JPH11109356A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH11109356A
JPH11109356A JP26897497A JP26897497A JPH11109356A JP H11109356 A JPH11109356 A JP H11109356A JP 26897497 A JP26897497 A JP 26897497A JP 26897497 A JP26897497 A JP 26897497A JP H11109356 A JPH11109356 A JP H11109356A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
display
display device
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26897497A
Other languages
Japanese (ja)
Other versions
JP3819561B2 (en
Inventor
Tokuo Koma
徳夫 小間
Tetsuji Komura
哲司 小村
Kiyoshi Yoneda
清 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26897497A priority Critical patent/JP3819561B2/en
Publication of JPH11109356A publication Critical patent/JPH11109356A/en
Application granted granted Critical
Publication of JP3819561B2 publication Critical patent/JP3819561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve brightness, a visual angle characteristic, and an aperture ratio. SOLUTION: This device is a vertical orientation type liquid crystal display device which is provided with liquid crystal layers 40 having vertically oriented liquid crystal molecules 41 between plurally formed display electrodes 19 and counter electrodes 31, and controls the orientation of the liquid molecules 41 by an electric field. And, transparent auxiliary electrodes 50 for controlling the orientation of the liquid crystal molecules 41 are formed vertically or horizontally via an insulating layer 15 riding across the adjacent display electrodes 19, and further, orientation control windows 32 are formed in the horizontal or vertical direction on the side of the counter electrode 31 so as to be positioned at the center of the display electrode 19.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶の電気光学的
な異方性を利用して表示を行う液晶表示装置(LCD:
Liquid CrystalDisplay)に関し、特に、輝度、視角特
性並びに開口率の向上を達成した液晶表示装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display (LCD) for performing display utilizing the electro-optical anisotropy of liquid crystal.
In particular, the present invention relates to a liquid crystal display device which has improved luminance, viewing angle characteristics, and aperture ratio.

【0002】[0002]

【従来の技術】LCDは、小型、薄型、低消費電力等の
利点があり、OA機器、AV機器等の分野で実用化が進
んでいる。特に、スイッチング素子として、薄膜トラン
ジスタ(以下、TFTと略す)を用いたアクティブマト
リクス型は、原理的にデューティー比100%のスタテ
ィック駆動をマルチプレクス的に行うことができ、大画
面、高精細な動画ディスプレイに使用されている。
2. Description of the Related Art LCDs have advantages of small size, thin shape, low power consumption, and the like, and are being put to practical use in fields such as OA equipment and AV equipment. In particular, an active matrix type using a thin film transistor (hereinafter abbreviated as TFT) as a switching element can perform static driving with a duty ratio of 100% in principle in a multiplex manner, and has a large screen and a high-definition moving image display. Used in

【0003】TFTは電界効果トランジスタであり基板
上に行列状に配置され、液晶を誘電層とした画素容量の
一方を成す表示電極に接続されている。TFTはゲート
ラインにより同一行について一斉にオン/オフが制御さ
れると共に、ドレインラインより画素信号電圧が供給さ
れ、TFTがオンされた画素容量に対して行列的に指定
された表示用電圧が充電される。表示電極とTFTは同
一基板上に形成され、画素容量の他方を成す対向電極
は、液晶層を挟んで対向配置された別の基板上に全面的
に形成されている。即ち、液晶及び対向電極が表示電極
により区画されて表示画素を構成している。画素容量に
充電された電圧は、次にTFTがオンするまでの1フィ
ールド或いは1フレーム期間、TFTのオフ抵抗により
絶縁的に保持される。液晶は電気光学的に異方性を有し
ており、画素容量に印加された電圧に応じて透過率が制
御される。表示画素毎に透過率を制御することで、これ
らの明暗が表示画像として視認される。
A TFT is a field-effect transistor, is arranged in a matrix on a substrate, and is connected to a display electrode forming one of pixel capacitances using a liquid crystal as a dielectric layer. The TFTs are simultaneously turned on / off for the same row by a gate line, and a pixel signal voltage is supplied from a drain line, and a display voltage specified in a matrix is charged to a pixel capacitance with the TFT turned on. Is done. The display electrode and the TFT are formed on the same substrate, and the counter electrode, which forms the other side of the pixel capacitance, is formed entirely on another substrate facing the liquid crystal layer. That is, the liquid crystal and the counter electrode are partitioned by the display electrode to form a display pixel. The voltage charged in the pixel capacitance is insulated by the off resistance of the TFT for one field or one frame period until the next turn on of the TFT. The liquid crystal has electro-optical anisotropy, and the transmittance is controlled according to the voltage applied to the pixel capacitance. By controlling the transmittance for each display pixel, these light and dark areas are visually recognized as a display image.

【0004】液晶は、更に、両基板との接触界面に設け
られた配向膜により初期配向状態が決定される。液晶と
して例えば正の誘電率異方性を有したネマティック相を
用い、配向ベクトルが両基板間で90°にねじられたツ
イストネマティック(TN)方式がある。通常、両基板
の外側には偏光板が設けられており、TN方式において
は、各偏光板の偏光軸は、夫々の基板側の配向方向に一
致している。従って、電圧無印加時には、一方の偏光板
を通過した直線偏光は、液晶のねじれ配向に沿う形で、
液晶層中で旋回し、他方の偏光板より射出され、表示は
白として認識される。そして、画素容量に電圧を印加し
て液晶層に電界を形成することにより、液晶はその誘電
率異方性のために、電界に対して平行になるように配向
を変化し、ねじれ配列が崩され、液晶層中で入射直線偏
光が旋回されなくなり、他方の偏光板より射出される光
量が絞り込まれて表示は暫次的に黒になっていく。この
ように、電圧無印加次に白を示し、電圧印加に従って黒
となる方式は、ノーマリー・ホワイト・モードと呼ば
れ、TNセルの主流となっている。
The initial alignment state of the liquid crystal is further determined by an alignment film provided at the interface between the two substrates. For example, there is a twisted nematic (TN) system in which a nematic phase having a positive dielectric anisotropy is used as a liquid crystal and an orientation vector is twisted at 90 ° between both substrates. Usually, a polarizing plate is provided outside both substrates, and in the TN system, the polarization axis of each polarizing plate coincides with the alignment direction on the respective substrate side. Therefore, when no voltage is applied, the linearly polarized light that has passed through one of the polarizing plates is in a form that follows the twisted orientation of the liquid crystal,
It turns in the liquid crystal layer and is emitted from the other polarizing plate, and the display is recognized as white. Then, by applying a voltage to the pixel capacitance to form an electric field in the liquid crystal layer, the liquid crystal changes its orientation so as to be parallel to the electric field due to its dielectric anisotropy, and the twist arrangement is broken. As a result, the incident linearly polarized light is no longer rotated in the liquid crystal layer, the amount of light emitted from the other polarizing plate is reduced, and the display is temporarily turned black. As described above, a system in which white is displayed after no voltage is applied and then black is applied in response to voltage application is called a normally white mode, which is the mainstream of TN cells.

【0005】図5及び図6に従来の液晶表示装置の単位
画素部分の構造を示す。図5は平面図、図6はそのG−
G線に沿った断面図である。基板(100)上に、C
r、Ta、Mo等のメタルからなるゲート電極(10
1)が形成され、これを覆ってSiNxまたは/及びS
iO2等からなるゲート絶縁膜(102)が形成されて
いる。ゲート絶縁膜(102)上には、p−Si(10
3)が形成されている。p−Si(103)は、この上
にゲート電極(101)の形状にパターニングされたS
iO2等の注入ストッパー(104)を利用して、燐、
砒素等の不純物を低濃度に含有した(N−)低濃度(L
D:Lightly doped)領域(LD)、及び、その外側に
同じく不純物を高濃度に含有した(N+)ソース及びド
レイン領域(S、D)が形成されている。注入ストッパ
ー(104)の直下は、実質的に不純物が含有されない
真性層であり、チャンネル領域(CH)となっている。
これら、p−Si(13)を覆ってSiNx等からなる
層間絶縁膜(105)が形成され、層間絶縁膜(10
5)上には、Al、Mo等からなるソース電極(10
6)及びドレイン電極(107)が形成され、各々層間
絶縁膜(105)に開けられたコンタクトホールを介し
て、ソース領域(S)及びドレイン領域(D)に接続さ
れている。このTFTを覆う全面には、SOG(SPIN O
N GLASS)、BPSG(BORO-PH-OSPHO SILICATE GLAS
S)、アクリル樹脂等の平坦化絶縁膜(108)が形成
されている。平坦化絶縁膜(108)上には、ITO
(indium tin oxide)等の透明導電膜からなる液晶駆動
用の表示電極(109)が形成され、平坦化絶縁膜(1
08)に開けられたコンタクトホールを介してソース電
極(106)に接続されている。
FIGS. 5 and 6 show the structure of a unit pixel portion of a conventional liquid crystal display device. FIG. 5 is a plan view, and FIG.
It is sectional drawing which followed the G line. On the substrate (100), C
gate electrode (10) made of metal such as r, Ta, Mo, etc.
1) is formed, over which SiNx or / and S
A gate insulating film (102) made of iO2 or the like is formed. On the gate insulating film (102), p-Si (10
3) is formed. The p-Si (103) has S patterned thereon in the shape of the gate electrode (101).
Using an injection stopper (104) such as iO2, phosphorus,
(N-) low concentration (L-) containing low concentration of impurities such as arsenic
D (Lightly doped) region (LD), and (N +) source and drain regions (S, D) containing the same high concentration of impurities are formed outside the region (LD). Immediately below the injection stopper (104) is an intrinsic layer containing substantially no impurities, and serves as a channel region (CH).
An interlayer insulating film (105) made of SiNx or the like is formed to cover the p-Si (13), and the interlayer insulating film (10) is formed.
5) On the source electrode (10) made of Al, Mo, etc.
6) and a drain electrode (107) are formed and connected to the source region (S) and the drain region (D) via contact holes formed in the interlayer insulating film (105), respectively. On the entire surface covering this TFT, SOG (SPIN O
N GLASS), BPSG (BORO-PH-OSPHO SILICATE GLAS
S), a flattening insulating film (108) such as an acrylic resin is formed. ITO on the flattening insulating film (108)
A display electrode (109) for driving a liquid crystal made of a transparent conductive film such as (indium tin oxide) is formed.
08) is connected to the source electrode (106) through the contact hole opened.

【0006】これら全てを覆う全面には、ポリイミド等
の高分子膜からなる配向膜(120)が形成され、所定
のラビング処理により液晶の初期配向を制御している。
一方、液晶層を挟んで基板(100)に対向する位置に
設置された別のガラス基板(130)上には、ITOに
より全面的に形成された対向電極(131)が設けら
れ、対向電極(131)上にはポリイミド等の配向膜
(133)が形成され、ラビング処理が施されている。
An alignment film (120) made of a polymer film such as polyimide is formed on the entire surface covering all of them, and the initial alignment of the liquid crystal is controlled by a predetermined rubbing treatment.
On the other hand, on another glass substrate (130) placed at a position facing the substrate (100) with the liquid crystal layer interposed, a counter electrode (131) formed entirely of ITO is provided. 131), an alignment film (133) of polyimide or the like is formed thereon and subjected to a rubbing treatment.

【0007】ここでは、液晶(140)に負の誘電率異
方性を有したネマチック相を用い、配向膜(120、1
33)として垂直配向膜を用いたDAP(deformation
of vertically aligned phase)型を示した。DAP型
は、電圧制御複屈折(ECB:electrically controlle
d birefringence)方式の一つであり、液晶分子長軸と
短軸との屈折率の差、即ち、複屈折を利用して、透過率
を制御するものである。DAP型では、電圧印加時に
は、直交配置された偏光板の一方を透過した入射直線偏
光を液晶層において、複屈折により楕円偏光とし、液晶
層の電界強度に従ってリタデーション量、即ち、液晶中
の常光成分と異常光成分の位相速度の差を制御すること
で、他方の偏光板より所望の透過率で射出させる。この
場合、電圧無印加状態から印加電圧を上昇させることに
より、表示は黒から白へと変化していくので、ノーマリ
ー・ブラック・モードとなる。
Here, a nematic phase having a negative dielectric anisotropy is used for the liquid crystal (140), and the alignment film (120, 1) is used.
33) DAP (deformation) using a vertical alignment film
of vertically aligned phase) type. The DAP type is a voltage controlled birefringence (ECB).
This is one of the d birefringence systems in which the transmittance is controlled by utilizing the difference in the refractive index between the major axis and the minor axis of the liquid crystal molecules, that is, birefringence. In the DAP type, when a voltage is applied, incident linearly polarized light transmitted through one of the orthogonally arranged polarizing plates is converted into elliptically polarized light by birefringence in the liquid crystal layer, and the retardation amount according to the electric field intensity of the liquid crystal layer, that is, the ordinary light component in the liquid crystal By controlling the difference between the phase velocities of the light beam and the extraordinary light component, light is emitted from the other polarizing plate at a desired transmittance. In this case, the display changes from black to white by increasing the applied voltage from the state where no voltage is applied, so that the normally black mode is set.

【0008】[0008]

【発明が解決しようとする課題】このように、液晶表示
装置では、所定の電極が形成された一対の基板間に装填
された液晶に所望の電圧を印加することで、液晶層中で
の光の旋回或いは複屈折を制御することにより目的の透
過率或いは色相を得、表示画像を作成する。即ち、液晶
の配向を変化してリタデーション量を制御することで、
TN方式においては透過光強度を調整できると共に、E
CB方式においては波長に依存した分光強度を制御して
色相の分離も可能となる。リタデーション量は、液晶分
子の長軸と電界方向とのなす角度に依存している。この
ため、電界強度を調節することで、電界と液晶分子長軸
との成す角度が1次的に制御されても、観察者が視認す
る角度、即ち、視角に依存して、相対的にリタデーショ
ン量が変化し、視角が変化すると透過光強度或いは色相
も変化してしまい、いわゆる視角依存性の問題となって
いた。
As described above, in a liquid crystal display device, by applying a desired voltage to a liquid crystal loaded between a pair of substrates on which predetermined electrodes are formed, the light in the liquid crystal layer is reduced. The desired transmittance or hue is obtained by controlling the rotation or birefringence of the image, and a display image is created. That is, by controlling the amount of retardation by changing the orientation of the liquid crystal,
In the TN system, the transmitted light intensity can be adjusted, and E
In the CB method, the hue can be separated by controlling the spectral intensity depending on the wavelength. The amount of retardation depends on the angle between the major axis of the liquid crystal molecules and the direction of the electric field. Therefore, even if the angle between the electric field and the long axis of the liquid crystal molecules is primarily controlled by adjusting the electric field strength, the retardation is relatively dependent on the angle that the observer visually recognizes, that is, depending on the viewing angle. When the amount changes and the viewing angle changes, the transmitted light intensity or the hue also changes, which has been a so-called viewing angle dependency problem.

【0009】[0009]

【課題を解決するための手段】本発明は、これらの課題
を解決するために成され、複数形成された表示電極と対
向電極との間に垂直配向された液晶分子を有する液晶層
が設けられ、電界により上記液晶分子の配向を制御する
垂直配向方式の液晶表示装置であって、 上記対向電極
に配向制御窓が形成され、上記表示電極間に表示電極と
絶縁層を介して、電圧が印加されない補助電極が形成さ
れたことを特徴とする構成である。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems, and a liquid crystal layer having vertically aligned liquid crystal molecules is provided between a plurality of display electrodes and a counter electrode. A liquid crystal display device of a vertical alignment method for controlling the alignment of the liquid crystal molecules by an electric field, wherein an alignment control window is formed in the counter electrode, and a voltage is applied between the display electrodes via a display electrode and an insulating layer. In this configuration, an auxiliary electrode that is not formed is formed.

【0010】また、複数形成された表示電極と対向電極
との間に垂直配向された液晶分子を有する液晶層が設け
られ、電界により上記液晶分子の配向を制御する垂直配
向方式の液晶表示装置であって、水平又は垂直のいずれ
か一方の方向の上記表示電極間に、表示電極と絶縁層を
介して補助電極が形成され、上記対向電極側に、上記表
示電極の略中央に位置し垂直又は水平のいずれか一方の
方向に連続する配向制御窓が形成されたことを特徴とす
る構成である。
Further, a liquid crystal layer having vertically aligned liquid crystal molecules is provided between a plurality of display electrodes and a counter electrode, and a vertical alignment type liquid crystal display device in which the alignment of the liquid crystal molecules is controlled by an electric field. Auxiliary electrodes are formed between the display electrodes in one of the horizontal and vertical directions with a display electrode and an insulating layer interposed therebetween. In this configuration, an orientation control window that is continuous in one of the horizontal directions is formed.

【0011】これによれば、配向不良を防止することに
より、輝度及び視角特性を向上させることができる。ま
た、上記補助電極は、透明電極であることを特徴とする
構成であり、これによれば、開口率を向上することがで
きる。
According to this, luminance and viewing angle characteristics can be improved by preventing poor alignment. Further, the auxiliary electrode is a transparent electrode, and according to this, the aperture ratio can be improved.

【0012】[0012]

【発明の実施の形態】図1及び図2に本発明の第1の実
施の形態に係る液晶表示装置の一部の構造を示す。図1
は平面図、図2Aは図1のH−H線に沿った断面図、図
2Bは図1のI−I線に沿った断面図である。基板(1
0)上に形成されたTFTは従来例に示したp−SiT
FTと同一の構成であるが、ここでは簡略化して示して
いる。
1 and 2 show the structure of a part of a liquid crystal display device according to a first embodiment of the present invention. FIG.
2A is a plan view, FIG. 2A is a cross-sectional view along the line HH in FIG. 1, and FIG. 2B is a cross-sectional view along the line II in FIG. Substrate (1
0) The TFT formed on top is the p-SiT shown in the conventional example.
Although the configuration is the same as that of the FT, it is simplified here.

【0013】基板(10)上に、Cr、Ta、Mo等の
メタルからなるゲート電極(11)が形成され、これを
覆ってSiNxまたは/及びSiO2等からなるゲート
絶縁膜(12)が形成されている。ゲート絶縁膜(1
2)上にはp−Si(16)が形成され、中央が真性層
のチャネル領域でその外側に不純物を注入してソース領
域及びドレイン領域が形成されている。 p−Si(1
6)にはこれをを覆うように層間絶縁膜(15)が形成
されており、ドレイン領域にドレイン電極(17)が接
続されている。更に、ITO(indium tin oxide)等の
透明導電膜からなる表示電極(19)が層間絶縁膜(1
5)に開けられたコンタクトホールを介してソース領域
と接続されている。
A gate electrode (11) made of a metal such as Cr, Ta, or Mo is formed on a substrate (10), and a gate insulating film (12) made of SiNx or / and SiO2 is formed to cover the gate electrode (11). ing. Gate insulating film (1
2) p-Si (16) is formed thereon, and the center is an intrinsic layer channel region, and impurities are implanted outside the channel region to form a source region and a drain region. p-Si (1
6), an interlayer insulating film (15) is formed so as to cover this, and a drain electrode (17) is connected to the drain region. Further, a display electrode (19) made of a transparent conductive film such as ITO (indium tin oxide) is provided on the interlayer insulating film (1).
It is connected to the source region via the contact hole opened in 5).

【0014】これら全てを覆う全面には、ポリイミド等
の高分子膜からなる配向膜(図示せず)が形成されてい
る。一方、液晶層を挟んで基板(10)に対向する位置
に設置された別のガラス基板(30)上には、ITOに
より全面的に形成された対向電極(31)が設けられ、
対向電極(31)上にはポリイミド等の配向膜(図示せ
ず)が形成されている。本発明では、配向膜(図示せ
ず)及び液晶(40)を、液晶分子(41)が垂直とな
るものが選定されている。
An alignment film (not shown) made of a polymer film such as polyimide is formed on the entire surface covering all of them. On the other hand, on another glass substrate (30) placed at a position facing the substrate (10) with the liquid crystal layer interposed, a counter electrode (31) entirely formed of ITO is provided,
On the counter electrode (31), an alignment film (not shown) such as polyimide is formed. In the present invention, the alignment film (not shown) and the liquid crystal (40) are selected so that the liquid crystal molecules (41) are vertical.

【0015】本発明の特徴は、図1及び図2Bに示され
るように、対向電極(31)側に、表示電極(19)の
ほぼ中央に位置し、水平方向の全ての表示電極に跨るよ
うに水平方向に連続して配向制御窓(32)を設けたと
ころにある。この配向制御窓(32)は、対向電極(3
1)の存在しない部分である。更に、図2A、Bに示さ
れるように、ゲート絶縁膜(12)上に表示電極(1
9)と絶縁層(15)を介して、補助電極(50)を設
けたところにある。この補助電極は、図1の斜線で示す
ように、表示電極間に垂直方向に連続して形成され、し
かも隣り合う表示電極を跨ぐように形成されている。
As shown in FIGS. 1 and 2B, the feature of the present invention is that it is located on the side of the counter electrode (31), substantially at the center of the display electrode (19), and straddles all the display electrodes in the horizontal direction. Is provided with an orientation control window (32) continuously in the horizontal direction. The alignment control window (32) is provided with the counter electrode (3).
This is the part where 1) does not exist. Further, as shown in FIGS. 2A and 2B, the display electrode (1) is formed on the gate insulating film (12).
An auxiliary electrode (50) is provided via the insulating layer (15) and the insulating layer (15). The auxiliary electrode is formed continuously between the display electrodes in the vertical direction, as shown by hatching in FIG. 1, and is formed so as to straddle adjacent display electrodes.

【0016】この補助電極(50)には何ら電圧を印加
しておらず、このためフローティング状態にある。従っ
て、図2Aに破線で示されるように、補助電極(50)
は両隣の表示電極(19)と容量結合される。そこで、
この液晶パネルを水平ライン毎に反転して駆動する水平
ライン反転駆動か、もしくはフィールド毎に反転するフ
ィールド反転駆動を行った場合、補助電極(50)には
容量結合された水平方向の両隣の表示電極(19)の電
圧のほぼ中間の電圧がかかることとなる。つまり、表示
電極が水平方向にあたかも連続して形成されているよう
な状態となる。
No voltage is applied to the auxiliary electrode (50), so that it is in a floating state. Therefore, as shown by the broken line in FIG.
Are capacitively coupled to the adjacent display electrodes (19). Therefore,
When a horizontal line inversion drive for inverting and driving the liquid crystal panel for each horizontal line or a field inversion drive for inversion for each field is performed, the auxiliary electrode (50) is capacitively coupled with the display on both sides in the horizontal direction. A voltage approximately intermediate to the voltage of the electrode (19) will be applied. That is, the display electrodes are formed as if they were continuously formed in the horizontal direction.

【0017】ここで、図2Bに示すように、配向制御窓
(32)と表示電極間(60)においては液晶分子(4
1)を傾斜させるほどの電界がかからないため、図示の
ようにそこでは垂直に液晶分子が配向する。しかしその
周辺では図に点線で示すように電界が発生し、液晶分子
はその長軸を電界に直角な方向に配向制御され、更にこ
れらの液晶分子の傾斜が液晶の連続性によって内部の液
晶にまで伝わるので、配向制御窓(32)と表示電極間
(60)とで挟まれた領域R1,R2,R3,R4で
は、図2Bに示すように垂直方向からみれば、液晶の配
向方向が交互に逆方向となる。
Here, as shown in FIG. 2B, the liquid crystal molecules (4) are located between the alignment control window (32) and the display electrode (60).
Since no electric field is applied so as to incline 1), the liquid crystal molecules are vertically aligned there as shown. However, an electric field is generated in the periphery of the liquid crystal, as shown by the dotted line in the figure. In the regions R1, R2, R3, and R4 sandwiched between the alignment control window (32) and the display electrodes (60), the alignment directions of the liquid crystal are alternately viewed from the vertical direction as shown in FIG. 2B. In the opposite direction.

【0018】一方、図2Aに示すように水平方向から見
ると、液晶分子は全て表示電極のエッジから配向制御窓
(32)の方向へ傾斜することとなり、図から明らかな
ように配向方向が一様となる。上述したように、この例
では 表示電極が水平方向にあたかも連続して形成され
ているような状態であるので、この一様な配向は水平方
向の1ライン全てにわたって生ずる。つまり、R1,R
2,R3,R4の各ライン全域にわたって液晶の配向は
一様となる。従って、配向不良がなくなり、輝度及び視
角特性が著しく向上する。
On the other hand, when viewed from the horizontal direction as shown in FIG. 2A, all the liquid crystal molecules are inclined from the edge of the display electrode toward the alignment control window (32). Looks like. As described above, in this example, since the display electrodes are formed continuously in the horizontal direction, this uniform orientation occurs over one horizontal line. That is, R1, R
The alignment of the liquid crystal becomes uniform over the entire area of the lines 2, R3, and R4. Accordingly, there is no defective orientation, and the luminance and viewing angle characteristics are significantly improved.

【0019】また、ここでは、補助電極(50)をIT
O等の透明電極で形成したので、1水平ラインがすべて
連続する状態になり、開口率も大きく向上する。図3及
び図4に本発明の第2の実施の形態に係る液晶表示装置
の一部の構造を示す。図3は平面図、図4Aは図3のJ
−J線に沿った断面図、図4Bは図3のK−K線に沿っ
た断面図である。
In this case, the auxiliary electrode (50) is connected to the IT
Since it is made of a transparent electrode such as O, one horizontal line is all continuous, and the aperture ratio is greatly improved. 3 and 4 show a partial structure of a liquid crystal display according to a second embodiment of the present invention. FIG. 3 is a plan view, and FIG.
FIG. 4B is a cross-sectional view taken along the line KK of FIG. 3.

【0020】この形態では、補助電極(50)と配向制
御窓(32)の形成方向が先の例と逆になっている点が
異なる。即ち、図に示されるように、対向電極(31)
側に、表示電極(19)のほぼ中央に位置し、垂直方向
の全ての表示電極に跨るように垂直方向に連続して配向
制御窓(32)を設けている。更に、図4A、Bに示さ
れるように、基板(10)上に表示電極(19)と絶縁
膜(12)及び絶縁層(15)を介して、補助電極(5
0)を設けている。この補助電極は、図3の斜線で示す
ように、表示電極間に水平方向に連続して形成され、し
かも隣り合う表示電極を跨ぐように形成されている。
This embodiment is different from the first embodiment in that the directions of forming the auxiliary electrode (50) and the orientation control window (32) are opposite to those in the previous example. That is, as shown in FIG.
On the side, an alignment control window (32) is provided substantially at the center of the display electrode (19) and continuously in the vertical direction so as to straddle all the display electrodes in the vertical direction. Further, as shown in FIGS. 4A and 4B, the auxiliary electrode (5) is provided on the substrate (10) via the display electrode (19), the insulating film (12) and the insulating layer (15).
0) is provided. The auxiliary electrode is formed continuously between the display electrodes in the horizontal direction, as shown by oblique lines in FIG. 3, and is formed so as to straddle adjacent display electrodes.

【0021】この補助電極(50)は、先の例と同様何
ら電圧が印加されておらず、フローティング状態にある
ので、図4Aに点線で示されるように、補助電極(5
0)は両隣の表示電極(19)と容量結合される。そこ
で、この液晶パネルを垂直ライン毎に反転して駆動する
垂直ライン反転駆動か、もしくはフィールド毎に反転す
るフィールド反転駆動を行った場合、補助電極(50)
には容量結合された垂直方向の両隣の表示電極(19)
の電圧のほぼ中間の電圧がかかることとなる。つまり、
表示電極が垂直方向にあたかも連続して形成されている
ような状態となる。
Since no voltage is applied to the auxiliary electrode (50) as in the previous example and the auxiliary electrode (50) is in a floating state, as shown by a dotted line in FIG.
0) is capacitively coupled to the adjacent display electrodes (19). Therefore, if the vertical line inversion drive for inverting and driving this liquid crystal panel for every vertical line or the field inversion drive for inversion for each field is performed, the auxiliary electrode (50)
The display electrodes (19) on both sides in the vertical direction that are capacitively coupled
A voltage that is approximately the middle of the above voltage is applied. That is,
It is as if the display electrodes are formed continuously in the vertical direction.

【0022】ここで、図4Aに示すように、配向制御窓
(32)と表示電極間(60)においては液晶分子(4
1)を傾斜させるほどの電極がかからないため、図示の
ようにそこでは垂直に液晶分子が配向する。しかしその
周辺では図に点線で示すように電界が発生し、液晶分子
はその長軸を電界に直角な方向に配向制御され、更にこ
れらの液晶分子の傾斜が液晶の連続性によって内部の液
晶にまで伝わるので、配向制御窓(32)と表示電極間
(60)とで挟まれた領域C1,C2,C3,C4で
は、図4Aに示すように水平方向から見れば、液晶の配
向方向が交互に逆方向となる。
As shown in FIG. 4A, the liquid crystal molecules (4) are located between the alignment control window (32) and the display electrode (60).
Since an electrode is not applied so as to incline 1), the liquid crystal molecules are vertically aligned there as shown in the figure. However, an electric field is generated in the periphery of the liquid crystal, as shown by the dotted line in the figure. In the regions C1, C2, C3, and C4 sandwiched between the alignment control window (32) and the display electrode (60), the alignment directions of the liquid crystal alternate when viewed from the horizontal direction as shown in FIG. 4A. In the opposite direction.

【0023】一方、図4Bに示すように垂直方向から見
ると、液晶分子は全て表示電極のエッジから配向制御窓
(32)の方向へ傾斜することとなり、図から明らかな
ように配向方向が一様となる。上述したように、この例
では 表示電極が垂直方向にあたかも連続して形成され
ているような状態であるので、この一様な配向は垂直方
向の1ライン全てにわたって生ずる。つまり、C1,C
2,C3,C4の各垂直ライン全域にわたって液晶の配
向は一様となる。従って、配向不良がなくなり、輝度及
び視角特性が著しく向上する。
On the other hand, when viewed from the vertical direction as shown in FIG. 4B, all the liquid crystal molecules are inclined from the edge of the display electrode to the direction of the alignment control window (32). Looks like. As described above, in this example, since the display electrodes are formed as if they were continuously formed in the vertical direction, this uniform alignment occurs over one line in the vertical direction. That is, C1, C
The alignment of the liquid crystal is uniform over the entire vertical line of C2, C3 and C4. Accordingly, there is no defective orientation, and the luminance and viewing angle characteristics are significantly improved.

【0024】また、ここでも、補助電極(50)をIT
O等の透明電極で形成したので、1垂直ラインがすべて
連続する状態になり、開口率が大きく向上する。
Also in this case, the auxiliary electrode (50) is
Since it is formed of a transparent electrode such as O, one vertical line is all continuous, and the aperture ratio is greatly improved.

【0025】[0025]

【発明の効果】以上の説明から明かなように、配向不良
を防止することにより、輝度及び視角特性を向上させる
ことができ、また、補助電極を透明電極としたので、開
口率を向上させることができる。
As is clear from the above description, it is possible to improve the luminance and the viewing angle characteristics by preventing the alignment defect, and to improve the aperture ratio because the auxiliary electrode is a transparent electrode. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態にかかる液晶表示装
置の画素部の平面図である。
FIG. 1 is a plan view of a pixel unit of a liquid crystal display device according to a first embodiment of the present invention.

【図2】図1のH−H線並びにI−I線に沿った断面図
である。
FIG. 2 is a sectional view taken along lines HH and II in FIG. 1;

【図3】本発明の第2の実施の形態にかかる液晶表示装
置の画素部の平面図である。
FIG. 3 is a plan view of a pixel portion of a liquid crystal display device according to a second embodiment of the present invention.

【図4】図1のJ−J線並びにK−K線に沿った断面図
である。
FIG. 4 is a sectional view taken along lines JJ and KK of FIG. 1;

【図5】従来の液晶表示装置の単位画素部の平面図であ
る。
FIG. 5 is a plan view of a unit pixel portion of a conventional liquid crystal display device.

【図6】図3のG−G線に沿った断面図である。FIG. 6 is a sectional view taken along line GG of FIG. 3;

【符号の説明】 10 基板 11 ゲート電極 12 ゲート絶縁膜 15 層間絶縁膜 16 ソース電極 17 ドレイン電極 19 表示電極 20 配向膜 30 ガラス基板 31 対向電極 32 配向制御窓 40 液晶 41 液晶分子 50 補助電極DESCRIPTION OF SYMBOLS 10 Substrate 11 Gate electrode 12 Gate insulating film 15 Interlayer insulating film 16 Source electrode 17 Drain electrode 19 Display electrode 20 Alignment film 30 Glass substrate 31 Counter electrode 32 Alignment control window 40 Liquid crystal 41 Liquid crystal molecule 50 Auxiliary electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数形成された表示電極と対向電極との
間に垂直配向された液晶分子を有する液晶層が設けら
れ、電界により上記液晶分子の配向を制御する垂直配向
方式の液晶表示装置であって、 上記対向電極に配向制御窓が形成され、 上記表示電極間に表示電極と絶縁層を介して、電圧が印
加されない補助電極が形成されたことを特徴とする液晶
表示装置。
A vertical alignment type liquid crystal display device in which a liquid crystal layer having liquid crystal molecules vertically aligned is provided between a plurality of display electrodes and a counter electrode, and the alignment of the liquid crystal molecules is controlled by an electric field. A liquid crystal display device, wherein an orientation control window is formed in the counter electrode, and an auxiliary electrode to which no voltage is applied is formed between the display electrode via a display electrode and an insulating layer.
【請求項2】 複数形成された表示電極と対向電極との
間に垂直配向された液晶分子を有する液晶層が設けら
れ、電界により上記液晶分子の配向を制御する垂直配向
方式の液晶表示装置であって、 水平又は垂直のいずれか一方の方向の上記表示電極間
に、表示電極と絶縁層を介して補助電極が形成され、上
記対向電極側に、上記表示電極の略中央に位置し垂直又
は水平のいずれか一方の方向に連続する配向制御窓が形
成されたことを特徴とする液晶表示装置。
2. A vertical alignment type liquid crystal display device wherein a liquid crystal layer having liquid crystal molecules vertically aligned is provided between a plurality of display electrodes and a counter electrode, and the alignment of the liquid crystal molecules is controlled by an electric field. An auxiliary electrode is formed between the display electrodes in one of the horizontal and vertical directions via a display electrode and an insulating layer, and is positioned on the side of the counter electrode, substantially in the center of the display electrode, and A liquid crystal display device, wherein an alignment control window continuous in one of horizontal directions is formed.
【請求項3】 上記補助電極は、透明電極であることを
特徴とする請求項1または2記載の液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein the auxiliary electrode is a transparent electrode.
【請求項4】 上記補助電極には電圧が印加されていな
いことを特徴とする請求項2または3記載の液晶表示装
置。
4. The liquid crystal display device according to claim 2, wherein no voltage is applied to the auxiliary electrode.
【請求項5】 上記補助電極は隣合う表示電極を跨るよ
うに形成されたことを特徴とする請求項1から4のいず
れかに記載の液晶表示装置。
5. The liquid crystal display device according to claim 1, wherein the auxiliary electrode is formed so as to straddle an adjacent display electrode.
JP26897497A 1997-10-01 1997-10-01 Liquid crystal display Expired - Lifetime JP3819561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26897497A JP3819561B2 (en) 1997-10-01 1997-10-01 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26897497A JP3819561B2 (en) 1997-10-01 1997-10-01 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH11109356A true JPH11109356A (en) 1999-04-23
JP3819561B2 JP3819561B2 (en) 2006-09-13

Family

ID=17465901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26897497A Expired - Lifetime JP3819561B2 (en) 1997-10-01 1997-10-01 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3819561B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633357B2 (en) 2000-06-27 2003-10-14 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of fabricating the same
US6750933B1 (en) 1998-08-06 2004-06-15 Lg.Phillips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US6788374B2 (en) 2000-06-27 2004-09-07 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method for fabricating the same
JP2004346059A (en) * 2003-01-28 2004-12-09 Takeda Chem Ind Ltd Receptor agonist
US7064735B2 (en) 1999-08-20 2006-06-20 Seiko Epson Corporation Electro-optical device
JP2007316590A (en) * 2006-03-16 2007-12-06 Au Optronics Corp Pixel structure and liquid crystal display panel
US7595781B2 (en) 2002-06-17 2009-09-29 Sharp Kabushiki Kaisha Liquid crystal display device
US7787087B2 (en) 1998-05-19 2010-08-31 Samsung Electronics Co., Ltd. Liquid crystal display having wide viewing angle
JP2012047802A (en) * 2010-08-24 2012-03-08 Sony Corp Display device
US8743331B2 (en) 2002-06-28 2014-06-03 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US7133111B2 (en) 1997-06-10 2006-11-07 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US8035785B2 (en) 1997-06-10 2011-10-11 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7826020B2 (en) 1997-06-10 2010-11-02 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7440065B2 (en) 1997-06-10 2008-10-21 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US8054430B2 (en) 1998-05-19 2011-11-08 Samsung Electronics Co., Ltd. Liquid crystal display having wide viewing angle
US8400598B2 (en) 1998-05-19 2013-03-19 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US7787087B2 (en) 1998-05-19 2010-08-31 Samsung Electronics Co., Ltd. Liquid crystal display having wide viewing angle
US7787086B2 (en) 1998-05-19 2010-08-31 Samsung Electronics Co., Ltd. Liquid crystal display having wide viewing angle
US8711309B2 (en) 1998-05-19 2014-04-29 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US6750933B1 (en) 1998-08-06 2004-06-15 Lg.Phillips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US7697097B2 (en) 1998-08-06 2010-04-13 Lg Display Co., Ltd. Liquid-crystal display and method of its fabrication
US7304704B2 (en) 1998-08-06 2007-12-04 Lg.Philips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US7064735B2 (en) 1999-08-20 2006-06-20 Seiko Epson Corporation Electro-optical device
US6788374B2 (en) 2000-06-27 2004-09-07 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method for fabricating the same
US6633357B2 (en) 2000-06-27 2003-10-14 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of fabricating the same
US7595781B2 (en) 2002-06-17 2009-09-29 Sharp Kabushiki Kaisha Liquid crystal display device
US8743331B2 (en) 2002-06-28 2014-06-03 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
JP2004346059A (en) * 2003-01-28 2004-12-09 Takeda Chem Ind Ltd Receptor agonist
JP4690349B2 (en) * 2006-03-16 2011-06-01 友▲達▼光電股▲ふん▼有限公司 Pixel structure and liquid crystal display panel
KR100833420B1 (en) * 2006-03-16 2008-05-29 우 옵트로닉스 코포레이션 Pixel structure and liquid crystal display panel
JP2007316590A (en) * 2006-03-16 2007-12-06 Au Optronics Corp Pixel structure and liquid crystal display panel
JP2012047802A (en) * 2010-08-24 2012-03-08 Sony Corp Display device

Also Published As

Publication number Publication date
JP3819561B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP3398025B2 (en) Liquid crystal display
KR100568053B1 (en) Active matrix type liquid crystal display device
KR100431225B1 (en) Vertical orientation type liquid crystal display
JPH0876125A (en) Liquid crystal display device
US20080043192A1 (en) Vertically Aligned Liquid Crystal Display
JP2002311448A (en) Liquid crystal display and its manufacturing method
JP3819561B2 (en) Liquid crystal display
JP3439014B2 (en) Liquid crystal display
JP3208363B2 (en) Liquid crystal display
JP3754179B2 (en) Liquid crystal display
JPH1152381A (en) Liquid crystal display device
JP3286579B2 (en) Transmissive liquid crystal display
JPH09258242A (en) Liquid crystal display element
JP3199221B2 (en) Liquid crystal display device and manufacturing method thereof
JP2002214613A (en) Liquid crystal display
JPH1096926A (en) Liquid crystal display device
JPH11119209A (en) Liquid crystal display device
JPH08271919A (en) Active matrix type liquid crystal display device
KR20040104202A (en) In plane switching mode liquid crystal display device and fabrication method thereof
JP2000056328A (en) Liquid crystal electro-optic device
JPH09281526A (en) Liquid crystal electro-optic device
JPH11281950A (en) Liquid crystal display device
JP2000199913A (en) Electro-optical device
JP2000010105A (en) Liquid crystal display element
KR20040099911A (en) In plane switching mode liquid crystal display device and fabrication method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term