keywords
electrode
nozzle
plasma
nozzle member
center axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9267040A
Other languages
Japanese (ja)
Inventor
Tadashi Hoshino
野 忠 星
Masaru Nakano
野 優 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP9267040A priority Critical patent/JPH11111492A/en
Publication of JPH11111492A publication Critical patent/JPH11111492A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To swing high temperature gas flames without diffusing or cooling the flames by forming an aperture of which a part is enters into the inner space of a nozzle stand and which is aligned with the center axial line of an electrode in one end face, forming an aperture made eccentric from the center axial line of the electrode in end face in the outside of an inner hollow, and installing a plasma nozzle communicating both apertures. SOLUTION: Plasma arc is generated between the tip end of an electrode 20 and the inner surface of the plasma nozzle 52 of a nozzle member 50, ionizes plasma gas which passes through a nozzle 52, and blows out of an outer aperture 51. Plasma flames are jetted out at a certain angle to the center axis 21 since the outer aperture 51 is made eccentric to the center axis 21. When an electric motor 70 is driven, the nozzle member 50 is rotated and driven and consequently, the outer aperture 51 is moved while drawing a circle on the center axis 21 and the plasma flames jetted out of the outer aperture 51 move as to draw conical face on the center axis 21. As a result, processing is carried out with uniform heat distribution in a wide range by one scanning within a range of plasma flame radiation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ア−ク放電により
プラズマ化した高温ガスを噴射する非移行式プラズマト
−チに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-transfer type plasma torch for injecting high-temperature gas into plasma by arc discharge.

【0002】[0002]

【従来の技術】この種のト−チは、物体の高温処理又は
加工に使用され、金属の加熱,溶融,溶射等に用いられ
る。プラズマジェットフレ−ムは、中心部が非常に高温
でフレ−ムの外側に向って急激に温度が低下する熱分布
を示す。しかし、薄板鋼板の表面加熱処理等を行う場合
は、中心部の熱で溶けやすく、これを避ける為にア−ク
を高速で揺動し、広幅で均一なプラズマジェット熱源が
必要となる。この為、特願平3−40273号の非移行
式プラズマト−チは、電気コイルにてトーチ内のアーク
電流路を横切る方向の磁束を発生して、アーク電流と磁
束の作用力により、アーク電流を揺動させる。これによ
れば、アーク電流は偏向して揺動するが、高温ガスフレ
ームはトーチ軸線上の指向性(慣性力)が強く十分、偏
向方向に熱の移動が出来ず、トーチ軸線上の温度分布が
高くなる。また、外電極上のアークの陽極点を強制往復
移動させる為、外電極の銅の消耗が早く、銅の溶け飛散
した微粒子が、加工材表面に蒸着する問題があった。
2. Description of the Related Art A torch of this type is used for high-temperature processing or processing of an object, and is used for heating, melting, thermal spraying and the like of metal. Plasma jet frames exhibit a heat distribution in which the temperature is very high in the center and drops rapidly toward the outside of the frame. However, when a thin steel plate is subjected to surface heating treatment or the like, it is easily melted by the heat of the central portion, and in order to avoid this, an arc is oscillated at high speed and a wide and uniform plasma jet heat source is required. For this reason, the non-transfer type plasma torch disclosed in Japanese Patent Application No. 3-40273 generates a magnetic flux in a direction crossing an arc current path in the torch with an electric coil, and the arc current and the acting force of the magnetic flux cause an arc. Swings the current. According to this, the arc current deflects and fluctuates, but the high-temperature gas frame has a strong directivity (inertial force) on the torch axis, is unable to move heat in the deflection direction, and has a temperature distribution on the torch axis. Will be higher. Further, since the anode point of the arc on the outer electrode is forcibly reciprocated, the copper of the outer electrode is quickly consumed, and there is a problem that fine particles which are melted and scattered of the copper are deposited on the surface of the workpiece.

【0003】特願平4−31886号の非移行式プラズ
マジェット装置は、プラズマジェットフレームに、それ
と交差する方向に揺動ガスを当て、この揺動ガスの方向
と強さを連続的に変化させてプラズマジェットフレーム
を揺動させる。これによれば、高温ガスフレームが揺動
ガスで振られるため、揺動効果が高い。しかし、プラズ
マフレームに低温の揺動ガスを吹き付ける為、プラズマ
ジェットフレームの温度が下がってしまう。また、揺動
ガスの強弱によりプラズマフレームを揺動させるため高
速の揺動が不可能である。
In the non-transfer type plasma jet apparatus disclosed in Japanese Patent Application No. 4-31886, a oscillating gas is applied to a plasma jet frame in a direction crossing the plasma jet frame, and the direction and intensity of the oscillating gas are continuously changed. To swing the plasma jet flame. According to this, since the high-temperature gas frame is shaken by the oscillating gas, the oscillating effect is high. However, since a low-temperature oscillating gas is blown onto the plasma frame, the temperature of the plasma jet frame decreases. In addition, since the plasma frame is swung by the strength of the swinging gas, high-speed swinging is impossible.

【0004】特開平9−164486号公報の揺動式プ
ラズマト−チは、プラズマを噴射するノズル部材を、プ
ラズマ噴射開口が偏心したノズルを有するものとし、こ
のノズル部材を電気モ−タで回転駆動する。その実施例
として、移行式のプラズマト−チが開示されている。こ
の移行式のプラズマト−チは、すみ肉溶接に適するもの
であり、プラズマジェットが円錐面を描くように回転
し、プラズマの移行先の溶接材に対してプラズマの作用
領域が広く、溶接狙い位置が少々ずれても、意図した箇
所にプラズマア−クが作用する。脚長の長い溶接や合わ
せ部ギャップ大の溶接が可能である。しかし該実施例の
移行式プラズマト−チは、プラズマジェットを揺動して
広域にプラズマア−クを作用させるとしても、溶接など
のように、局所加熱を目的とするものであり、加熱領域
は開先前後と小さく、ア−ク電流は、例えば250A以
下程度と、比較的に低い。
The oscillating plasma torch disclosed in Japanese Patent Application Laid-Open No. 9-164486 has a nozzle member for injecting plasma having a nozzle whose plasma injection opening is eccentric, and this nozzle member is rotated by an electric motor. Drive. As an example, a transfer type plasma torch is disclosed. This transfer type plasma torch is suitable for fillet welding, in which a plasma jet rotates so as to draw a conical surface, and a plasma action area is wide with respect to a welding material to which the plasma is transferred. Even if the position is slightly shifted, the plasma arc acts on the intended place. Welding with long leg lengths and welding with large joint gaps are possible. However, the transfer-type plasma torch of this embodiment is intended for local heating, such as welding, even if the plasma jet is swung to apply a plasma arc to a wide area. Is small before and after the groove, and the arc current is relatively low, for example, about 250 A or less.

【0005】ところが、非移行式プラズマト−チによる
鋼材の加熱や溶射では、300A以上の高電流値、例え
ば500A,800Aとなる使用態様が多く、これらの
高電流値でも、極力広域を均一かつ高速に溶射すること
が望まれている。この場合、特開平9−164486号
公報に具体的に開示された揺動式プラズマト−チでは、
電極の過熱を生じ易く、又、ノズルの冷却効果も低く、
冷却対策が必要になるものと推察される。
However, in the heating and thermal spraying of a steel material by a non-transfer type plasma torch, there are many uses in which a high current value of 300 A or more, for example, 500 A or 800 A, is used. It is desired to spray at high speed. In this case, the swing type plasma torch specifically disclosed in Japanese Patent Application Laid-Open No. 9-164486,
Electrodes are easily overheated, and the nozzle cooling effect is low.
It is presumed that cooling measures are required.

【0006】[0006]

【発明が解決しようとする課題】本発明は、非移行式プ
ラズマト−チにおいて、高温ガスフレームを拡散又は冷
却することなく揺動することを第1の目的とし、高速揺
動することを第2の目的とし、高電流値に適した非移行
式揺動プラズマト−チを提供することを第3の目的と
し、回転駆動機構の点検,保守が容易な非移行式揺動プ
ラズマト−チを提供することを第4の目的ととする。
SUMMARY OF THE INVENTION It is a first object of the present invention to provide a non-transfer type plasma torch in which a high-temperature gas frame is swung without being diffused or cooled, and a high-speed swinging is performed. A second object is to provide a non-transferring oscillating plasma torch suitable for a high current value. A third object is to provide a non-transferring oscillating plasma torch which is easy to inspect and maintain a rotary drive mechanism. And a fourth object.

【0007】[0007]

【課題を解決するための手段】 (1)本発明の非移行式揺動プラズマト−チは、中心に
比較的に太径の通し穴(11)が開いた絶縁スペ−サ(10);
前記通し穴(11)を貫通する電極(20);前記絶縁スペ−サ
(10)の後端部に固着され前記電極(20)を支持する電極台
(30);前記電極(20)を受入れる内空間(41)を有し前記絶
縁スペ−サ(10)のノズル側の端部すなわち先端部に固着
されたノズル台(40);一部が該ノズル台(40)の内空間(4
1)に進入し、進入した端面(54)に前記電極(20)の中心軸
線(21)に整合した開口(53)と、ノズル台の内空間の外の
端面に前記電極(20)の中心軸線(21)から偏心した開口(5
1)と、両開口(53,51)に連なるプラズマノズル(52)を有
し、前記ノズル台(40)に、前記電極(20)の中心軸線(21)
を中心に回転可に流体シ−ル(55,54)を介して結合した
ノズル部材(50);該ノズル部材(50)を回転駆動するため
に、ノズル部材(50)の、ノズル台の外部分に装着された
回転駆動機構(60);および、該回転駆動機構(60)に、ノ
ズル部材(50)を回転駆動するための回転トルクを与える
原動機(70);を備える。なお、理解を容易にするために
カッコ内には、図面に示し後述する実施例の対応要素の
記号を、参考までに付記した。
Means for Solving the Problems (1) The non-transferring oscillating plasma torch of the present invention has an insulating spacer (10) having a relatively large through hole (11) at the center;
An electrode (20) penetrating the through hole (11); the insulating spacer
(10) An electrode base fixed to the rear end and supporting the electrode (20)
(30); a nozzle base (40) having an inner space (41) for receiving the electrode (20) and fixed to an end of the insulating spacer (10) on the nozzle side, that is, a tip; Nozzle base (40) inner space (4
1), the opening (53) aligned with the center axis (21) of the electrode (20) on the end face (54), and the center of the electrode (20) on the end face outside the inner space of the nozzle base. Opening (5) eccentric from axis (21)
1), a plasma nozzle (52) connected to both openings (53, 51), and the nozzle table (40) has a central axis (21) of the electrode (20).
Nozzle member (50) rotatably connected to a fluid seal (55, 54) about the nozzle member; the nozzle member (50) is provided outside of the nozzle table in order to rotationally drive the nozzle member (50). A rotary drive mechanism (60) mounted on the portion; and a motor (70) for applying a rotary torque to the rotary drive mechanism (60) to rotationally drive the nozzle member (50). In addition, in order to facilitate understanding, the symbols of the corresponding elements in the embodiments shown in the drawings and described later are added in the parentheses for reference.

【0008】これによれば、原動機(70)が回転駆動機構
(60)に回転トルクを与えると、ノズル部材(50)が、電極
(20)の中心軸線(21)を中心に回転する。これにより、プ
ラズマノズル(52)が連なる電極側開口(53)は電極(20)の
中心軸線(21)を中心に回転するものの、常に中心軸線(2
1)に整合して電極(20)に対向し、電極(20)先端に連なる
プラズマア−クが開口(53)の実質上中心(21)を通る。と
ころが、プラズマノズル(52)が連なる外端面開口(51)
は、中心軸線(21)から偏心しているので、中心軸線(21)
を中心とした円を描く。したがってプラズマノズル(52)
から外に噴き出すプラズマフレ−ムは、中心軸線(21)を
中心とした円錐面を描くように回転する。このように、
ノズル部材(50)の機械的な回転によりプラズマフレ−ム
が円錐面を描くように回転するので、従来のように気流
によってプラズマフレ−ムを振る場合の、拡散や冷却は
なく、プラズマフレ−ムは外端面開口(51)が指向した方
向に確実に進む。ノズル部材(50)の機械的な回転は高速
にすることができ、高速でプラズマジェットフレームを
回転揺動できる。回転駆動機構(60)が、ノズル部材(50)
の、ノズル台より外の部分に装着されているので、ト−
チ内部熱の影響を受けにくく、また、点検,保守が容易
である。
According to this, the prime mover (70) is a rotary drive mechanism.
When a rotational torque is applied to (60), the nozzle member (50)
It rotates about the center axis (21) of (20). As a result, the electrode-side opening (53) to which the plasma nozzle (52) is connected rotates around the center axis (21) of the electrode (20), but the center axis (2) is always
A plasma arc, which is aligned with (1) and faces the electrode (20) and continues to the tip of the electrode (20), passes through substantially the center (21) of the opening (53). However, the outer end face opening (51) where the plasma nozzle (52) continues
Is eccentric from the center axis (21), so the center axis (21)
Draw a circle around. Therefore plasma nozzle (52)
The plasma frame spouting out of the cylinder rotates so as to draw a conical surface about the central axis (21). in this way,
Since the plasma frame rotates so as to draw a conical surface due to the mechanical rotation of the nozzle member (50), there is no diffusion or cooling in the case where the plasma frame is shaken by an air current as in the prior art, and the plasma frame is not cooled. The system surely advances in the direction in which the outer end opening (51) is directed. The mechanical rotation of the nozzle member (50) can be performed at high speed, and the plasma jet frame can be rotated and oscillated at high speed. The rotation drive mechanism (60) is a nozzle member (50)
Because it is attached to the part outside the nozzle base,
H is not easily affected by the internal heat, and inspection and maintenance are easy.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(2)前記電極(20)は、その後端が絶縁スペ−サ(10)の
後端面の前後に位置する短い電極であって、前記電極台
(30)は、該電極の後端部を支持し;ト−チは更に、該電
極の後端面(22)が露出する空間(31)と、前記ノズル台(4
0)の内空間であって前記ノズル部材(50)の外表面(56)が
露出する空間(41)に冷却媒体を通す流路(81〜87)を備え
る。電極(20)が短く、その後端面(22)が冷却媒体で冷却
されるので、電極(20)の抜熱効果が高く、ト−チ内部の
温度上昇を抑制する効果が高い。したがって高電流値で
の使用に耐える。高電流値のプラズマア−クにて強力な
プラズマフレ−ムを噴き出して鋼材の広域を均一かつ高
速に加熱あるいは溶射する非移行式揺動プラズマト−チ
を得ることができる。
(2) The electrode (20) is a short electrode whose rear end is located before and after the rear end face of the insulating spacer (10),
(30) supports the rear end of the electrode; the torch further comprises a space (31) where the rear end face (22) of the electrode is exposed;
A space (41) where the outer surface (56) of the nozzle member (50) is exposed in the inner space of (0) is provided with flow paths (81 to 87) for passing a cooling medium. Since the electrode (20) is short and its rear end face (22) is cooled by the cooling medium, the effect of removing heat from the electrode (20) is high, and the effect of suppressing a rise in temperature inside the torch is high. Therefore, it can be used at high current values. A non-transferring oscillating plasma torch that uniformly or rapidly heats or sprays a wide area of a steel material by blowing a strong plasma frame by a plasma arc having a high current value can be obtained.

【0010】(3)前記回転駆動機構(60)は、前記ノズ
ル部材(50)の、ノズル台(40)の外部分に固着された外歯
歯車(63),これに噛み合う駆動歯車(62)および該駆動歯
車(62)に連結した減速機(61)を含み;前記原動機(70)
は、該減速機(61)を駆動する電気モ−タ(70)である。歯
車結合により電気モ−タ(70)がノズル部材(50)を回転駆
動するので、高速回転による高速揺動が可能であり、回
転駆動機構(60)はコンパクトに構成でき、耐熱性が高
い。しかも回転駆動機構(60)の全体がト−チの外にある
ので、点検,保守を簡易に行なうことができる。
(3) The rotary drive mechanism (60) comprises an external gear (63) fixed to an outer portion of the nozzle table (40) of the nozzle member (50), and a drive gear (62) meshing with the external gear. And a reduction gear (61) coupled to the drive gear (62);
Is an electric motor (70) for driving the speed reducer (61). Since the electric motor (70) rotationally drives the nozzle member (50) by gear coupling, high-speed swinging by high-speed rotation is possible, and the rotary drive mechanism (60) can be made compact and has high heat resistance. Moreover, since the entire rotary drive mechanism (60) is outside the torch, inspection and maintenance can be easily performed.

【0011】(4)更に、前記ノズル部材(50)の偏心し
た開口(52)の外の近傍に粉体及びキャリヤガスを供給す
る粉体供給手段(90)を備える。これによれば、粉体供給
手段(90)が供給した粉体がプラズマフレ−ムで溶融され
て、指向先の加工材表面に溶着する。加工材を高速で揺
り移動させなくとも、プラズマフレーム自身が円錐面を
描くように高速回転移動し熱の分散及び被膜の均一化を
してくれるので、広い面を溶射するためにプラズマト−
チ又は加工材を走査駆動する機構は、揺動は実質上必要
とせず、溶射面を更新するために走行するものであれば
よく、簡易な機構を採用しうる。
(4) Further, a powder supply means (90) for supplying powder and carrier gas is provided near the eccentric opening (52) of the nozzle member (50). According to this, the powder supplied by the powder supply means (90) is melted by the plasma frame and welded to the surface of the workpiece to be directed. Even if the workpiece is not shaken at high speed, the plasma frame itself rotates at high speed to draw a conical surface, dispersing heat and uniforming the coating.
The mechanism for scanning and driving the workpiece or the work material does not substantially require swinging, and may be any mechanism that travels to update the sprayed surface, and a simple mechanism may be employed.

【0012】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0013】[0013]

【実施例】【Example】

−第1実施例− 図1に本発明の第1実施例の縦断面を示す。大要で短い
円柱又は円筒状の絶縁スペ−サ10の中心には、通し穴
11が開いており、該通し穴11の中心をタングステン
電極20が貫通している。電極20の先端は、その中心
に電気ア−クが集中するように円錐状である。電極20
の中心軸21が、ト−チのセンタ−ラインである。電極
20の後端部の円周面を電極ホルダ23が固定保持す
る。電極ホルダ23は、電極台30の中心穴に挿入され
て電極台30に固着され、Oリングが電極台30と電極
ホルダ23との間を気密にシ−ルしている。電極台30
は、絶縁スペ−サ10の、通し穴11よりやや太径の受
穴に挿入され絶縁スペ−サ10に固着されており、Oリ
ングが電極台30と絶縁スペ−サ10との間を気密にシ
−ルしている。
-First Embodiment- FIG. 1 shows a longitudinal section of a first embodiment of the present invention. A through hole 11 is opened at the center of the short, cylindrical or cylindrical insulating spacer 10, and a tungsten electrode 20 penetrates the center of the through hole 11. The tip of the electrode 20 is conical so that the electric arc is concentrated at its center. Electrode 20
Is the center line of the torch. An electrode holder 23 fixedly holds the circumferential surface of the rear end of the electrode 20. The electrode holder 23 is inserted into the center hole of the electrode base 30 and is fixed to the electrode base 30, and an O-ring hermetically seals between the electrode base 30 and the electrode holder 23. Electrode table 30
Is inserted into a receiving hole having a slightly larger diameter than the through hole 11 of the insulating spacer 10 and is fixed to the insulating spacer 10. An O-ring hermetically seals between the electrode base 30 and the insulating spacer 10. Is sealed.

【0014】絶縁スペ−サ10の通し穴11に関して電
極台30と反対側の、通し穴11に連通しそれよりやや
太径の受穴に、ノズル台40の中央のスリ−ブが挿入さ
れ、このスリ−ブが絶縁スペ−サ10に対してOリング
で気密にシ−ルされている。ノズル台40は袋ナット4
3を貫通しており、袋ナット43が絶縁スペ−サ10に
ねじ結合しており、袋ナット43のねじ締めにより、ノ
ズル台40が絶縁スペ−サ10に固着されている。
A central sleeve of the nozzle base 40 is inserted into a through hole 11 of the insulating spacer 10 opposite to the electrode base 30 and communicating with the through hole 11 and having a slightly larger diameter than the through hole. This sleeve is hermetically sealed with an O-ring to the insulating spacer 10. Nozzle base 40 is cap nut 4
3, the cap nut 43 is screwed to the insulating spacer 10, and the nozzle base 40 is fixed to the insulating spacer 10 by screwing the cap nut 43.

【0015】ノズル台40の中心穴の内空間41に電極
20の前端部分が位置する。この内空間41に、大略傘
型のノズル部材50の握り柄に相当する細径後端部が挿
入されて、ベアリングを介して、ノズル台40にて中心
軸21を中心に回転自在に支持され、かつ、Xリング5
4で気密にシ−ルされている。ノズル部材50の傘に相
当する太径先端部の外縁部が、ノズル台40の先端開口
に挿入されて、ベアリングを介して、ノズル台40にて
中心軸21を中心に回転自在に支持され、かつ、Xリン
グ55で気密にシ−ルされている。
The front end of the electrode 20 is located in the inner space 41 of the center hole of the nozzle table 40. A small-diameter rear end portion corresponding to a handle of a generally umbrella-shaped nozzle member 50 is inserted into the inner space 41, and is rotatably supported about the central axis 21 by the nozzle table 40 via a bearing. , And X ring 5
4 is sealed airtight. The outer edge of the large-diameter distal end portion corresponding to the umbrella of the nozzle member 50 is inserted into the distal end opening of the nozzle table 40, and is rotatably supported by the nozzle table 40 about the central axis 21 via a bearing, And it is sealed airtight by the X ring 55.

【0016】ノズル部材50の細径後端部の端面には、
中心軸21を中心とする円錐穴状の大径開口53が開い
ており、その内部に所定の空隙を置いて電極20の先端
部の円錐面が位置する。この大径開口53にプラズマノ
ズル52が連続し、このプラズマノズル52は、ノズル
部材50の太径先端部の端面の開口51に連なってい
る。
On the end face of the small diameter rear end of the nozzle member 50,
A conical hole-shaped large-diameter opening 53 centered on the central axis 21 is opened, and a conical surface at the tip end of the electrode 20 is positioned inside the opening 53 with a predetermined gap. The plasma nozzle 52 is continuous with the large-diameter opening 53, and the plasma nozzle 52 is continuous with the opening 51 on the end surface of the large-diameter tip of the nozzle member 50.

【0017】先端面の開口51は、中心軸21より偏心
した位置にある。すなわちプラズマノズル52は、電極
20の中心軸21を中心とする後端面の開口53と中心
軸21から偏心した先端面の開口51との間で曲ってい
る。ノズル部材50の太径先端部の外縁よりやや内側の
やや細径の円周部が袋ナット44を貫通しており、この
袋ナット44がノズル台40にねじ結合しており、袋ナ
ット44のねじ締めにより、ノズル部材50がノズル台
40に対して、z方向に位置決めされている。ノズル部
材50の太径先端部の径方向中央部分は、ノズル台40
および袋ナット44の外に露出しており、そこにフラン
ジ付リング状の中継ぎ部材64が固着され、この中継ぎ
部材64の外周に、リング状の外歯歯車63が固着され
ている。外歯歯車63には駆動歯車62が噛み合ってい
る。駆動歯車62は減速機61の出力軸に固着されてい
る。減速機61の入力軸には電気モ−タ70の回転軸が
結合している。絶縁スペ−サ10には取手72が固着さ
れており、この取手72に固着されたモ−タ取付台71
で電気モ−タ70が保持されている。
The opening 51 in the distal end face is located at a position eccentric from the center axis 21. That is, the plasma nozzle 52 bends between the opening 53 on the rear end face centered on the center axis 21 of the electrode 20 and the opening 51 on the front end face eccentric from the center axis 21. A slightly narrower circumferential portion slightly inside the outer edge of the large diameter tip of the nozzle member 50 penetrates the cap nut 44, and the cap nut 44 is screwed to the nozzle base 40. By screwing, the nozzle member 50 is positioned with respect to the nozzle table 40 in the z direction. The central part in the radial direction of the large diameter tip of the nozzle member 50 is
The flanged ring-shaped intermediate member 64 is fixed to the outside of the cap nut 44, and a ring-shaped external gear 63 is fixed to the outer periphery of the intermediate member 64. The driving gear 62 meshes with the external gear 63. The drive gear 62 is fixed to the output shaft of the speed reducer 61. The rotation shaft of the electric motor 70 is connected to the input shaft of the speed reducer 61. A handle 72 is fixed to the insulating spacer 10, and the motor mount 71 fixed to the handle 72 is fixed.
, The electric motor 70 is held.

【0018】絶縁スペ−サ10には、プラズマガスを導
入する穴92が開いている。この穴92にパイプ91が
結合している。穴92はz方向に延び、そして絶縁スペ
−サ10のz方向の略中央部で半径方向に曲って、通し
穴11よりもわずかに後端側で、通し穴11に連通する
空間に開いている。パイプ91から穴92に供給される
プラズマガスは、穴92を通って絶縁スペ−サ10の中
心の空間に出て、電極20の周面に沿って通し穴11を
通り、ノズル台40の内空間41に至り、そして電極2
0の先端の円錐面に沿って開口53内に入ってプラズマ
ノズル52を通って外開口51よりト−チ外部に噴出す
る。
The insulating spacer 10 has a hole 92 for introducing a plasma gas. A pipe 91 is connected to the hole 92. The hole 92 extends in the z-direction, and bends in the radial direction at a substantially central portion in the z-direction of the insulating spacer 10, and opens slightly into the space communicating with the through-hole 11 slightly behind the through-hole 11. I have. The plasma gas supplied from the pipe 91 to the hole 92 passes through the hole 92 to the space at the center of the insulating spacer 10, passes through the through hole 11 along the peripheral surface of the electrode 20, and passes through the inside of the nozzle table 40. Space 41, and electrode 2
The laser beam enters the opening 53 along the conical surface at the leading end of the nozzle 0 and passes through the plasma nozzle 52 to be ejected from the outer opening 51 to the outside of the torch.

【0019】プラズマア−クを生ずる電源100がオン
のときには、電極20の先端と、ノズル部材50の、プ
ラズマノズル52の内表面との間に、プラズマア−クが
発生し、それがノズル52を通るプラズマガスを電離
し、開口51からプラズマフレ−ムが噴き出す。開口5
1が中心軸21から偏心しているので、プラズマフレ−
ムは、中心軸21とある角度をもって噴き出す。電気モ
−タ70を回転駆動すると、駆動歯車62が回転して外
歯歯車63および中継ぎ64を介してノズル部材50が
回転駆動され、これにより外開口51が中心軸21を中
心に円を描いて動き、外開口51から噴き出すプラズマ
フレ−ムが、中心軸21を中心とする円錐面を描く。
When the power source 100 for generating a plasma arc is turned on, a plasma arc is generated between the tip of the electrode 20 and the inner surface of the plasma nozzle 52 of the nozzle member 50, and the plasma arc is generated. The plasma gas passing through is ionized, and a plasma frame is ejected from the opening 51. Opening 5
1 is eccentric from the center axis 21, so that the plasma flame
The gas is ejected at an angle to the central axis 21. When the electric motor 70 is driven to rotate, the driving gear 62 rotates, and the nozzle member 50 is driven to rotate via the external gear 63 and the splicing 64, whereby the outer opening 51 draws a circle around the central axis 21. The plasma frame ejected from the outer opening 51 draws a conical surface centered on the central axis 21.

【0020】絶縁スペ−サ10には、冷却水を導入する
穴82が開いている。この穴82にパイプ81が結合し
ている。穴82はz方向に絶縁スペ−サ10を貫通し、
この穴82にノズル台40の穴83が連なっている。穴
83は、傘形のノズル部材50の支柱部の外側で、該支
柱部に向けて開いている。ノズル台40の、先端側に突
出したスリ−ブには導水リング45が挿入されており、
この導水リング45が、傘形のノズル部材50の支柱部
の外周に沿って傘部の内側に向かう水路を区画してい
る。この水路は傘部の内側の空間42に連通している。
この空間42に開いた穴84がノズル台40をz方向に
貫通しており、この穴84に、絶縁スペ−サ10をz方
向に貫通するパイプ85が接続している。パイプ85に
は絶縁継手(パイプ)を介してU字型のパイプ86の一
端が接続しており、パイプ86の他端に、絶縁継手(パ
イプ)を介してパイプ87が接続している。パイプ87
の先端は電極台30をz方向に貫通して、電極20の後
端面が露出した空間31に開いている。この空間31
は、電極台30の後端側内部空間と連続し、該後端側内
部空間に排水パイプ88の先端が開いている。
The insulating spacer 10 has a hole 82 for introducing cooling water. A pipe 81 is connected to the hole 82. The hole 82 passes through the insulating spacer 10 in the z direction,
A hole 83 of the nozzle table 40 is connected to the hole 82. The hole 83 is open toward the column outside the column of the umbrella-shaped nozzle member 50. A water guide ring 45 is inserted into a sleeve protruding toward the tip of the nozzle base 40,
The water guide ring 45 defines a water channel along the outer periphery of the support portion of the umbrella-shaped nozzle member 50 toward the inside of the umbrella portion. This water channel communicates with the space 42 inside the umbrella.
A hole 84 opened in the space 42 penetrates the nozzle base 40 in the z direction, and a pipe 85 penetrating the insulating spacer 10 in the z direction is connected to the hole 84. One end of a U-shaped pipe 86 is connected to the pipe 85 via an insulating joint (pipe), and a pipe 87 is connected to the other end of the pipe 86 via an insulating joint (pipe). Pipe 87
Of the electrode 20 penetrates through the electrode base 30 in the z direction, and is open to a space 31 where the rear end face of the electrode 20 is exposed. This space 31
Is continuous with the inner space on the rear end side of the electrode base 30, and the distal end of the drain pipe 88 is open in the inner space on the rear end side.

【0021】冷却水は、パイプ81−穴82−穴83−
空間42と流れてノズル部材50の熱を奪い、そして、
穴84−パイプ85,86,87−空間31と流れて空
間31にて電極20の熱を奪い、そして電極台30の内
空間を通って電極台30の熱を奪って、パイプ88を通
ってト−チの外に流れる。ノズル部材50の熱は、導水
リング45の内空間と、ノズル部材50の傘の内側とを
流れる冷却水により効率良く冷却される。電極20が短
かく、その後端面と、電極20を支持する電極ホルダ3
0が、空間31を流れる冷却水により効率良く冷却され
る。したがってノズル部材50および電極20の冷却効
果が高く、高いプラズマア−ク電流の通流すなわち強力
なプラズマフレ−ムの生成が可能である。
The cooling water is supplied to the pipe 81-hole 82-hole 83-
It flows with the space 42 and deprives the nozzle member 50 of heat, and
The heat flows through the holes 84-pipes 85, 86, 87-space 31 to take away the heat of the electrode 20 in the space 31, passes through the inner space of the electrode stand 30, takes the heat of the electrode stand 30, and passes through the pipe 88. It flows out of the torch. The heat of the nozzle member 50 is efficiently cooled by the cooling water flowing through the inner space of the water guide ring 45 and the inside of the umbrella of the nozzle member 50. The electrode 20 is short, its rear end face and the electrode holder 3 supporting the electrode 20
0 is efficiently cooled by the cooling water flowing through the space 31. Therefore, the cooling effect of the nozzle member 50 and the electrode 20 is high, and the flow of a high plasma arc current, that is, the generation of a strong plasma frame is possible.

【0022】プラズマフレ−ム、特に、強力なプラズマ
フレ−ムは、加工対象材に対するエネルギ(機械的な力
(圧力)および熱作用)が強く、その中心部と周辺部と
のエネルギの差が大きく加工むらを生じ易いが、電気モ
−タ70でノズル部材50を回転駆動することにより、
プラズマフレ−ムが円錐面を描くように回転するので、
熱分布がプラズマフレ−ム照射範囲において均一で、広
範囲の加工を一走査で行なうことができる。
A plasma frame, particularly a strong plasma frame, has a high energy (mechanical force (pressure) and thermal action) on a material to be processed, and the difference in energy between the center and the periphery is large. Although it is easy to cause large processing unevenness, by rotating and driving the nozzle member 50 with the electric motor 70,
As the plasma frame rotates to draw a conical surface,
The heat distribution is uniform in the plasma frame irradiation range, and a wide range of processing can be performed in one scan.

【0023】すなわち、図2に示すようにプラズマノズ
ル52の先端開口51が、中心軸21より、最も−x方
向に偏心した回転角度のときには、プラズマフレ−ムの
中心線(指向方向)は、中心軸21に対してy方向には
振れていないが、−x方向の振れが最大となる。この状
態からノズル部材50が時計方向に90度回転すると、
図3に実線で示すように、プラズマノズル52の先端開
口51が、中心軸21より、最も+y方向に偏心し、プ
ラズマフレ−ムの中心線は、中心軸21に対してx方向
には振れていないが、+y方向の振れが最大となる。こ
の状態からノズル部材50が時計方向に更に90度回転
すると、図4に示すように、プラズマノズル52の先端
開口51が、中心軸21より、最も+x方向に偏心し、
プラズマフレ−ムの中心線は、中心軸21に対してy方
向には振れていないが、+x方向の振れが最大となる。
この状態からノズル部材50が時計方向に更に90度回
転すると、図3に点線で示すように、プラズマノズル5
2の先端開口51が、中心軸21より、最も−y方向に
偏心し、プラズマフレ−ムの中心線は、中心軸21に対
してx方向には振れていないが、−y方向の振れが最大
となる。上述の第1実施例の使用例を次に示す。
That is, as shown in FIG. 2, when the tip opening 51 of the plasma nozzle 52 has a rotation angle that is most eccentric in the -x direction from the center axis 21, the center line (directing direction) of the plasma frame is Although it does not swing in the y direction with respect to the central axis 21, the swing in the -x direction is the maximum. When the nozzle member 50 rotates 90 degrees clockwise from this state,
As shown by the solid line in FIG. 3, the tip opening 51 of the plasma nozzle 52 is most eccentric in the + y direction from the center axis 21, and the center line of the plasma frame oscillates in the x direction with respect to the center axis 21. However, the deflection in the + y direction is maximum. When the nozzle member 50 further rotates 90 degrees clockwise from this state, the tip opening 51 of the plasma nozzle 52 is most eccentric in the + x direction from the center axis 21 as shown in FIG.
Although the center line of the plasma frame does not swing in the y direction with respect to the center axis 21, the swing in the + x direction becomes maximum.
When the nozzle member 50 further rotates 90 degrees clockwise from this state, as shown by a dotted line in FIG.
The center opening of the plasma frame is not eccentric with respect to the central axis 21 in the x direction, but is eccentric with respect to the central axis 21. Will be the largest. An example of use of the above-described first embodiment will be described below.

【0024】 1.(加熱例) ノズル部材50の回転数:15回/秒 プラズマノズル52の径(最小径部):φ10mm ノズル孔偏向角θ:10° アーク電流:500A プラズマガス:60リットル/min(Arガス) 5リットル/min(Hzガス) (結果)トーチ先端から約60mmの所の鋼板表面を、均一に広範囲に加熱 できた。1. (Heating example) Number of rotations of the nozzle member 50: 15 times / second Diameter (minimum diameter portion) of the plasma nozzle 52: φ10 mm Nozzle hole deflection angle θ: 10 ° Arc current: 500 A Plasma gas: 60 l / min (Ar gas) 5 liter / min (Hz gas) (Result) The steel plate surface at about 60 mm from the tip of the torch could be heated uniformly and widely.

【0025】−第2実施例− 図5に本発明の第2実施例を示す。図5に示すプラズマ
ト−チの構造は図1に示す第1実施例と同様であるが、
ト−チに粉体供給装置90が組付けられている。この実
施例では、ホッパ型の粉体供給器91の底部分の粉体供
給口が開いたキャリアガスパイプ92に粉体キャリアガ
スが供給され、このガス流に粉体供給口から粉体が引き
込まれて、ガス流と共に粉体給送パイプ93を通って粉
体噴射ノズル94に送り込まれ、ノズル94から中心軸
21に向けて噴き出す。噴き出した粉体はプラズマフレ
−ムに吸い込まれてプラズマフレ−ムの高熱で溶融し、
フレ−ムと共に加工対象材の表面に衝突する。第2実施
例の使用例を次に示す。
Second Embodiment FIG. 5 shows a second embodiment of the present invention. The structure of the plasma torch shown in FIG. 5 is the same as that of the first embodiment shown in FIG.
A powder supply device 90 is attached to the torch. In this embodiment, a powder carrier gas is supplied to a carrier gas pipe 92 having an open powder supply port at the bottom of a hopper-type powder supply device 91, and powder is drawn into the gas flow from the powder supply port. Then, it is fed into the powder injection nozzle 94 through the powder supply pipe 93 together with the gas flow, and is jetted from the nozzle 94 toward the central shaft 21. The ejected powder is sucked into the plasma frame and melted by the high heat of the plasma frame.
It collides with the surface of the material to be processed together with the frame. An example of use of the second embodiment is shown below.

【0026】 2.(溶射例) ノズル部材50の回転数:15回/秒 プラズマノズル52の径(最小径部):φ12mm ノズル孔偏向角θ:10° アーク電流 :800A プラズマガス:40リットル/分(Arガス) 15リットル/分(Heガス) 粉体 :アルミナ 30g/分 粉体キャリヤガス:4リットル/分(Arガス) トーチ〜ワーク間距離:約100mm (結果) 広範囲で均一な溶射膜がえられた。また、ワ−クを高速移動 させることなしに施工することができた。[0026] 2. (Example of thermal spraying) Number of rotations of nozzle member 50: 15 times / second Diameter (minimum diameter portion) of plasma nozzle 52: φ12 mm Nozzle hole deflection angle θ: 10 ° Arc current: 800 A Plasma gas: 40 liter / min (Ar gas) 15 L / min (He gas) Powder: Alumina 30 g / min Powder carrier gas: 4 L / min (Ar gas) Distance between torch and workpiece: about 100 mm (Result) A uniform sprayed film was obtained over a wide range. Also, the work could be performed without moving the work at high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of a first embodiment of the present invention.

【図2】 図1に示すプラズマト−チの先端部を示し、
(a)は縦断面図、(b)はノズル部材50の先端面の
正面図である。
FIG. 2 shows the tip of the plasma torch shown in FIG. 1,
(A) is a longitudinal sectional view, (b) is a front view of the tip end surface of the nozzle member 50.

【図3】 図1に示すプラズマト−チの先端部を示し、
(a)は縦断面図、(b)はノズル部材50の先端面の
正面図である。
FIG. 3 shows the tip of the plasma torch shown in FIG. 1,
(A) is a longitudinal sectional view, (b) is a front view of the tip end surface of the nozzle member 50.

【図4】 図1に示すプラズマト−チの先端部を示し、
(a)は縦断面図、(b)はノズル部材50の先端面の
正面図である。
FIG. 4 shows the tip of the plasma torch shown in FIG. 1,
(A) is a longitudinal sectional view, (b) is a front view of the tip end surface of the nozzle member 50.

【図5】 本発明の第2実施例の縦断面図である。FIG. 5 is a longitudinal sectional view of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10:絶縁スペ−サ 11:通し穴 20:電極 21:中心軸 22:後端面 23:電極ホルダ 30:電極台 31:内空間 40:ノズル台 41:内空間 42:空間 43:袋ナット 44:袋ナット 45:導水リング 50:ノズル部材 51:外開口 52:プラズマノズル 53:後端開口 54:Xリング 55:Xリング 56:内表面 60:回転駆動機構 61:減速機 62:駆動歯車 63:外歯歯車 64:中継ぎ部材 70:電気モ−タ 71モ−タ取付台 72:取手 81,85,86,8
7,88:冷却水パイプ 82〜84:穴 91:プラズマガスパイ
プ 92:穴 100:電源
10: Insulating spacer 11: Through hole 20: Electrode 21: Center axis 22: Rear end face 23: Electrode holder 30: Electrode table 31: Inner space 40: Nozzle table 41: Inner space 42: Space 43: Cap nut 44: Cap nut 45: Water guide ring 50: Nozzle member 51: Outer opening 52: Plasma nozzle 53: Rear end opening 54: X ring 55: X ring 56: Inner surface 60: Rotary drive mechanism 61: Reduction gear 62: Drive gear 63: External gear 64: Intermediate member 70: Electric motor 71 Motor mount 72: Handle 81, 85, 86, 8
7, 88: cooling water pipe 82 to 84: hole 91: plasma gas pipe 92: hole 100: power supply

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】中心に比較的に太径の通し穴が開いた絶縁
スペ−サ;前記通し穴を貫通する電極;前記絶縁スペ−
サの後端部に固着され前記電極を支持する電極台;前記
電極を受入れる内空間を有し前記絶縁スペ−サのノズル
側の端部すなわち先端部に固着されたノズル台;一部が
該ノズル台の内空間に進入し、進入した端面に前記電極
の中心軸線に整合した開口と、ノズル台の内空間の外の
端面の前記電極の中心軸線から偏心した開口と、両開口
に連なるプラズマノズルを有し、前記ノズル台に、前記
電極の中心軸線を中心に回転可に流体シ−ルを介して結
合したノズル部材;該ノズル部材を回転駆動するため
に、ノズル部材の、ノズル台の外部分に装着された回転
駆動機構;および、該回転駆動機構に、ノズル部材を回
転駆動するための回転トルクを与える原動機;を備える
非移行式揺動プラズマト−チ。
An insulating spacer having a relatively large diameter through-hole at the center; an electrode penetrating through the through-hole;
An electrode base fixed to a rear end of the insulating spacer and supporting the electrode; a nozzle base having an inner space for receiving the electrode and fixed to a nozzle-side end of the insulating spacer, that is, a tip end; A plasma that enters the inner space of the nozzle base and has an opening aligned with the center axis of the electrode at the end surface, an opening eccentric from the center axis of the electrode at the outer end surface of the inner space of the nozzle base, and plasma connected to both openings A nozzle member having a nozzle and rotatably coupled to the nozzle base via a fluid seal about the central axis of the electrode; a nozzle member of the nozzle base for driving the nozzle member to rotate; A non-transitional oscillating plasma torch comprising: a rotary drive mechanism mounted on an external component; and a motor for applying a rotary torque to the rotary drive mechanism to rotate the nozzle member.
【請求項2】前記電極は、その後端が絶縁スペ−サの後
端面の前後に位置する短い電極であって、前記電極台
は、該電極の後端部を支持し;ト−チは更に、該電極の
後端面が露出する空間と、前記ノズル台の内空間であっ
て前記ノズル部材の外表面が露出する空間に冷却媒体を
通す流路を備える;請求項1記載の非移行式揺動プラズ
マト−チ。
2. The electrode is a short electrode having a rear end located before and after a rear end surface of an insulating spacer, wherein the electrode base supports a rear end of the electrode; 2. The non-transferable oscillating device according to claim 1, further comprising: a space through which a rear end surface of the electrode is exposed; and a passage through which a cooling medium passes through a space inside the nozzle table, where the outer surface of the nozzle member is exposed. Dynamic plasma torch.
【請求項3】前記回転駆動機構は、前記ノズル部材の、
ノズル台の外部分に固着された外歯歯車,これに噛み合
う駆動歯車および該駆動歯車に連結した減速機を含み;
前記原動機は、該減速機を駆動する電気モ−タである;
請求項1又は請求項2記載の非移行式揺動プラズマト−
チ。
3. The rotary drive mechanism according to claim 1, wherein:
An external gear fixed to an outer portion of the nozzle base, a driving gear meshing with the external gear, and a speed reducer connected to the driving gear;
The prime mover is an electric motor that drives the speed reducer;
A non-transferring oscillating plasma transistor according to claim 1 or 2.
Ji.
【請求項4】更に、前記ノズル部材の偏心した開口の外
の近傍に粉体及びキャリヤガスを供給する粉体供給手段
を備える、請求項1,請求項2又は請求項3記載の非移
行式揺動プラズマト−チ。
4. The non-transition type according to claim 1, further comprising powder supply means for supplying powder and carrier gas to a portion outside the eccentric opening of the nozzle member. Swinging plasma torch.
JP9267040A 1997-09-30 1997-09-30 Non-shifting type swinging plasma torch Pending JPH11111492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9267040A JPH11111492A (en) 1997-09-30 1997-09-30 Non-shifting type swinging plasma torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9267040A JPH11111492A (en) 1997-09-30 1997-09-30 Non-shifting type swinging plasma torch

Publications (1)

Publication Number Publication Date
JPH11111492A true JPH11111492A (en) 1999-04-23

Family

ID=17439217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9267040A Pending JPH11111492A (en) 1997-09-30 1997-09-30 Non-shifting type swinging plasma torch

Country Status (1)

Country Link
JP (1) JPH11111492A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010078636A (en) * 2000-02-09 2001-08-21 김징완 Plasma arc torch
JP2006190493A (en) * 2004-12-28 2006-07-20 Tohoku Techno Arch Co Ltd Plasma treatment device and plasma treatment method
JP2010097931A (en) * 2008-10-20 2010-04-30 Inpro Innovations Ges Fuer Fortgeschrittene Produktionssysteme In Der Fahrzeugindustrie Mbh Device for performing pre-treatment and/or post-treatment on surface of component with plasma jet
CN102671527A (en) * 2012-06-08 2012-09-19 无锡市伟奥斯环保科技有限公司 Temperature-controllable plasma organic exhaust gas treatment device
KR101479767B1 (en) * 2012-12-26 2015-01-12 주식회사 다원시스 Arc-jet plasma generator
CN104284504A (en) * 2014-10-31 2015-01-14 四川大学 Rotating anode plasma generator
CN104619107A (en) * 2015-01-12 2015-05-13 广东韦达尔科技有限公司 Electromagnetic plasma rotary processing device
CN104619108A (en) * 2015-01-12 2015-05-13 广东韦达尔科技有限公司 Electromagnetic rotary plasma spray gun
CN105025647A (en) * 2014-04-16 2015-11-04 馗鼎奈米科技股份有限公司 Plasma device
JP2017507449A (en) * 2013-12-11 2017-03-16 アプライド プラズマ インコーポレイテッド カンパニー リミテッドApplied Plasma Inc Co., Ltd. Plasma generator
KR20190041498A (en) * 2016-08-19 2019-04-22 에요트 게엠베하 앤드 코. 카게 Method of connecting at least two element layers by plasma jet pre-drilling of a cover layer
KR20190100643A (en) * 2018-02-21 2019-08-29 전병준 A multi plasma torch
KR102032294B1 (en) * 2018-04-13 2019-10-15 주식회사 에이피피 Apparatus for generating atmospheric pressure plasma
KR102492995B1 (en) * 2021-12-23 2023-01-31 주식회사 오픈나노 Plasma head

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010078636A (en) * 2000-02-09 2001-08-21 김징완 Plasma arc torch
JP2006190493A (en) * 2004-12-28 2006-07-20 Tohoku Techno Arch Co Ltd Plasma treatment device and plasma treatment method
JP2010097931A (en) * 2008-10-20 2010-04-30 Inpro Innovations Ges Fuer Fortgeschrittene Produktionssysteme In Der Fahrzeugindustrie Mbh Device for performing pre-treatment and/or post-treatment on surface of component with plasma jet
CN102671527A (en) * 2012-06-08 2012-09-19 无锡市伟奥斯环保科技有限公司 Temperature-controllable plasma organic exhaust gas treatment device
CN102671527B (en) * 2012-06-08 2014-04-16 广州市华瑞保环保科技有限公司 Temperature-controllable plasma organic exhaust gas treatment device
KR101479767B1 (en) * 2012-12-26 2015-01-12 주식회사 다원시스 Arc-jet plasma generator
JP2017507449A (en) * 2013-12-11 2017-03-16 アプライド プラズマ インコーポレイテッド カンパニー リミテッドApplied Plasma Inc Co., Ltd. Plasma generator
CN105025647A (en) * 2014-04-16 2015-11-04 馗鼎奈米科技股份有限公司 Plasma device
CN104284504A (en) * 2014-10-31 2015-01-14 四川大学 Rotating anode plasma generator
CN104619108A (en) * 2015-01-12 2015-05-13 广东韦达尔科技有限公司 Electromagnetic rotary plasma spray gun
CN104619107A (en) * 2015-01-12 2015-05-13 广东韦达尔科技有限公司 Electromagnetic plasma rotary processing device
KR20190041498A (en) * 2016-08-19 2019-04-22 에요트 게엠베하 앤드 코. 카게 Method of connecting at least two element layers by plasma jet pre-drilling of a cover layer
JP2019532228A (en) * 2016-08-19 2019-11-07 エーヨット ゲーエムベーハー ウント コー カーゲー Method, connecting device and connecting structure for connecting at least two member layers by pre-drilling a plasma jet of a cover layer
KR20190100643A (en) * 2018-02-21 2019-08-29 전병준 A multi plasma torch
KR102032294B1 (en) * 2018-04-13 2019-10-15 주식회사 에이피피 Apparatus for generating atmospheric pressure plasma
KR102492995B1 (en) * 2021-12-23 2023-01-31 주식회사 오픈나노 Plasma head

Similar Documents

Publication Publication Date Title
JPH11111492A (en) Non-shifting type swinging plasma torch
US5733662A (en) Method for depositing a coating onto a substrate by means of thermal spraying and an apparatus for carrying out said method
US5866870A (en) Enhanced laser beam welding
JPH07299393A (en) Plasma spray device
CA2215563C (en) Combined laser and plasma arc welding torch
US20050186355A1 (en) Thermal spraying device and thermal spraying method
US5109150A (en) Open-arc plasma wire spray method and apparatus
US3872279A (en) Laser-radio frequency energy beam system
US11731216B2 (en) Device for working a surface of a workpiece by means of a laser beam and method for operating the device
US3947653A (en) Method of spray coating using laser-energy beam
JP2011523162A (en) Equipment for processing the inner surface of workpieces
US3947654A (en) Method of generating laser-radio beam
JPH08319552A (en) Plasma torch and plasma thermal spraying device
KR20010043197A (en) Method for guiding arc by laser, and arc guiding welding and device by the method
EP1714704B1 (en) Thermal spraying device and thermal spraying method
JP3061268B1 (en) Melt processing equipment using laser light and arc
JP2927596B2 (en) Non-transfer type plasma jet oscillation method and plasma jet apparatus
JP3365720B2 (en) Swing type plasma torch
JP4394808B2 (en) Melt processing equipment using laser beam and arc
JP7261199B2 (en) Powder manufacturing equipment
JPH0666883U (en) Laser processing nozzle
JP2002113588A (en) Machining equipment by composite laser/ac plasma
JPH11104842A (en) Rotary oscillation type plasma powder built-up welding device
JP2001340987A (en) Welding apparatus and welding method
JP3768393B2 (en) Laser / plasma composite processing equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040714