JPH11109336A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH11109336A
JPH11109336A JP9284253A JP28425397A JPH11109336A JP H11109336 A JPH11109336 A JP H11109336A JP 9284253 A JP9284253 A JP 9284253A JP 28425397 A JP28425397 A JP 28425397A JP H11109336 A JPH11109336 A JP H11109336A
Authority
JP
Japan
Prior art keywords
liquid crystal
polarizing plate
light
reflection
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9284253A
Other languages
Japanese (ja)
Inventor
Satoshi Ikeda
悟志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP9284253A priority Critical patent/JPH11109336A/en
Publication of JPH11109336A publication Critical patent/JPH11109336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a reflection type liquid crystal display device to reduce the loss of diffusion reflected light and to brighten a white display by the diffusion reflected light. SOLUTION: A transmission axis 29a of a polarizing plate 29 is made nearly parallel to an oriented processing direction 24a of an oriented film 24 of a surface side. A reflection polarizing plate 30 is provided with the transmission axis 30p and a reflection axis 30s nearly orthogonally intersected with each other, and the transmission axis 30p between them is made nearly parallel to the oriented processing direction 25a of the oriented film 25 of a rear surface side. Then, in an off state, linear polarized light made incident transmitting through the polarizing plate 29 from the surface side is polarized by nearly 90 deg. in the twist direction 28a of a liquid crystal 28 in a process transmitting through a liquid crystal cell 21, and then, it transmits through the reflection polarizing plate 30, and then, is diffusion reflected by a diffusion reflection plate 31. Although the polarizing state of this diffusion reflected light is lost, the major part of the light are transmitted through the reflection polarizing plate 30 and emitted to the surface side finally by the reflective action of the reflection polarizing plate 30 and the diffusion reflective action of the diffusion reflection plate 31.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、偏光透過機能と
反射機能の双方を備える反射偏光板を用いた反射型液晶
表示装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a reflection type liquid crystal display device using a reflection polarizing plate having both a polarization transmission function and a reflection function.

【0002】[0002]

【従来の技術】液晶表示装置は、印加電圧に応じて液晶
分子の配向を変化させ光の透過を制御するものである。
図7(A)は従来のこのような液晶表示装置の一例の一
部を示したものである。この液晶表示装置は反射型であ
って、液晶セル1を備えている。液晶セル1は、相対向
する面にそれぞれ電極2、3及び配向膜4、5が設けら
れた一対の基板6、7の配向膜4、5間に液晶8が介在
された構造となっている。液晶セル1の表面側には表面
側の偏光板9が配置されている。液晶セル1の裏面側に
は裏面側の偏光板10が配置されている。裏面側の偏光
板10の裏面側には拡散反射板11が配置されている。
2. Description of the Related Art A liquid crystal display device controls the transmission of light by changing the orientation of liquid crystal molecules according to an applied voltage.
FIG. 7A shows a part of an example of such a conventional liquid crystal display device. This liquid crystal display device is of a reflection type and includes a liquid crystal cell 1. The liquid crystal cell 1 has a structure in which a liquid crystal 8 is interposed between alignment films 4 and 5 of a pair of substrates 6 and 7 provided with electrodes 2 and 3 and alignment films 4 and 5 respectively on opposing surfaces. . On the front side of the liquid crystal cell 1, a polarizing plate 9 on the front side is arranged. On the back side of the liquid crystal cell 1, a polarizing plate 10 on the back side is arranged. On the back side of the polarizing plate 10 on the back side, a diffuse reflection plate 11 is arranged.

【0003】次に、図7(B)を参照して、液晶セル1
の両配向膜4、5のラビングによる配向処理方向及びや
両偏光板9、10の透過軸等の光学軸の関係を表面側か
ら見た場合について説明する。表面側の配向膜4の配向
処理方向4aは、左下側から右上側に向う方向となって
いる。裏面側の配向膜5の配向方向5aは、左上側から
右下側に向かう方向となっている。したがって、この場
合の液晶8の液晶分子は、裏面側から表面側に向かって
矢印8aで示す時計回り方向へほぼ90°のツイスト角
でツイスト配向している。表面側の偏光板9の透過軸9
aは、表面側の配向膜4の配向処理方向4aとほぼ平行
とされている。裏面側の偏光板10の透過軸10aは、
裏面側の配向膜5の配向処理方向5aとほぼ平行とされ
ている。
[0005] Next, referring to FIG.
The relationship between the orientation direction of the alignment films 4 and 5 by rubbing and the optical axes such as the transmission axes of the polarizing plates 9 and 10 will be described from the front side. The alignment processing direction 4a of the alignment film 4 on the front side is a direction from the lower left side to the upper right side. The alignment direction 5a of the alignment film 5 on the back side is a direction from the upper left to the lower right. Therefore, the liquid crystal molecules of the liquid crystal 8 in this case are twist-oriented at a twist angle of approximately 90 ° in the clockwise direction indicated by the arrow 8a from the back side to the front side. Transmission axis 9 of polarizing plate 9 on the front side
a is substantially parallel to the alignment direction 4a of the alignment film 4 on the front surface side. The transmission axis 10a of the polarizing plate 10 on the back side is
The direction is substantially parallel to the alignment direction 5a of the alignment film 5 on the back side.

【0004】次に、この液晶表示装置の表示動作につい
て説明するに、まず、液晶8の旋光作用について説明す
る。液晶分子が初期のツイスト配向状態(液晶分子が両
配向膜4、5により配向規制され基板6、7面に対して
所定のプレチルト角を備えて配向された状態)にある場
合には、つまり両電極6、7間に電圧が印加されないオ
フ状態にある場合には、液晶8の旋光作用は最も大きく
なる。一方、両電極6、7間に電圧が印加されたオン状
態の場合には、液晶分子が初期のツイスト配向状態を保
ちながら立上り、しかもこの立上り角は印加電圧が大き
くなるほど大きくなり、これに伴って液晶8の旋光作用
は次第に小さくなり、そして液晶分子が基板6、7面に
対してほぼ垂直に立上がると、液晶8の旋光作用はほと
んど無くなる。
Next, the display operation of the liquid crystal display device will be described. First, the optical rotation of the liquid crystal 8 will be described. When the liquid crystal molecules are in an initial twist alignment state (a state in which the liquid crystal molecules are aligned by a predetermined pretilt angle with respect to the surfaces of the substrates 6 and 7 with the alignment controlled by the alignment films 4 and 5), When the voltage is not applied between the electrodes 6 and 7, the liquid crystal 8 has the largest optical rotation when in the off state. On the other hand, when the voltage is applied between the electrodes 6 and 7 in the on state, the liquid crystal molecules rise while maintaining the initial twisted state, and the rising angle increases as the applied voltage increases. As a result, the optical rotation of the liquid crystal 8 gradually decreases, and when the liquid crystal molecules rise almost perpendicularly to the surfaces of the substrates 6 and 7, the optical rotation of the liquid crystal 8 is almost eliminated.

【0005】さて、図8(A)に示すように、液晶分子
8bが初期のツイスト配向状態(オフ状態)にある場合
には、同図において矢印で示すように、表面側から表面
側の偏光板9を透過して入射した直線偏光光は、液晶セ
ル1を透過する過程で液晶8のツイスト方向8aとは反
対の方向にほぼ90°旋光され、次いで裏面側の偏光板
10を透過し、次いで拡散反射板11で拡散反射され、
この拡散反射光が裏面側の偏光板10、液晶セル1及び
表面側の偏光板9を透過して表面側に出射される。この
状態は、白表示となり、つまり背景が白表示となる。
As shown in FIG. 8A, when the liquid crystal molecules 8b are in the initial twisted state (off state), as shown by arrows in FIG. The linearly polarized light that has entered through the plate 9 is rotated by approximately 90 ° in the direction opposite to the twist direction 8a of the liquid crystal 8 in the process of passing through the liquid crystal cell 1, and then passes through the polarizing plate 10 on the back side, Next, the light is diffusely reflected by the diffuse reflection plate 11,
The diffusely reflected light passes through the polarizing plate 10 on the back side, the liquid crystal cell 1 and the polarizing plate 9 on the front side, and is emitted to the front side. In this state, white display is performed, that is, the background is displayed in white.

【0006】次に、図8(B)に示すように、液晶分子
8bが基板6、7面に対してほぼ垂直に立上がった状態
(オン状態)にある場合には、同図において矢印で示す
ように、表面側から表面側の偏光板9を透過して入射し
た直線偏光光は、液晶セル1を旋光作用を受けずにその
まま透過し、次いで裏面側の偏光板10で吸収される。
この状態は、黒表示となり、文字や図形等が黒表示で表
される。この場合、図示していないが、両電極2、3間
への印加電圧の相違により液晶分子8bが初期のツイス
ト配向状態から適宜に立上がると、表面側から表面側の
偏光板9を透過して入射した直線偏光光は、液晶セル1
を透過する過程で裏面側の偏光板10の透過軸10aに
対して平行な偏光成分と直交する偏光成分との双方を含
む光となる。そして、直交する偏光成分の光は、裏面側
の偏光板10で吸収される。平行な偏光成分の光は、裏
面側の偏光板10を透過し、次いで拡散反射板11で拡
散反射され、この拡散反射光が裏面側の偏光板10、液
晶セル1及び表面側の偏光板9を透過して表面側に出射
される。これにより、階調表現が行われることになる。
Next, as shown in FIG. 8B, when the liquid crystal molecules 8b are in a state of rising substantially vertically to the surfaces of the substrates 6 and 7 (on state), the liquid crystal molecules 8b are indicated by arrows in FIG. As shown, the linearly polarized light that has passed through the polarizing plate 9 from the front side and entered is transmitted through the liquid crystal cell 1 as it is without being affected by the optical rotation, and is then absorbed by the polarizing plate 10 on the back side.
In this state, black display is performed, and characters and figures are displayed in black display. In this case, although not shown, when the liquid crystal molecules 8b appropriately rise from the initial twist alignment state due to the difference in the applied voltage between the electrodes 2 and 3, the liquid crystal molecules 8b pass through the polarizing plate 9 from the front side to the front side. Incident linearly polarized light is
In the process of transmitting light, the light becomes a light containing both a polarized light component parallel to the transmission axis 10a of the polarizing plate 10 on the back side and a polarized light component orthogonal to the transmission axis 10a. Then, the light of the orthogonal polarization component is absorbed by the polarizing plate 10 on the back surface side. The parallel polarized light component is transmitted through the rear-side polarizing plate 10 and then diffused and reflected by the diffuse reflecting plate 11, and the diffusely reflected light is reflected by the rear-side polarizing plate 10, the liquid crystal cell 1, and the front-side polarizing plate 9 And is emitted to the surface side. Thus, gradation expression is performed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
このような液晶表示装置では、図8(A)に示すよう
に、液晶分子8bが初期のツイスト配向状態(オフ状
態)にあるとき、表面側から入射した直線偏光光が液晶
8で旋光作用を受けてほぼ90°旋光され、裏面側の偏
光板10を透過して拡散反射板11で拡散反射される
と、この拡散反射光の直線偏光状態がくずれ、裏面側の
偏光板10の透過軸10aに対して平行な偏光成分と直
交する偏光成分との双方を含む光となる。このため、当
該拡散反射光のうち裏面側の偏光板10の透過軸10a
に対して直交する偏光成分の光は裏面側の偏光板10で
吸収され、平行な偏光成分の光が裏面側の偏光板10を
透過することになる。すなわち、当該拡散反射光の一部
が裏面側の偏光板10で吸収され、光のロスが生じ、ひ
いては背景の白表示の輝度が低下し灰色ががってしまう
という問題があった。この発明の課題は、拡散反射光の
ロスを少なくして輝度の高い白表示を得ることである。
However, in such a conventional liquid crystal display device, as shown in FIG. 8A, when the liquid crystal molecules 8b are in the initial twist alignment state (off state), the liquid crystal molecules 8b face the front side. Is incident on the liquid crystal 8 to rotate the light by approximately 90 °, and passes through the polarizing plate 10 on the rear surface side and is diffusely reflected by the diffuse reflecting plate 11. As a result, the light becomes a light that includes both a polarization component parallel to the transmission axis 10a of the polarizing plate 10 on the back side and a polarization component orthogonal to the transmission axis 10a. Therefore, the transmission axis 10a of the polarizing plate 10 on the back side of the diffuse reflected light
The light having the polarization component orthogonal to the light is absorbed by the rear polarizing plate 10, and the light having the parallel polarization component is transmitted through the rear polarizing plate 10. That is, there is a problem that a part of the diffuse reflection light is absorbed by the polarizing plate 10 on the rear surface side, resulting in a light loss, and as a result, the luminance of the white display on the background is reduced and the image becomes grayish. An object of the present invention is to obtain a white display with high luminance by reducing the loss of diffuse reflection light.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の液晶表示装置は、相対向する面にそ
れぞれ電極及び配向膜が設けられた一対の基板間に前記
両電極間への印加電圧に応じて複屈折性の変化する液晶
が介在された液晶セルと、この液晶セルの表面側に配置
された偏光板と、前記液晶セルの裏面側に配置され、互
いにほぼ直交する方向のうち一方の方向に沿った偏光成
分の入射光を反射させる反射軸と他方の方向に沿った偏
光成分の入射光を透過させる透過軸とを有する反射偏光
板と、この反射偏光板の裏面側に配置され入射光を拡散
反射させる拡散反射板とを具備していることを特徴とす
るものである。この請求項1記載の発明によれば、拡散
反射板で拡散反射された光の偏光状態がくずれると、こ
の拡散反射光のうち所定の一の偏光成分の光が反射偏光
板を透過するとともに、他の偏光成分の光が反射偏光板
で吸収されずに反射され、この反射光が拡散反射板で再
度拡散反射されてその偏光状態が再度くずれ、この拡散
反射光のうち所定の一の偏光成分の光が反射偏光板を透
過するとともに、他の偏光成分の光が反射偏光板で再度
吸収されずに反射され、このようなことの繰り返しによ
り、拡散反射板で最初に拡散反射されて偏光状態のくず
れた光のほとんどが反射偏光板を透過することとなり、
したがって拡散反射光のロスを少なくすることができ
る。次に、請求項2記載の液晶表示装置は、請求項1記
載の液晶表示装置において、前記液晶の液晶分子は一方
の基板から他方の基板に向かって70°〜120°の角
度で捩れるように配列し、前記偏光板の透過軸が前記液
晶セルの表面側の配向膜の配向処理方向とほぼ平行とさ
れ、前記反射偏光板の透過軸が前記液晶セルの裏面側の
配向膜の配向処理方向とほぼ平行とされていることを特
徴とするものである。この請求項2記載の発明によれ
ば、オフ状態つまり液晶が初期配向状態にあるときに、
液晶を透過した光が反射偏光板を透過して拡散反射板に
より拡散反射され、この拡散反射された光のロスが顕著
に低減され、輝度の高い白色背景が得られる。次に、請
求項3記載の液晶表示装置は、請求項1記載の液晶表示
装置において、前記液晶の液晶分子は一方の基板から他
方の基板に向かって70°〜120°の角度で捩れるよ
うに配列し、前記偏光板の透過軸が前記液晶セルの表面
側の配向膜の配向処理方向とほぼ平行とされ、前記反射
偏光板の透過軸が前記液晶セルの裏面側の配向膜の配向
処理方向とほぼ直交されていることを特徴とするもので
ある。この請求項3記載の発明によれば、オン状態つま
り液晶が立上がった配向状態にあるときに、液晶を透過
した光が反射偏光板を透過して拡散反射板により拡散反
射され、この拡散反射された光のロスが顕著に低減さ
れ、輝度の高い白色表示が得られる。
According to a first aspect of the present invention, there is provided a liquid crystal display device comprising: a pair of substrates provided with electrodes and an alignment film on opposing surfaces; A liquid crystal cell in which a liquid crystal whose birefringence changes according to an applied voltage, a polarizing plate disposed on the front side of the liquid crystal cell, and a direction substantially orthogonal to each other disposed on the rear side of the liquid crystal cell A reflective polarizing plate having a reflection axis for reflecting the incident light of the polarized light component along one direction and a transmission axis for transmitting the incident light of the polarized light component along the other direction, and the back side of the reflective polarizing plate And a diffuse reflector for diffusing and reflecting incident light. According to the first aspect of the present invention, when the polarization state of the light diffusely reflected by the diffuse reflection plate is disrupted, the light of one predetermined polarization component of the diffuse reflection light passes through the reflection polarization plate, The light of another polarization component is reflected without being absorbed by the reflective polarizer, and the reflected light is diffused and reflected again by the diffuse reflector, and its polarization state is again lost. Is transmitted through the reflective polarizer, and the light of other polarization components is reflected by the reflective polarizer without being absorbed again.By repeating such a process, the light is diffused and reflected first by the diffuse reflector, and the polarization state is changed. Most of the distorted light will be transmitted through the reflective polarizer,
Therefore, the loss of diffuse reflection light can be reduced. Next, in the liquid crystal display device according to the second aspect, in the liquid crystal display device according to the first aspect, the liquid crystal molecules of the liquid crystal are twisted at an angle of 70 ° to 120 ° from one substrate toward the other substrate. And the transmission axis of the polarizing plate is substantially parallel to the alignment processing direction of the alignment film on the front surface side of the liquid crystal cell, and the transmission axis of the reflective polarizing plate is aligned on the rear surface side of the liquid crystal cell. It is characterized by being substantially parallel to the direction. According to the invention described in claim 2, when the liquid crystal is in the off state, that is, when the liquid crystal is in the initial alignment state,
The light transmitted through the liquid crystal is transmitted through the reflective polarizer and diffusely reflected by the diffuse reflector. The loss of the diffusely reflected light is significantly reduced, and a white background with high luminance is obtained. Next, in a liquid crystal display device according to a third aspect, in the liquid crystal display device according to the first aspect, the liquid crystal molecules of the liquid crystal are twisted at an angle of 70 ° to 120 ° from one substrate toward the other substrate. And the transmission axis of the polarizing plate is substantially parallel to the alignment processing direction of the alignment film on the front surface side of the liquid crystal cell, and the transmission axis of the reflective polarizing plate is aligned on the rear surface side of the liquid crystal cell. It is characterized by being substantially orthogonal to the direction. According to the third aspect of the present invention, when the liquid crystal is in the ON state, that is, the liquid crystal is in the aligned state, the light transmitted through the liquid crystal is transmitted through the reflective polarizer and diffused and reflected by the diffuse reflector. The loss of the emitted light is significantly reduced, and a white display with high luminance can be obtained.

【0009】[0009]

【発明の実施の形態】図1(A)はこの発明の一実施形
態における液晶表示装置の要部を示したものである。こ
の液晶表示装置は反射型であって、液晶セル21を備え
ている。液晶セル21は、相対向する面にそれぞれ電極
22、23及び配向膜24、25が設けられた一対の基
板26、27の配向膜24、25間に液晶28が介在さ
れた構造となっている。液晶セル21の表面側には偏光
板29が配置されている。液晶セル21の裏面側には反
射偏光板30が配置されている。反射偏光板30の裏面
側には可視光領域の全ての波長光を拡散反射させる無色
の拡散反射板31が配置されている。
FIG. 1A shows a main part of a liquid crystal display device according to an embodiment of the present invention. This liquid crystal display device is of a reflection type and includes a liquid crystal cell 21. The liquid crystal cell 21 has a structure in which a liquid crystal 28 is interposed between the alignment films 24 and 25 of a pair of substrates 26 and 27 each having electrodes 22 and 23 and alignment films 24 and 25 provided on opposing surfaces. . A polarizing plate 29 is arranged on the surface side of the liquid crystal cell 21. On the back side of the liquid crystal cell 21, a reflective polarizing plate 30 is arranged. On the back side of the reflective polarizer 30, a colorless diffuse reflector 31 that diffusely reflects all wavelength light in the visible light region is disposed.

【0010】次に、図2は反射偏光板30を説明するた
めの斜視図を示したものである。この反射偏光板30
は、互いにほぼ直交する反射軸30s及び透過軸30p
を有し、反射軸30sに沿った偏光成分(以下、S偏光
成分という)の入射光を反射させ、透過軸30pに沿っ
た偏光成分(以下、P偏光成分という)の入射光を透過
させるようになっている。すなわち、反射偏光板30の
表面側から、反射軸30sに沿ったS偏光成分と透過軸
30pに沿ったP偏光成分との双方を含む光が入射され
ると、この入射光のうち反射軸30sに沿ったS偏光成
分の光は反射偏光板30で反射され、透過軸30pに沿
ったP偏光成分の光は反射偏光板30を透過する。な
お、反射偏光板30の裏面側からの入射光に対しても同
様の特性を有する。
Next, FIG. 2 is a perspective view for explaining the reflective polarizing plate 30. As shown in FIG. This reflective polarizing plate 30
Are a reflection axis 30s and a transmission axis 30p that are substantially orthogonal to each other.
And reflects incident light of a polarization component along the reflection axis 30s (hereinafter, referred to as S-polarization component) and transmits incident light of a polarization component along the transmission axis 30p (hereinafter, P-polarization component). It has become. That is, when light including both the S-polarized light component along the reflection axis 30s and the P-polarized light component along the transmission axis 30p is incident from the surface side of the reflective polarizing plate 30, the reflection axis 30s of the incident light Is reflected by the reflective polarizing plate 30, and the P-polarized component light along the transmission axis 30p is transmitted through the reflective polarizing plate 30. It should be noted that the same characteristic is obtained for incident light from the back side of the reflective polarizing plate 30.

【0011】次に、図3は反射偏光板30の具体的な構
造の一例を示したものである。この反射偏光板30は、
相対向する面にそれぞれ断面直角二等辺三角形状の微小
幅の凸条部41、42がその幅方向に多数並列されて形
成された一対の透明フィルム43、44を備え、一方の
透明フィルム43の凸条部41の各凸部が他方の透明フ
ィルム44の相隣接する凸条部42間の各凹部に重ね合
わされているとともに、両透明フィルム43、44間に
屈折率の異なる複数の透明膜を交互に積層してなる積層
膜45が介在された構造となっている。
Next, FIG. 3 shows an example of a specific structure of the reflective polarizing plate 30. As shown in FIG. This reflective polarizing plate 30
On opposite surfaces, a pair of transparent films 43 and 44 are formed in which a large number of ridges 41 and 42 each having an isosceles triangular cross section and having a minute width are arranged in parallel in the width direction. Each convex part of the convex part 41 is overlapped with each concave part between the adjacent convex parts 42 of the other transparent film 44, and a plurality of transparent films having different refractive indexes are formed between the two transparent films 43 and 44. It has a structure in which laminated films 45 alternately laminated are interposed.

【0012】次に、図1(B)を参照して、液晶セル2
1の両配向膜24、25の配向処理方向及び反射偏光板
30の透過軸等の光学軸の関係を表面側から見た場合に
ついて説明する。表面側の配向膜24の配向処理方向2
4aは、左下側から右上側に向かう方向となっている。
裏面側の配向膜25の配向処理方向25aは、左上側か
ら右下側に向かう方向となっている。したがって、この
場合の液晶8の液晶分子は、裏面側から表面側に向かっ
て矢印28aで示す時計回り方向へ所定のツイスト角で
ツイスト配向している。ここで、ツイスト角としては、
70°〜120°が好ましくそのうちでもほぼ90°が
より好ましく、この実施形態ではほぼ90°に設定され
ている。偏光板29の透過軸29aは、表面側の配向膜
24の配向方向24aとほぼ平行とされている。反射偏
光板30の透過軸30pは、裏面側の配向膜25の配向
方向25aとほぼ平行とされている。したがって、反射
偏光板30の反射軸30sは、裏面側の配向膜25の配
向方向25aとほぼ直交している。
Next, referring to FIG.
A description will be given of a case where the relationship between the alignment processing direction of the two alignment films 24 and 25 and the optical axis such as the transmission axis of the reflective polarizing plate 30 is viewed from the front side. Orientation process direction 2 of orientation film 24 on front side
4a is a direction from the lower left side to the upper right side.
The alignment processing direction 25a of the alignment film 25 on the back side is a direction from the upper left to the lower right. Therefore, the liquid crystal molecules of the liquid crystal 8 in this case are twist-oriented at a predetermined twist angle in the clockwise direction indicated by the arrow 28a from the back side to the front side. Here, as the twist angle,
70 ° to 120 ° is preferable, and among them, approximately 90 ° is more preferable. In this embodiment, it is set to approximately 90 °. The transmission axis 29a of the polarizing plate 29 is substantially parallel to the alignment direction 24a of the alignment film 24 on the front side. The transmission axis 30p of the reflective polarizing plate 30 is substantially parallel to the alignment direction 25a of the alignment film 25 on the back side. Therefore, the reflection axis 30s of the reflective polarizing plate 30 is substantially orthogonal to the alignment direction 25a of the alignment film 25 on the back surface side.

【0013】次に、この液晶表示装置の表示動作につい
て説明する。まず、図4(A)に示すように、液晶分子
28bが初期のツイスト配向状態(オフ状態)にある場
合には、同図において矢印で示すように、表面側から偏
光板29を透過して入射した直線偏光光(この場合、P
偏光成分の光とする。)は、液晶セル21を透過する過
程で液晶28の複屈折作用を受けて液晶28のツイスト
方向28aとは反対の方向にほぼ90°旋光され、直線
偏光方向が反射偏光板30の透過軸30pに沿った偏光
光となる。この直線偏光光は、次いで反射偏光板30を
透過し、次いで拡散反射板31で拡散反射される。この
拡散反射光は、拡散反射によりその偏光状態がくずれて
おり、反射偏光板30の反射軸30sに沿ったS偏光成
分と透過軸30pに沿ったP偏光成分との双方を含む光
となる。
Next, the display operation of the liquid crystal display device will be described. First, as shown in FIG. 4A, when the liquid crystal molecules 28b are in the initial twist alignment state (off state), the liquid crystal molecules 28b pass through the polarizing plate 29 from the front side as shown by arrows in FIG. Incident linearly polarized light (in this case, P
The light is polarized light. ) Undergoes a birefringence effect of the liquid crystal 28 in the process of transmitting through the liquid crystal cell 21 and is rotated by approximately 90 ° in the direction opposite to the twist direction 28 a of the liquid crystal 28, and the linear polarization direction is changed to the transmission axis 30 p of the reflective polarizing plate 30. It becomes polarized light along. This linearly polarized light is then transmitted through the reflective polarizer 30 and then diffusely reflected by the diffuse reflector 31. The diffusely reflected light has its polarization state changed by the diffuse reflection, and becomes light including both the S-polarized light component along the reflection axis 30s of the reflective polarizing plate 30 and the P-polarized light component along the transmission axis 30p.

【0014】そして、この拡散反射光のうち透過軸30
pに沿ったP偏光成分の光は反射偏光板30を透過し、
反射軸30sに沿ったS偏光成分の光は反射偏光板30
で反射される。このうち後者の反射偏光板30で反射さ
れたS偏光成分の光は、拡散反射板31で再度拡散反射
され、その偏光状態が再度くずれ、S偏光成分とP偏光
成分との双方を含む光となる。そして、この拡散反射光
のうち透過軸30pに沿ったP偏光成分の光は反射偏光
板30を透過し、反射軸30sに沿ったS偏光成分の光
は反射偏光板30で反射される。このようなことの繰り
返しにより、拡散反射板30で最初に拡散反射されて偏
光状態のくずれた光のほとんどが反射偏光板30を透過
することとなり、したがって拡散反射光のロスを少なく
することができる。そして、反射偏光板30を透過した
P偏光成分の光は、液晶セル21及び偏光板29を透過
して表面側に出射される。この状態は、白表示となり、
つまり背景が白表示となる。この場合、光のロスが少な
いので、背景の白表示を明るくすることができる。
The transmission axis 30 of the diffuse reflected light is
The light of the P-polarized component along p passes through the reflective polarizer 30,
The S-polarized light component along the reflection axis 30s is reflected by the reflection polarizing plate 30.
Is reflected by The light of the S-polarized light component reflected by the latter reflective polarizing plate 30 is diffused and reflected again by the diffused reflecting plate 31, the polarization state of which is again lost, and the light including both the S-polarized light component and the P-polarized light component. Become. Then, of the diffusely reflected light, light of the P-polarized component along the transmission axis 30p is transmitted through the reflective polarizer 30, and light of the S-polarized component along the reflective axis 30s is reflected by the reflective polarizer 30. By repeating such a process, most of the light that is first diffusely reflected by the diffuse reflection plate 30 and whose polarization state is lost is transmitted through the reflection polarization plate 30, and therefore, the loss of the diffuse reflection light can be reduced. . Then, the light of the P-polarized component transmitted through the reflective polarizing plate 30 is transmitted through the liquid crystal cell 21 and the polarizing plate 29 and is emitted to the front side. In this state, white display is displayed,
That is, the background is displayed in white. In this case, since the loss of light is small, the white display of the background can be brightened.

【0015】次に、図4(B)に示すように、液晶分子
28bが基板26、27面に対してほぼ垂直に立上がっ
た状態(オン状態)にある場合には、同図において矢印
で示すように、表面側から表面側の偏光板29を透過し
て入射したP偏光成分の光は、液晶セル21を旋光作用
を受けずに、つまりその直線偏光方向が変わらない状態
でそのまま透過し、したがって次の反射偏光板30で全
反射(鏡面反射)され、この反射光が液晶セル21及び
偏光板29を透過して表面側に出射される。この全反射
光による表示は、所定の方向(反射面の法線に関して対
称な方向)から見た場合に白表示となるが、その他の方
向から見た場合は黒表示となる。
Next, as shown in FIG. 4B, when the liquid crystal molecules 28b are in a state of rising substantially vertically to the surfaces of the substrates 26 and 27 (on state), an arrow is shown in FIG. As shown in the figure, the light of the P-polarized light component that has passed through the polarizing plate 29 on the front surface side and entered the liquid crystal cell 21 is not subjected to the optical rotation effect, that is, transmitted without change in the linear polarization direction. Therefore, the light is totally reflected (specular reflection) by the next reflective polarizing plate 30, and the reflected light passes through the liquid crystal cell 21 and the polarizing plate 29 and is emitted to the surface side. The display by the totally reflected light is a white display when viewed from a predetermined direction (a direction symmetrical with respect to the normal to the reflection surface), but is a black display when viewed from other directions.

【0016】よって、この実施形態の液晶表示装置によ
れば、外光の入射角度に対する全反射方向を除く視角方
向で、拡散反射による明るい白色背景に黒色の表示が高
コントラストで得られる。この場合、拡散反射と鏡面反
射による白黒表示となるため、従来の拡散反射と光の吸
収による白黒表示とは異なった趣の表示が得られる。
Therefore, according to the liquid crystal display device of this embodiment, a black display with a high contrast can be obtained on a bright white background due to diffuse reflection in a viewing angle direction other than the total reflection direction with respect to the incident angle of external light. In this case, since the monochrome display is performed by the diffuse reflection and the specular reflection, a display different from the conventional monochrome display by the diffuse reflection and light absorption is obtained.

【0017】また、両電極22、23間へオンとオフの
中間電位を印加すると、 印加電圧の相違により液晶分
子28bが初期のツイスト配向状態からその中間電位に
対応した角度だけ立上がり、表面側から表面側の偏光板
29を透過して入射したP偏光成分の光は、液晶セル2
1を透過する過程で反射偏光板30の反射軸30sに沿
ったS偏光成分と透過軸30pに沿ったP偏光成分との
双方を含む光となる。
When an intermediate potential between ON and OFF is applied between the electrodes 22 and 23, the liquid crystal molecules 28b rise from the initial twisted state by an angle corresponding to the intermediate potential due to the difference in the applied voltage, and from the surface side. The light of the P-polarized light component that has passed through the polarizing plate 29 on the front side and entered the liquid crystal cell 2
In the process of transmitting light 1, the light becomes a light including both the S-polarized light component along the reflection axis 30 s of the reflective polarizing plate 30 and the P-polarized light component along the transmission axis 30 p.

【0018】そして、この光のうち反射軸30sに沿っ
たS偏光成分の光は反射偏光板30で反射され、透過軸
30pに沿ったP偏光成分の光は反射偏光板30を透過
する。このうち前者の反射偏光板30で反射されたS偏
光成分の光は、液晶セル21を透過する過程でS偏光成
分とP偏光成分との双方を含む光となり、このうちS偏
光成分の光が偏光板29で吸収され、P偏光成分の光が
偏光板29を透過して表面側に出射される。一方、後者
の反射偏光板30を透過したP偏光成分の光は、拡散反
射板31で拡散反射され、上述の場合と同様にして、最
終的にはそのほとんどの光が反射偏光板30を透過す
る。この透過光はP偏光成分の光であるが、上述の場合
と同様に、液晶セル21を透過する過程でS偏光成分と
P偏光成分との双方を含む光となり、このうちS偏光成
分の光が偏光板29で吸収され、P偏光成分の光が偏光
板29を透過して表面側に出射される。これにより、階
調表現が行われる。
Then, of this light, the S-polarized light component along the reflection axis 30s is reflected by the reflective polarizing plate 30, and the P-polarized light component along the transmission axis 30p is transmitted through the reflective polarizing plate 30. Among these, the light of the S-polarized component reflected by the former reflective polarizing plate 30 becomes light containing both the S-polarized component and the P-polarized component in the process of transmitting through the liquid crystal cell 21, and the light of the S-polarized component is The light of the P-polarized component is absorbed by the polarizing plate 29 and is transmitted through the polarizing plate 29 and emitted to the surface side. On the other hand, the light of the P-polarized component transmitted through the latter reflective polarizer 30 is diffusely reflected by the diffuse reflector 31, and finally, most of the light is transmitted through the reflective polarizer 30 in the same manner as described above. I do. This transmitted light is light of a P-polarized component, but becomes light containing both the S-polarized component and the P-polarized component in the process of transmitting through the liquid crystal cell 21 as in the case described above. Is absorbed by the polarizing plate 29, and the light of the P-polarized component is transmitted through the polarizing plate 29 and emitted to the surface side. Thereby, gradation expression is performed.

【0019】次に、図5を参照して、この発明の他の実
施形態における液晶表示装置の液晶セル21の両配向膜
24、25の配向処理方向及び反射偏光板30の透過軸
等の光学軸の関係を表面側から見た場合について説明す
る。この実施形態において、図1(B)に示す場合と異
なる点は、反射偏光板30の透過軸30pは、裏面側の
配向膜25の配向方向25aとほぼ直交している点であ
る。したがって、この場合、反射偏光板30の透過軸3
0pは表面側偏光板29の透過軸29aとほぼ平行であ
り、反射軸30sは裏面側の配向膜25の配向方向25
aとほぼ平行となっている。
Next, referring to FIG. 5, the optical axis of the liquid crystal cell 21 of another embodiment of the present invention, such as the alignment processing directions of the alignment films 24 and 25 of the liquid crystal cell 21 and the transmission axis of the reflective polarizing plate 30, will be described. The case where the relationship between the axes is viewed from the front side will be described. In this embodiment, the difference from the case shown in FIG. 1B is that the transmission axis 30p of the reflective polarizing plate 30 is substantially orthogonal to the alignment direction 25a of the alignment film 25 on the back side. Therefore, in this case, the transmission axis 3 of the reflective polarizing plate 30
0p is substantially parallel to the transmission axis 29a of the front-side polarizing plate 29, and the reflection axis 30s is the alignment direction 25 of the rear-side alignment film 25.
It is almost parallel to a.

【0020】次に、この液晶表示装置の表示動作につい
て説明する。まず、図6(A)に示すように、液晶分子
28bが初期のツイスト配向状態(オフ状態)にある場
合には、同図において矢印で示すように、表面側から偏
光板29を透過して入射したP偏光成分の光は、液晶セ
ル21を透過する過程で液晶28のツイスト方向28a
とは反対の方向にほぼ90°旋光され、次いで反射偏光
板30で全反射(鏡面反射)され、この反射光が液晶セ
ル21及び偏光板29を透過して表面側に出射される。
この状態は、上述した特定方向を除いて黒表示となり、
つまり背景が黒表示となる。
Next, the display operation of the liquid crystal display device will be described. First, as shown in FIG. 6A, when the liquid crystal molecules 28b are in the initial twist alignment state (off state), the liquid crystal molecules 28b pass through the polarizing plate 29 from the front side as shown by arrows in FIG. The incident P-polarized light is transmitted through the liquid crystal cell 21 in the twist direction 28 a of the liquid crystal 28.
The light is rotated by approximately 90 ° in a direction opposite to the direction described above, and then is totally reflected (specular reflection) by the reflective polarizing plate 30, and the reflected light passes through the liquid crystal cell 21 and the polarizing plate 29 and is emitted to the surface side.
In this state, black is displayed except for the specific direction described above,
That is, the background is displayed in black.

【0021】次に、図6(B)に示すように、液晶分子
28bが基板26、27面に対してほぼ垂直に立上がっ
た状態(オン状態)にある場合には、表面側から表面側
の偏光板29を透過して入射したP偏光成分の光は、液
晶セル21を旋光作用を受けずにそのまま透過し、次い
で反射偏光板30を透過し、次いで拡散反射板31で拡
散反射される。この拡散反射光のほとんどは、上述の場
合と同様にして、最終的には反射偏光板30を透過す
る。この透過光は、P偏光成分の光であるので、液晶セ
ル21を旋光作用を受けずにそのまま透過した後偏光板
29を透過して表面側に出射される。この状態は、白表
示となる。したがって、この実施形態の液晶表示装置に
よる表示は、鏡面反射による黒色背景部と拡散反射によ
る白色表示部による白黒表示となる。
Next, as shown in FIG. 6B, when the liquid crystal molecules 28b are in a state of rising substantially vertically to the surfaces of the substrates 26 and 27 (on state), the liquid crystal molecules 28b are shifted from the surface side to the surface side. The light of the P-polarized light component transmitted through the polarizing plate 29 and transmitted through the liquid crystal cell 21 as it is without being affected by the optical rotation, is transmitted through the reflective polarizing plate 30, and then diffused and reflected by the diffuse reflecting plate 31. . Most of the diffusely reflected light finally passes through the reflective polarizer 30 in the same manner as described above. Since this transmitted light is P-polarized component light, it passes through the liquid crystal cell 21 as it is without being affected by optical rotation, and then passes through the polarizing plate 29 and is emitted to the surface side. This state is a white display. Therefore, the display by the liquid crystal display device of this embodiment is a black and white display by a black background part by specular reflection and a white display part by diffuse reflection.

【0022】なお、上記実施形態では、反射偏光板30
の裏面側に拡散反射板31を配置した場合について説明
したが、反射偏光板30の裏面側に拡散反射兼半透過板
を配置し、その裏面側にバックライトを配置するように
してもよい。この場合、明所ではバックライトを消灯し
て、この液晶表示装置を反射型として使用し、暗所では
バックライトを点灯して、この液晶表示装置を透過型と
して使用することになる。また、この発明は、ツイスト
ネマティク型の液晶表示装置に限らず、スーパーツイス
トネマティク型或るいはホモジニアス型の液晶表示装置
等にも適用することができる。
In the above embodiment, the reflective polarizing plate 30
Although the case where the diffuse reflection plate 31 is arranged on the back side of the first embodiment has been described, a diffuse reflection / semi-transmission plate may be arranged on the back side of the reflective polarizing plate 30 and a backlight may be arranged on the back side. In this case, the backlight is turned off in a bright place and the liquid crystal display device is used as a reflection type, and in a dark place, the backlight is turned on and the liquid crystal display device is used as a transmission type. Further, the present invention is not limited to a twisted nematic liquid crystal display device, but can be applied to a super twisted nematic or homogeneous liquid crystal display device.

【0023】[0023]

【発明の効果】以上説明したように、この発明によれ
ば、拡散反射板で拡散反射された光の偏光状態がくずれ
ても、反射偏光板の反射作用と拡散反射板の拡散反射作
用とにより、最終的にはそのほとんどが反射偏光板を透
過することとなり、したがって拡散反射光のロスを少な
くし、拡散反射光による白色の輝度を上げることができ
る。
As described above, according to the present invention, even if the polarization state of the light diffusely reflected by the diffuse reflector is lost, the reflection effect of the reflective polarizer and the diffuse reflection effect of the diffuse reflector are achieved. Finally, most of the light is transmitted through the reflective polarizing plate, so that the loss of the diffuse reflected light can be reduced, and the brightness of the white light due to the diffuse reflected light can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)はこの発明の一実施形態における液晶表
示装置の要部の断面図、(B)はその液晶セルの両配向
膜の配向処理方向等の光学軸の関係を説明する説明図。
FIG. 1A is a cross-sectional view of a main part of a liquid crystal display device according to an embodiment of the present invention, and FIG. 1B is a diagram illustrating a relationship between optical axes such as alignment processing directions of both alignment films of the liquid crystal cell. FIG.

【図2】反射偏光板を説明するために示す斜視図。FIG. 2 is a perspective view illustrating a reflective polarizing plate.

【図3】反射偏光板の一部の断面図。FIG. 3 is a cross-sectional view of a part of a reflective polarizing plate.

【図4】(A)は図1に示す液晶表示装置のオフ状態を
説明するために示す一部の断面図、(B)はオン状態を
説明するために示す一部の断面図。
4A is a partial cross-sectional view illustrating an off state of the liquid crystal display device illustrated in FIG. 1, and FIG. 4B is a partial cross-sectional view illustrating an on state.

【図5】この発明の他の実施形態における液晶表示装置
の液晶セルの両配向膜の配向処理方向等の光学軸の関係
を説明する説明図。
FIG. 5 is an explanatory diagram illustrating a relationship between optical axes such as alignment processing directions of both alignment films of a liquid crystal cell of a liquid crystal display device according to another embodiment of the present invention.

【図6】(A)は図5に示す液晶表示装置のオフ状態を
説明するために示す一部の断面図、(B)はオン状態を
説明するために示す一部の断面図。
6A is a partial cross-sectional view illustrating an off state of the liquid crystal display device illustrated in FIG. 5, and FIG. 6B is a partial cross-sectional view illustrating an on state.

【図7】(A)は従来の液晶表示装置の一例の一部の断
面図、(B)はその液晶セルの両配向膜の配向処理方向
等の光学軸の関係を説明する説明図。
FIG. 7A is a cross-sectional view of a part of an example of a conventional liquid crystal display device, and FIG. 7B is an explanatory diagram illustrating a relationship between optical axes such as alignment processing directions of both alignment films of the liquid crystal cell.

【図8】(A)は図7に示す液晶表示装置のオフ状態を
説明するために示す一部の断面図、(B)はオン状態を
説明するために示す一部の断面図。
8A is a partial cross-sectional view illustrating an off state of the liquid crystal display device illustrated in FIG. 7, and FIG. 8B is a partial cross-sectional view illustrating an on state.

【符号の説明】[Explanation of symbols]

21 液晶セル 22、23 電極 24、25 配向膜 24a、25a 配向処理方向 26、27 基板 28 液晶 28a ツイスト方向 29 偏光板 29a 透過軸 30 反射偏光板 30s 反射軸 30p 透過軸 31 拡散反射板 DESCRIPTION OF SYMBOLS 21 Liquid crystal cell 22, 23 Electrode 24, 25 Alignment film 24a, 25a Alignment processing direction 26, 27 Substrate 28 Liquid crystal 28a Twist direction 29 Polarizer 29a Transmission axis 30 Reflective polarizer 30s Reflection axis 30p Transmission axis 31 Diffuse reflector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 相対向する面にそれぞれ電極及び配向膜
が設けられた一対の基板間に前記両電極間への印加電圧
に応じて複屈折性の変化する液晶が介在された液晶セル
と、この液晶セルの表面側に配置された偏光板と、前記
液晶セルの裏面側に配置され、互いにほぼ直交する方向
のうち一方の方向に沿った偏光成分の入射光を反射させ
る反射軸と他方の方向に沿った偏光成分の入射光を透過
させる透過軸とを有する反射偏光板と、この反射偏光板
の裏面側に配置され入射光を拡散反射させる拡散反射板
とを具備していることを特徴とする液晶表示装置。
1. A liquid crystal cell comprising a pair of substrates provided with electrodes and alignment films on opposing surfaces, respectively, and a liquid crystal having a birefringence that changes according to a voltage applied between the electrodes. A polarizing plate disposed on the front surface side of the liquid crystal cell, and a reflection axis disposed on the back surface side of the liquid crystal cell, which reflects incident light of a polarization component along one direction of directions substantially orthogonal to each other, and the other. A reflective polarizing plate having a transmission axis for transmitting incident light of a polarized component along the direction, and a diffuse reflector disposed on the back side of the reflective polarizing plate for diffusing and reflecting the incident light. Liquid crystal display device.
【請求項2】 前記液晶の液晶分子は一方の基板から他
方の基板に向かって70°〜120°の角度で捩れるよ
うに配列し、前記偏光板の透過軸が前記液晶セルの表面
側の配向膜の配向処理方向とほぼ平行とされ、前記反射
偏光板の透過軸が前記液晶セルの裏面側の配向膜の配向
処理方向とほぼ平行とされていることを特徴とする請求
項1記載の液晶表示装置。
2. The liquid crystal molecules of the liquid crystal are arranged so as to be twisted at an angle of 70 ° to 120 ° from one substrate to the other substrate, and the transmission axis of the polarizing plate is located on the surface side of the liquid crystal cell. 2. The liquid crystal display device according to claim 1, wherein the alignment direction of the alignment film is substantially parallel to the alignment direction, and the transmission axis of the reflective polarizer is substantially parallel to the alignment direction of the alignment film on the back side of the liquid crystal cell. Liquid crystal display.
【請求項3】 前記液晶の液晶分子は一方の基板から他
方の基板に向かって70°〜120°の角度で捩れるよ
うに配列し、前記偏光板の透過軸が前記液晶セルの表面
側の配向膜の配向処理方向とほぼ平行とされ、前記反射
偏光板の透過軸が前記液晶セルの裏面側の配向膜の配向
処理方向とほぼ直交されていることを特徴とする請求項
1記載の液晶表示装置。
3. The liquid crystal molecules of the liquid crystal are arranged so as to be twisted at an angle of 70 ° to 120 ° from one substrate toward the other substrate, and the transmission axis of the polarizing plate is located on the surface side of the liquid crystal cell. 2. The liquid crystal according to claim 1, wherein the liquid crystal cell is substantially parallel to an alignment processing direction of the alignment film, and a transmission axis of the reflective polarizing plate is substantially orthogonal to an alignment processing direction of the alignment film on the back surface side of the liquid crystal cell. Display device.
【請求項4】 前記拡散反射板は拡散反射機能と透過機
能を備えた拡散反射兼半透過板からなることを特徴とす
る請求項1〜3のいずれかに記載の液晶表示装置。
4. The liquid crystal display device according to claim 1, wherein said diffuse reflection plate comprises a diffuse reflection / semi-transmission plate having a diffuse reflection function and a transmission function.
JP9284253A 1997-10-02 1997-10-02 Liquid crystal display device Pending JPH11109336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9284253A JPH11109336A (en) 1997-10-02 1997-10-02 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9284253A JPH11109336A (en) 1997-10-02 1997-10-02 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH11109336A true JPH11109336A (en) 1999-04-23

Family

ID=17676143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9284253A Pending JPH11109336A (en) 1997-10-02 1997-10-02 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH11109336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059023A1 (en) * 1998-05-12 1999-11-18 Seiko Epson Corporation Display and electronic timepiece
KR20010058312A (en) * 1999-12-27 2001-07-05 박종섭 Reflective liquid crystal display device
KR20020038520A (en) * 2000-11-16 2002-05-23 구사마 사부로 Liquid crystal display manufacturing method and liquid crystal display
WO2003034133A1 (en) * 2001-10-12 2003-04-24 Rohm Co., Ltd. Liquid crystal display apparatus, mirror apparatus, and electric device having liquid crystal display apparatus
KR100393749B1 (en) * 1999-09-30 2003-08-09 가시오게산키 가부시키가이샤 Liquid crystal display apparatus using polarizing element transmitting one of two polarizing components crossing at right angles and reflecting the other component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059023A1 (en) * 1998-05-12 1999-11-18 Seiko Epson Corporation Display and electronic timepiece
US6519209B1 (en) 1998-05-12 2003-02-11 Seiko Epson Corporation Display device and electronic watch
KR100393749B1 (en) * 1999-09-30 2003-08-09 가시오게산키 가부시키가이샤 Liquid crystal display apparatus using polarizing element transmitting one of two polarizing components crossing at right angles and reflecting the other component
KR20010058312A (en) * 1999-12-27 2001-07-05 박종섭 Reflective liquid crystal display device
KR20020038520A (en) * 2000-11-16 2002-05-23 구사마 사부로 Liquid crystal display manufacturing method and liquid crystal display
WO2003034133A1 (en) * 2001-10-12 2003-04-24 Rohm Co., Ltd. Liquid crystal display apparatus, mirror apparatus, and electric device having liquid crystal display apparatus

Similar Documents

Publication Publication Date Title
JP2728059B2 (en) Reflective liquid crystal display
JP2001033754A (en) Liquid crystal display device
JPH08292413A (en) Liquid crystal display device
KR20040031858A (en) Liquid crystal display
JPH11109336A (en) Liquid crystal display device
JP3999867B2 (en) Liquid crystal display
CN117518566A (en) Electric control optical screen
JPH11194359A (en) Liquid crystal display device
JP2002107725A (en) Liquid crystal display device
JP2000047195A (en) Liquid crystal display device
JP2000347187A (en) Reflective liquid crystal display device
JP2002090773A (en) Liquid crystal display device
JP2001194660A (en) Liquid crystal display device
JP2001075087A (en) Liquid crystal display device
JP2002098963A (en) Liquid crystal display device
JP2004170792A (en) Display device and electronic device
JP2002006134A (en) Polarizing element and liquid crystal display device employing the same
JPH10247410A (en) Back light device and liquid crystal display device using it
JP3289392B2 (en) Color liquid crystal display
JP3289370B2 (en) Color liquid crystal display
JP2004219553A (en) Liquid crystal display device and electronic appliance
JP2002098962A (en) Liquid crystal device and electronic device
JP2002049030A (en) Liquid crystal display device
KR20010021287A (en) Liquid crystal display with nonspecular reflectors
JP2004219552A (en) Liquid crystal display device and electronic appliance