JPH11111272A - Manufacture of battery electrode and battery electrode - Google Patents

Manufacture of battery electrode and battery electrode

Info

Publication number
JPH11111272A
JPH11111272A JP9268778A JP26877897A JPH11111272A JP H11111272 A JPH11111272 A JP H11111272A JP 9268778 A JP9268778 A JP 9268778A JP 26877897 A JP26877897 A JP 26877897A JP H11111272 A JPH11111272 A JP H11111272A
Authority
JP
Japan
Prior art keywords
current collector
active material
polymer active
conductive polymer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9268778A
Other languages
Japanese (ja)
Inventor
Yasuhiro Akita
靖浩 秋田
Shunichi Hayashi
林  俊一
Naomoto Ishikawa
直元 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9268778A priority Critical patent/JPH11111272A/en
Publication of JPH11111272A publication Critical patent/JPH11111272A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve adhesion of a metallic current collector and a conductive high polymer active material layer, and provide sufficient strength and an electrode characteristic by applying a paint liquid by dispersing a conductive high polymer active material in a solvent to a porous metallic current collector, and realizing high density by pressurizing it after drying. SOLUTION: It is desirable to realize high density by pressurized it after being dried by respectively applying a paint liquid by dispersing a conductive high polymer active material in a solvent one or more times to the obverse and the reverse of a porous metallic current collecting body. The porous metallic current collector is desirable to be a porous metallic current collector having an average hole diameter of 0.1 to 0.5 mm and the opening ratio of 10 to 50%. Metal having large strength and high electric conductivity is desirable as a construction material of the current collector, and a material by forming stainless steel, nickel, copper and aluminum in a porous plate shape having a thickness of about 10 to 30 μm is desirable. A conductive high polymer such as polyaniline, polypyrrole and polythiophene can be used as the conductive high polymer active material. Electrode capacity can be controlled by adjusting an applying quantity of the paint liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電性高分子活物質
を用いた電池用電極の製造方法及びその方法により製造
した電池用電極に関する。
The present invention relates to a method for producing a battery electrode using a conductive polymer active material and a battery electrode produced by the method.

【0002】[0002]

【従来の技術】導電性高分子を活物質として二次電池な
どに使用される電池用電極を作製する場合、導電性高分
子活物質のみで電極を構成するとその抵抗が大きいた
め、適当な集電体を用いて導電率を上げて電極としてい
る。ここで使用される集電体としては平滑な金属フィル
ムが一般的であり、図4に示すように平滑な集電体2の
両面に導電性高分子活物質層1を形成させている。しか
しながら、一般に平滑な集電体2と導電性高分子活物質
層2との密着性は悪く、集電体2から導電性高分子活物
質層1が脱離しやすく、サイクル特性などの電池特性に
問題がある。このような導電性高分子を活物質とする電
池用電極については、種々の改良技術が開発され、提案
されている。例えば、特開平7−302586号公報に
はステンレス箔などの金属集電体基板と導電性高分子活
物質層との間に導電性接着剤層を設けて金属集電体と導
電性高分子層との密着性を改良する方法が提案されてい
る。この方法の場合は、密着性自体は改善されるが接着
剤層が付加される結果、電極単位重量当たりの性能は低
下することになる。
2. Description of the Related Art When a battery electrode for use in a secondary battery or the like is made using a conductive polymer as an active material, if the electrode is formed only of a conductive polymer active material, its resistance is large. The conductivity is increased by using an electric body to form an electrode. As a current collector used here, a smooth metal film is generally used. As shown in FIG. 4, a conductive polymer active material layer 1 is formed on both surfaces of a smooth current collector 2. However, in general, the adhesion between the smooth current collector 2 and the conductive polymer active material layer 2 is poor, the conductive polymer active material layer 1 is easily detached from the current collector 2, and the battery characteristics such as cycle characteristics are deteriorated. There's a problem. With respect to such a battery electrode using a conductive polymer as an active material, various improved techniques have been developed and proposed. For example, JP-A-7-302586 discloses a method in which a conductive adhesive layer is provided between a metal current collector substrate such as a stainless steel foil and a conductive polymer active material layer to form a metal current collector and a conductive polymer layer. There has been proposed a method for improving the adhesiveness with the adhesive. In this method, the adhesion itself is improved, but the performance per unit weight of the electrode is reduced as a result of the addition of the adhesive layer.

【0003】また、特開平1−146255号公報に
は、それぞれアニオンをドーピングさせたポリアニリン
とポリピロールとを含む正極を用いることを特徴とする
二次電池が開示されている。この技術は、高容量で長期
安定性に優れ、かつ大電流を負荷したときの電圧低下を
改良した二次電池を提供することを目的とし、金属電極
の表面に電解重合法によりポリアニリンとポリピロール
の層を形成させるものである。前記公報の技術において
は、集電体と導電性高分子活物質層との密着性の問題は
認識されていないが、実施例の一つとして金属電極(集
電体)としてステンレススチールの金網を使用した例が
記載されている。この例においては、平滑な金属集電体
を使用する場合に比較して集電体と導電性高分子活物質
層との密着性は改良されているものと推定される。しか
しながら、この方法は導電性高分子活物質層を電解重合
法により形成させるものであるため、多孔質の金属集電
体を用いる場合には表裏の高分子活物質層どうしの接着
性を高くするため孔径が50μm以上とするのが好まし
い。そのためには、十分な電気的強度機械的強度が要求
され、電解液中に浸漬して重合させる際に変形や溶出が
ないように数百μmの厚みの金属集電体が必要となり、
このような厚い集電体を使用する場合にはエネルギ密度
の減少はさけられない。また、電解重合法は生産性が悪
く実用性に乏しい。
[0003] Japanese Patent Application Laid-Open No. 1-146255 discloses a secondary battery characterized by using a positive electrode containing polyaniline and polypyrrole each doped with an anion. The purpose of this technology is to provide a secondary battery with high capacity, excellent long-term stability, and improved voltage drop when a large current is applied.The surface of a metal electrode is made of polyaniline and polypyrrole by electrolytic polymerization. A layer is formed. Although the problem of adhesion between the current collector and the conductive polymer active material layer is not recognized in the technology of the above publication, one of the examples is to use a stainless steel wire net as a metal electrode (current collector). Examples used are described. In this example, it is presumed that the adhesion between the current collector and the conductive polymer active material layer is improved as compared with the case where a smooth metal current collector is used. However, in this method, since the conductive polymer active material layer is formed by an electrolytic polymerization method, when a porous metal current collector is used, the adhesiveness between the front and back polymer active material layers is increased. Therefore, it is preferable that the pore diameter is 50 μm or more. For that purpose, sufficient electrical strength mechanical strength is required, a metal current collector with a thickness of several hundred μm is required so that there is no deformation or elution when polymerizing by immersion in an electrolytic solution,
When such a thick current collector is used, a decrease in energy density cannot be avoided. In addition, the electrolytic polymerization method has poor productivity and poor practicality.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記従来技術
の実状に鑑み、金属集電体と導電性高分子活物質層との
密着性が改善され、十分な強度とサイクル特性を有し、
電極の単位重量当たりのエネルギ容量が大きく優れた特
性を有する電池用電極及びその製造方法を提供しようと
するものである。
SUMMARY OF THE INVENTION In view of the state of the prior art, the present invention has improved adhesion between a metal current collector and a conductive polymer active material layer, has sufficient strength and cycle characteristics,
It is an object of the present invention to provide a battery electrode having a large energy capacity per unit weight of the electrode and excellent characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は前記課題を解決
する手段として次の(1)〜(4)の態様を採るもので
ある。 (1)多孔質金属集電体に導電性高分子活物質を溶媒に
分散させた塗料液を塗布し、乾燥したのち加圧し高密度
化を行うことを特徴とする電池用電極の製造方法。 (2)導電性高分子活物質を溶媒に分散させた塗料液を
多孔質金属集電体の表及び裏にそれぞれ1回以上塗布
し、乾燥したのち加圧し高密度化を行うことを特徴とす
る電池用電極の製造方法。 (3)多孔質金属集電体が平均孔径0.1〜0.5mm
で開孔率が10〜50%の多孔質金属集電体であること
を特徴とする前記(1)又は(2)の電池用電極の製造
方法。
The present invention adopts the following aspects (1) to (4) as means for solving the above-mentioned problems. (1) A method for producing a battery electrode, comprising applying a coating liquid in which a conductive polymer active material is dispersed in a solvent to a porous metal current collector, drying the coating liquid, and then applying pressure to increase the density. (2) A coating liquid in which a conductive polymer active material is dispersed in a solvent is applied at least once to each of the front and back surfaces of the porous metal current collector, dried, and then pressurized to increase the density. Of manufacturing a battery electrode. (3) The porous metal current collector has an average pore diameter of 0.1 to 0.5 mm
The method for producing a battery electrode according to the above (1) or (2), wherein the porous metal current collector has a porosity of 10 to 50%.

【0006】(4)前記(1)〜(3)のいずれか1つ
の方法により多孔質金属集電体の表及び裏に導電性高分
子活物質層を形成させた電池用電極であって、多孔質金
属集電体の表及び裏の導電性高分子活物質層が、多孔質
金属集電体の孔を通して導電性高分子活物質により結着
されてなることを特徴とする電池用電極。
(4) A battery electrode in which a conductive polymer active material layer is formed on the front and back of a porous metal current collector by any one of the methods (1) to (3), An electrode for a battery, wherein the conductive polymer active material layers on the front and back of the porous metal current collector are bound by the conductive polymer active material through holes of the porous metal current collector.

【0007】[0007]

【発明の実施の形態】本発明においては導電性高分子活
物質を接着させる集電体として多孔質金属集電体を使用
する。集電体の材質としては強度が大きく、電気伝導率
の高い金属が好ましく、ステンレス鋼、ニッケル、銅、
アルミニウムなどを厚さ10〜30μm程度の多孔質板
状に形成したものが好ましい。なお、強度の小さいカー
ボン系集電体であっても多孔化後、アルミニウム箔上に
乗せ、後述する塗料液をコーティングするなどの方法に
よって使用することができる。例えば、薄膜状のカーボ
ン集電体に穴開け加工して多孔質板とし(この状態では
強度が弱い)、これをアルミニウム箔上に載せて塗料液
をコーティングした後、アルミニウム箔を取り除けばよ
い。カーボン集電体として使用できる材料の例としては
S−259P(ドナック社製)、20301又は204
01(テクニカルファイバープロダクト社製)などの商
品名又は商品番号で市販されているカーボンペーパーが
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a porous metal current collector is used as a current collector to which a conductive polymer active material is adhered. As the material of the current collector, a metal having high strength and high electric conductivity is preferable, and stainless steel, nickel, copper,
Preferably, aluminum or the like is formed into a porous plate having a thickness of about 10 to 30 μm. It should be noted that even a carbon-based current collector having a small strength can be used by a method such as coating a coating liquid, which will be described later, after placing it on an aluminum foil after making it porous. For example, a porous plate may be formed by making a hole in a thin-film carbon current collector (in this state, the strength is low), and this may be placed on an aluminum foil, coated with a coating liquid, and then the aluminum foil may be removed. Examples of materials that can be used as the carbon current collector include S-259P (manufactured by Donac), 20301 or 204.
There is carbon paper commercially available under a trade name or a trade number such as 01 (manufactured by Technical Fiber Products).

【0008】多孔質金属集電体は表面から裏面への連通
孔を有するものが好ましく、その孔径は、大きすぎると
塗料液(粘度は通常3000〜6000cps程度)が
裏側に抜け落ちてしまうため0.1〜0.5mmの範囲
とするのが好ましい。また、電池性能の面からは集電体
重量の割合は小さい方が好ましいが、十分な強度を保持
するため集電体の開孔率は50%以下とするのが望まし
い。なお、開孔率が10%未満では十分な接着性向上効
果が得られないので、開孔率の好ましい範囲は10〜5
0%である。
The porous metal current collector preferably has a communication hole from the front surface to the rear surface. If the pore size is too large, the coating liquid (having a viscosity of about 3000 to 6000 cps) tends to fall to the back side. It is preferable to set the range of 1 to 0.5 mm. Further, from the viewpoint of battery performance, it is preferable that the weight ratio of the current collector is small, but it is preferable that the aperture ratio of the current collector be 50% or less in order to maintain sufficient strength. If the porosity is less than 10%, a sufficient effect of improving the adhesiveness cannot be obtained, so the preferable range of the porosity is 10 to 5%.
0%.

【0009】本発明の方法においては、先ず前記多孔質
金属集電体の表面に、導電性高分子活物質を溶媒に分散
させた塗料液を塗布し、乾燥する。導電性高分子活物質
としてはポリアニリン、ポリピロール、ポリチオフェ
ン、ポリフランなどの電池用電極の活物質として使用さ
れている導電性高分子を使用することができるが、特に
好ましい例として特開平7−179578号公報に開示
されている、導電性高分子の原料モノマーとアルキルス
ルホン酸とを混合したのち酸化重合することによって得
られる導電性ポリマー中にドーパントであるアルキルス
ルホン酸を均一に等電荷量だけ分散含有させた導電性組
成物を挙げることができる。
In the method of the present invention, first, a coating liquid in which a conductive polymer active material is dispersed in a solvent is applied to the surface of the porous metal current collector, and dried. As the conductive polymer active material, a conductive polymer used as an active material for a battery electrode such as polyaniline, polypyrrole, polythiophene, and polyfuran can be used. The alkylsulfonic acid as a dopant is uniformly dispersed and dispersed in a conductive polymer obtained by mixing a raw material monomer of a conductive polymer and an alkylsulfonic acid and then oxidatively polymerizing the same, as disclosed in the gazette. And a conductive composition.

【0010】前記導電性高分子活物質を溶媒中に分散さ
せて塗料液とする。溶媒としてはN−メチル−2−ピロ
リドン、N,N−ジメチルホルムアミド、N,N−ジメ
チルアセトアミド等のアミド類;メチルエチルケトン、
シクロヘキサノン等のケトン類;酢酸メチル、アクリル
酸メチル等のエステル類;ジエチルトリアミン、N,N
−ジメチルアミノプロピルアミン等のアミン類;エチレ
ンオキサイド、テトラヒドロフラン等の環状エーテル類
などが使用できる。
The conductive polymer active material is dispersed in a solvent to form a coating liquid. Examples of the solvent include amides such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide; methyl ethyl ketone;
Ketones such as cyclohexanone; esters such as methyl acetate and methyl acrylate; diethyltriamine, N, N
Amines such as dimethylaminopropylamine; cyclic ethers such as ethylene oxide and tetrahydrofuran;

【0011】塗料液中には導電性高分子どうしの結着性
を高め、充放電サイクル時のクラック発生等により集電
体から脱落するのを防止するため、電解液に対し安定な
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等
のフッ素系樹脂;ポリエチレン、ポリプロピレン、シリ
コン樹脂、エチレン−ブタジエンターポリマー等の結着
剤を添加するのが好ましい。また、電極中の電子伝導を
補助し、電極集電能を高めるための導電補助材としてア
セチレンブラック、ケッチェンブラック、グラファイト
等の粉末炭素材を添加するのが好ましい。
In the coating liquid, polyvinylidene fluoride which is stable to the electrolyte is used to enhance the binding property between the conductive polymers and prevent the conductive polymer from dropping off from the current collector due to cracks during charge / discharge cycles. And a fluorine-based resin such as polytetrafluoroethylene; and a binder such as polyethylene, polypropylene, silicone resin, and ethylene-butadiene terpolymer. In addition, it is preferable to add a powdered carbon material such as acetylene black, Ketjen black, graphite, or the like as a conductive auxiliary material for assisting electron conduction in the electrode and increasing the current collecting capability of the electrode.

【0012】前記結着剤の添加量は多い方が成形性はよ
いが、多くなりすぎると抵抗が大きくなり電極性能が低
下するので、塗料液中の導電性高分子活物質、結着剤及
び導電補助材の合計量中の結着剤の割合が0〜30重量
%、好ましくは5〜10重量%となるようにする。ま
た、導電補助材の添加量が多くなりすぎると、導電性高
分子活物質の割合が低下して電極性能が低下するので、
導電補助材の添加量は、塗料液中の導電性高分子活物
質、結着剤及び導電補助材の合計量中の導電補助材の割
合が0〜30重量%、好ましくは5〜10重量%となる
ようにする。すなわち、導電性高分子活物質、結着剤及
び導電補助材の割合はそれぞれ80〜90重量%、5〜
10重量%及び5〜10重量%の範囲とするのが好まし
い。
The larger the amount of the binder is, the better the moldability is. However, if the amount is too large, the resistance increases and the electrode performance deteriorates. Therefore, the conductive polymer active material, the binder and The proportion of the binder in the total amount of the conductive auxiliary material is set to 0 to 30% by weight, preferably 5 to 10% by weight. Further, if the amount of the conductive auxiliary material is too large, the ratio of the conductive polymer active material is reduced, and the electrode performance is reduced.
The addition amount of the conductive auxiliary material is such that the proportion of the conductive auxiliary material in the total amount of the conductive polymer active material, the binder and the conductive auxiliary material in the coating liquid is 0 to 30% by weight, preferably 5 to 10% by weight. So that That is, the proportions of the conductive polymer active material, the binder, and the conductive auxiliary material are 80 to 90% by weight,
It is preferably in the range of 10% by weight and 5 to 10% by weight.

【0013】多孔質金属集電体への塗料液の塗布はブレ
ードコート法、バーコート法、ロールコート法、ディッ
プコート法、スクリーン印刷法等従来公知のコーティン
グ方法によって行うことができる。塗布は1回でもよい
し、必要により2回以上行ってもよい。例えば、1回目
に厚く塗布して片面塗布とすることもできるし、また、
1回目は多孔質金属集電体の孔内に浸透する程度に薄く
塗布し、さらに2回目を表側に、3回目を裏側に塗布し
両面塗布とすることもできる。塗布膜の厚みは塗布回数
及び1回の塗布量を制御することによって任意に調整す
ることができる。塗布後、乾燥することにより多孔質金
属集電体の表面に導電性高分子活物質の層を形成させる
ことができるが、さらにプレス機等により加圧して導電
性高分子活物質の高密度化を行うことによって、導電性
高分子どうしの結着が強化され、導電性高分子活物質の
層と集電体との密着性も改良される。また、多孔質金属
集電体の表裏両面に塗布した場合には、表裏両面の導電
性高分子活物質層が多孔質金属集電体の孔を介して結着
され、アンカー効果により強固な密着状態が得られる。
なお、片面塗布の場合でも、塗料液の一部は多孔質金属
集電体の孔を通って浸透し、裏面にも付着するので同様
なアンカー効果が得られる。本発明の方法によって得ら
れる電極の1例を図1に示す。図1の電極は多孔質集電
体の両面に形成された導電性高分子活物質層1が、集電
体3の孔内に浸透した導電性高分子活物質層の成分によ
り結着され、強固な結着体が得られている。
The application of the coating liquid to the porous metal current collector can be performed by a conventionally known coating method such as a blade coating method, a bar coating method, a roll coating method, a dip coating method, and a screen printing method. The coating may be performed once or may be performed twice or more as necessary. For example, the first application can be made thicker to make a single-sided application,
The first time may be applied thinly enough to penetrate into the pores of the porous metal current collector, and the second time may be applied to the front side and the third time may be applied to the back side, so that both sides can be applied. The thickness of the coating film can be arbitrarily adjusted by controlling the number of coatings and the amount of one coating. After the application, the layer of the conductive polymer active material can be formed on the surface of the porous metal current collector by drying. However, the density of the conductive polymer active material is further increased by pressing with a press machine or the like. By doing so, the binding between the conductive polymers is strengthened, and the adhesion between the layer of the conductive polymer active material and the current collector is also improved. In addition, when applied to both the front and back surfaces of the porous metal current collector, the conductive polymer active material layers on both the front and back surfaces are bound through the holes of the porous metal current collector, and the adhesion is strong due to the anchor effect. The state is obtained.
Even in the case of single-sided coating, a part of the coating liquid penetrates through the pores of the porous metal current collector and adheres to the back surface, so that a similar anchor effect can be obtained. One example of an electrode obtained by the method of the present invention is shown in FIG. In the electrode of FIG. 1, the conductive polymer active material layers 1 formed on both surfaces of the porous current collector are bound by the components of the conductive polymer active material layer that have penetrated into the holes of the current collector 3, A strong binder is obtained.

【0014】導電性高分子活物質層の厚みは表裏両方の
合計の厚みで高密度化の前が0.6〜0.8mm、高密
度化後の状態で0.2〜0.4mmとなるようにする。
なお、相対的に高容量型の電池とする場合には塗布量を
多くし(厚み増加)、高出力型の電池とする場合には塗
布量を少なく(厚み減少)する。加圧による高密度化は
導電性高分子活物質層の厚みが、高密度化前の厚みの2
5〜65%となるようにするのが好ましい。高密度化の
割合が小さく、厚みが高密度化前の厚みの65%を超え
ると、導電性高分子活物質どうしの結着が弱く、抵抗が
大きいので十分なエネルギ密度が得られない。また、高
密度化を行い過ぎ、厚みが高密度化前の厚みの25%未
満になると、電極に割れが生じたり、また、密度が高く
なりすぎてリチウムイオンが電極中に入りにくくなり
(電池反応性が低くなり)、エネルギ密度が低くなるた
め好ましくない。
The thickness of the conductive polymer active material layer is 0.6 to 0.8 mm before densification and 0.2 to 0.4 mm after densification in the total thickness of both sides. To do.
In the case of a relatively high-capacity battery, the amount of application is increased (thickness increase), and in the case of a high-output type battery, the amount of application is small (thickness decrease). Densification by pressurization means that the thickness of the conductive polymer active material layer is 2 times the thickness before densification.
It is preferable to set it to 5 to 65%. If the ratio of the densification is small and the thickness exceeds 65% of the thickness before the densification, the binding between the conductive polymer active materials is weak and the resistance is large, so that a sufficient energy density cannot be obtained. If the density is excessively increased and the thickness is less than 25% of the thickness before the density increase, the electrode may be cracked or the density may be too high to make it difficult for lithium ions to enter the electrode (battery This is not preferable because the reactivity becomes low) and the energy density becomes low.

【0015】[0015]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。 (実施例)導電性高分子活物質として、特開平7−17
9578号公報記載の方法に準じて、エタンジスルホン
酸をドーパントとして使用し、過硫酸アンモニウムを酸
化剤としてアニリンを酸化重合させて得られたポリアニ
リン−エタンジスルホン酸複合体(組成比:アニリン分
子/エタンジスルホン酸=4/1)を77.0g使用
し、結着剤としてのポリフッ化ビニリデン1.7g及び
導電補助剤としてのアセチレンブラック9.1gととも
にN−メチル−2−ピロリドン163.1gに添加して
混合し、塗料液とした。この塗料液は乾燥後電極となり
得る組成のものである。この塗料液を使用して図3に示
す方式によりコーティングを行った。
The present invention will be described more specifically with reference to the following examples. (Example) JP-A-7-17 as a conductive polymer active material
No. 9578, a polyaniline-ethanedisulfonic acid complex (composition ratio: aniline molecule / ethanedisulfonic acid) obtained by oxidatively polymerizing aniline using ethanedisulfonic acid as a dopant and ammonium persulfate as an oxidizing agent. Acid = 4/1) was added to 163.1 g of N-methyl-2-pyrrolidone along with 1.7 g of polyvinylidene fluoride as a binder and 9.1 g of acetylene black as a conductive auxiliary. They were mixed to form a coating liquid. This coating liquid has a composition that can become an electrode after drying. Using this coating liquid, coating was performed by the method shown in FIG.

【0016】多孔質金属集電体13としては厚さ20μ
mで、図5に示すように孔径0.3mmの孔をピッチ
0.6×1.0mmで設けた、開孔率23.5%で幅2
00mmの1891材のアルミニウム箔を使用した。こ
の多孔質金属集電体13の表面に前記により調製した塗
料液6を厚さ1.2mmとなるようにコーティングし
た。集電体13はロールで供給し、集電体13をロール
状に巻き取る過程で移動している集電体13の上に塗料
液6を置き、塗料液6がメタリングロール5とコーティ
ングロール4の隙間を通ることによって集電体13上に
コーティングされる。コーティング量はメタリングロー
ル5とコーティングロール4の隙間の間隔によって調整
した。得られたコーティング体は図2に示すように集電
体13の両側端に未塗工部12を残して最大塗布幅20
0mmの塗工部11が形成されている。
The porous metal current collector 13 has a thickness of 20 μm.
5, holes having a diameter of 0.3 mm were provided at a pitch of 0.6 × 1.0 mm as shown in FIG.
A 00mm 1891 aluminum foil was used. The coating liquid 6 prepared as described above was coated on the surface of the porous metal current collector 13 so as to have a thickness of 1.2 mm. The current collector 13 is supplied by a roll, and the coating liquid 6 is placed on the current collector 13 moving in the process of winding the current collector 13 into a roll shape. 4 to coat the current collector 13. The coating amount was adjusted according to the gap between the metering roll 5 and the coating roll 4. As shown in FIG. 2, the obtained coated body has a maximum coating width of 20 with the uncoated portion 12 left on both sides of the current collector 13.
A coating portion 11 of 0 mm is formed.

【0017】塗布層の厚みは1.2mmであり、これを
大気中で100度の温度で20分間乾燥して厚さ0.7
mmの電極材を得た。さらに、この電極材をプレス機に
より加圧して高密度化を行い厚さ0.4mmの電極材と
した。ここには1回の塗布による例を示したが、さらに
2、3回と塗布を重ねることにより、また、必要により
裏面にも塗布することにより、電極の厚みを増すことが
できる。なお、ここで使用した開孔率23.5%のアル
ミニウム箔の代わりに、孔のない平滑なアルミニウム箔
を使用して前記の塗料液を両面に塗布して電極の形成を
試みたが、乾燥後に剥離、脱落し、電極の形成が困難で
あった。
The thickness of the coating layer is 1.2 mm, which is dried in the air at a temperature of 100 ° C. for 20 minutes to obtain a thickness of 0.7 mm.
mm electrode material was obtained. Further, this electrode material was pressed by a press machine to increase the density, thereby obtaining an electrode material having a thickness of 0.4 mm. Although the example of one application is shown here, the thickness of the electrode can be increased by applying the application two or three more times and, if necessary, applying the application to the back surface. In addition, instead of the aluminum foil having a porosity of 23.5% used here, the above-mentioned coating liquid was applied to both sides using a smooth aluminum foil having no holes, and an attempt was made to form electrodes. It peeled off and fell off later, and it was difficult to form an electrode.

【0018】(試験例)実施例で得られた高密度化後の
電極材を使用して長さ140mm、幅100mmの電極
を作製し、これを正極とし、負極にはLi/Al合金板
を使用し、電解液としてプロピレンカーボネート1リッ
トルに対しLiClO4 を1モルの割合で溶解したもの
を用いて電池を作製し、充放電試験を行った。充電は
0.1mA/cm2 の定電流で電池電圧が4.0Vにな
るまで充電し、その後、0.1mA/cm2 の定電流で
電池電圧が2.8Vになるまで放電し、以下この繰り返
しを行い、10サイクル後、50サイクル後及び160
サイクル後のエネルギ密度を測定した。結果は表1に示
すとおりであり、これから、160サイクル後でも導電
性高分子活物質は集電体から剥離しておらず、強固な接
着状態が得られていることがわかる。また、電極性能の
指標となるエネルギ密度は、初期の10サイクル程度で
は安定していないが、安定後の50サイクル後では15
5Wh/kgと高いエネルギ密度を有しており、160
サイクル後においても150Wh/kgと安定している
ことがわかる。
(Test Example) An electrode having a length of 140 mm and a width of 100 mm was prepared using the electrode material after densification obtained in the example and used as a positive electrode, and a Li / Al alloy plate was used as a negative electrode. A battery was prepared using an electrolyte in which LiClO 4 was dissolved at a ratio of 1 mol per liter of propylene carbonate, and a charge / discharge test was performed. The battery was charged at a constant current of 0.1 mA / cm 2 until the battery voltage reached 4.0 V, and then discharged at a constant current of 0.1 mA / cm 2 until the battery voltage reached 2.8 V. Repeat, after 10 cycles, after 50 cycles and 160
The energy density after the cycle was measured. The results are as shown in Table 1, which shows that the conductive polymer active material did not peel off from the current collector even after 160 cycles, and a strong adhesion state was obtained. Further, the energy density, which is an index of the electrode performance, is not stable in the initial 10 cycles or so, but is not stable in 50 cycles after the stability.
It has a high energy density of 5 Wh / kg,
It can be seen that it is stable at 150 Wh / kg even after the cycle.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明に係る電池用電極は導電性高分子
活物質と集電体との密着性が良好で十分な強度と電極特
性を有し、しかもフレキシブルなシート状電極であり、
コイン型、円筒型、ガム型などの各種電池に実装するこ
とができる。また、本発明の製造方法によれば導電性高
分子活物質を含む塗料液の塗布量を調整することにより
電極容量を容易に制御することができ、さらに、ロール
状にした集電体にロールコータなどを用いて塗料液を連
続的に塗布することにより製造することもできるので、
量産性についても従来の平滑な金属箔を使用した場合と
比較して問題はない。
The battery electrode according to the present invention is a flexible sheet-like electrode having good adhesion between the conductive polymer active material and the current collector, having sufficient strength and electrode characteristics,
It can be mounted on various batteries such as coin type, cylindrical type and gum type. Further, according to the production method of the present invention, the electrode capacity can be easily controlled by adjusting the application amount of the coating liquid containing the conductive polymer active material. Since it can be manufactured by continuously applying a coating liquid using a coater, etc.,
There is no problem in mass productivity as compared with the case where a conventional smooth metal foil is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による多孔質集電体を用いた電極構造の
1例を示す断面図。
FIG. 1 is a sectional view showing an example of an electrode structure using a porous current collector according to the present invention.

【図2】実施例で作製した電極材料の状態を示す平面
図。
FIG. 2 is a plan view showing a state of an electrode material manufactured in an example.

【図3】実施例における電極材の製造工程の説明図。FIG. 3 is an explanatory view of a manufacturing process of an electrode material in the embodiment.

【図4】従来の平滑な集電体を用いた電極の構造を示す
断面図。
FIG. 4 is a cross-sectional view showing a structure of an electrode using a conventional smooth current collector.

【図5】実施例で用いた多孔質金属集電体の孔の状態を
示す説明図。
FIG. 5 is an explanatory view showing a state of pores of a porous metal current collector used in an example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔質金属集電体に導電性高分子活物質
を溶媒に分散させた塗料液を塗布し、乾燥したのち加圧
し高密度化を行うことを特徴とする電池用電極の製造方
法。
1. A method of manufacturing a battery electrode, comprising: applying a coating liquid in which a conductive polymer active material is dispersed in a solvent to a porous metal current collector; drying the coating liquid; and applying pressure to increase the density. Method.
【請求項2】 導電性高分子活物質を溶媒に分散させた
塗料液を多孔質金属集電体の表及び裏にそれぞれ1回以
上塗布し、乾燥したのち加圧し高密度化を行うことを特
徴とする電池用電極の製造方法。
2. A method in which a coating liquid in which a conductive polymer active material is dispersed in a solvent is applied at least once to each of the front and back surfaces of a porous metal current collector, dried, and then pressurized to increase the density. A method for producing a battery electrode.
【請求項3】 多孔質金属集電体が平均孔径0.1〜
0.5mmで開孔率が10〜50%の多孔質金属集電体
であることを特徴とする請求項1又は2に記載の電池用
電極の製造方法。
3. The porous metal current collector has an average pore diameter of 0.1 to 0.1.
The method for producing a battery electrode according to claim 1 or 2, wherein the current collector is a porous metal current collector having a porosity of 10 to 50% at 0.5 mm.
【請求項4】 請求項1〜3のいずれか1つの方法によ
り多孔質金属集電体の表及び裏に導電性高分子活物質層
を形成させた電池用電極であって、多孔質金属集電体の
表及び裏の導電性高分子活物質層が、多孔質金属集電体
の孔を通して導電性高分子活物質により結着されてなる
ことを特徴とする電池用電極。
4. A battery electrode in which a conductive polymer active material layer is formed on the front and back of a porous metal current collector according to any one of claims 1 to 3, wherein An electrode for a battery, wherein the conductive polymer active material layers on the front and back of the current collector are bound by a conductive polymer active material through holes of a porous metal current collector.
JP9268778A 1997-10-01 1997-10-01 Manufacture of battery electrode and battery electrode Withdrawn JPH11111272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9268778A JPH11111272A (en) 1997-10-01 1997-10-01 Manufacture of battery electrode and battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9268778A JPH11111272A (en) 1997-10-01 1997-10-01 Manufacture of battery electrode and battery electrode

Publications (1)

Publication Number Publication Date
JPH11111272A true JPH11111272A (en) 1999-04-23

Family

ID=17463167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9268778A Withdrawn JPH11111272A (en) 1997-10-01 1997-10-01 Manufacture of battery electrode and battery electrode

Country Status (1)

Country Link
JP (1) JPH11111272A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163332B2 (en) 2008-09-24 2012-04-24 Tdk Corporation Electrode manufacturing apparatus and electrode manufacturing method
US8334009B2 (en) 2008-09-24 2012-12-18 Tdk Corporation Electrode producing method and electrode producing apparatus
CN103069614A (en) * 2010-06-16 2013-04-24 法国原子能及替代能源委员会 Current collector having built-in sealing means, and bipolar battery including such a collector
KR101279174B1 (en) * 2010-06-17 2013-06-26 닛산 지도우샤 가부시키가이샤 Electrode structure of secondary battery and manufacturing method for electrode of secondary battery
WO2013172222A1 (en) * 2012-05-14 2013-11-21 日東電工株式会社 Electricity storage device, positive electrode and porous sheet used in electricity storage device, and method for improving dope rate
JP2013239306A (en) * 2012-05-14 2013-11-28 Nitto Denko Corp Dual-mode type electricity storage device
JP2015522207A (en) * 2012-07-09 2015-08-03 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴスCommissariat A L‘Energie Atomique Et Aux Energies Alternatives Lithium battery current collector
US20190180948A1 (en) * 2017-12-12 2019-06-13 Korea Jcc Co., Ltd. Electric double layer capacitor
US11196038B2 (en) 2017-05-22 2021-12-07 Lg Chem, Ltd. Flexible electrode, method for manufacturing the same and secondary battery including the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163332B2 (en) 2008-09-24 2012-04-24 Tdk Corporation Electrode manufacturing apparatus and electrode manufacturing method
US8334009B2 (en) 2008-09-24 2012-12-18 Tdk Corporation Electrode producing method and electrode producing apparatus
CN103069614A (en) * 2010-06-16 2013-04-24 法国原子能及替代能源委员会 Current collector having built-in sealing means, and bipolar battery including such a collector
KR101279174B1 (en) * 2010-06-17 2013-06-26 닛산 지도우샤 가부시키가이샤 Electrode structure of secondary battery and manufacturing method for electrode of secondary battery
WO2013172222A1 (en) * 2012-05-14 2013-11-21 日東電工株式会社 Electricity storage device, positive electrode and porous sheet used in electricity storage device, and method for improving dope rate
JP2013239305A (en) * 2012-05-14 2013-11-28 Nitto Denko Corp Electricity storage device, positive electrode used for the same, porous sheet, and method for improving doping ratio
JP2013239306A (en) * 2012-05-14 2013-11-28 Nitto Denko Corp Dual-mode type electricity storage device
CN104185914A (en) * 2012-05-14 2014-12-03 日东电工株式会社 Dual-mode electricity storage device
CN104247095A (en) * 2012-05-14 2014-12-24 日东电工株式会社 Electricity storage device, positive electrode and porous sheet used in electricity storage device, and method for improving dope rate
JP2015522207A (en) * 2012-07-09 2015-08-03 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴスCommissariat A L‘Energie Atomique Et Aux Energies Alternatives Lithium battery current collector
US11196038B2 (en) 2017-05-22 2021-12-07 Lg Chem, Ltd. Flexible electrode, method for manufacturing the same and secondary battery including the same
US20190180948A1 (en) * 2017-12-12 2019-06-13 Korea Jcc Co., Ltd. Electric double layer capacitor

Similar Documents

Publication Publication Date Title
KR101357464B1 (en) Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
CN1957497B (en) Production method of cell electrodes
JP5281706B2 (en) Current collector, current collector manufacturing method, electrode, and secondary battery
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
KR20070100353A (en) Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2006527461A (en) Electrode and manufacturing method thereof
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
KR20140051325A (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP2000149906A (en) Lithium secondary battery
CN108630885A (en) A kind of anode composite pole piece and preparation method thereof
JP4095145B2 (en) Electrode manufacturing method
JPH11111272A (en) Manufacture of battery electrode and battery electrode
JP5142264B2 (en) Non-aqueous electrolyte secondary battery current collector and method for producing the same, and positive electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2009176517A (en) Nonwoven fabric-like nickel chromium current collector for nonaqueous electrolyte secondary battery and electrode using it
JP2002170556A (en) Method for manufacturing electrode plate of secondary battery
JP2010199022A (en) Method of manufacturing electrode for secondary battery, electrode for secondary battery, and secondary battery
JP4996053B2 (en) Method for producing coated expanded metal and use of the metal as a conductor in an electrochemical device
CN113745511A (en) Conductive slurry, preparation method of conductive slurry, negative current collector, negative plate, lithium ion battery cell, lithium ion battery pack and application of negative current collector, negative plate, lithium ion battery cell and lithium ion battery pack
JP3774980B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP5196392B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
JP2004185865A (en) Lithium ion battery, its manufacturing method, and negative electrode structure
JP3997606B2 (en) Secondary battery electrode plate and method for manufacturing the secondary battery electrode plate
US20210111398A1 (en) Electrode for lithium ion secondary batteries and lithium ion secondary battery
JP2008181739A (en) Positive electrode for non-aqueous electrolyte secondary battery
KR20060061282A (en) Composite current collector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207