JPH11108900A - Method and apparatus for calibration of sensitivity of magnetic flaw-detecting device - Google Patents

Method and apparatus for calibration of sensitivity of magnetic flaw-detecting device

Info

Publication number
JPH11108900A
JPH11108900A JP26573597A JP26573597A JPH11108900A JP H11108900 A JPH11108900 A JP H11108900A JP 26573597 A JP26573597 A JP 26573597A JP 26573597 A JP26573597 A JP 26573597A JP H11108900 A JPH11108900 A JP H11108900A
Authority
JP
Japan
Prior art keywords
magnetic
sensitivity
flaw
power supply
magnetizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26573597A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yokota
廣幸 横田
Yoshihide Yamamoto
嘉秀 山本
Shigetoshi Tsuruoka
繁利 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYSTEM HIGHTECH KK
JFE Steel Corp
Original Assignee
SYSTEM HIGHTECH KK
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYSTEM HIGHTECH KK, Kawasaki Steel Corp filed Critical SYSTEM HIGHTECH KK
Priority to JP26573597A priority Critical patent/JPH11108900A/en
Publication of JPH11108900A publication Critical patent/JPH11108900A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus in which the sensitivity of a magnetic flaw- detecting device can be calibrated simply without newly adding a coil for calibration, a hollow roll or the like by a method wherein an AC current is superposed on a DC current, for magnetic-field generation, which is made to flow to a magnetizer and the sensitivity of a group of magnetism sensing elements is calibrated by a pseudo magnetic flux leakage. SOLUTION: A magnetic flaw-detecting device 100 is provided with a magnetizer 102 which is composed of a magnetizing yoke 104 and of a magnetizing coil 106, with a flaw detecting head 110 and with a power supply 112, and it is faced with a thin steel strip 10 at the outside of a nonmagnetic roll 80. In the flaw-detecting head 110, 1000 pieces of magnetism sensing elements 111 are arranged linearly in the width direction of the thin steel strip 10. The power supply 112 is provided with a power supply for excitation, with an AC power supply for pseudo-magnetic-flux-leakage generation and with a circuit which superposes both power supplies. In a flaw detecting operation, the DC power supply is supplied to the magnetizing coil 106. In a calibrating operation, the output of the superposing circuit is supplied. In a simple calibrating operation, the the magnetic flaw-detecting device 100 in an on-line position is raised by about 200 mm by using a raising and lowering device 150, an alternating current is applied to the magnetizing coil 106 from the power supply 112, and the output of all the magnetism sensing elements as a group is verified so as to judge whether it is proper or not.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気探傷装置の感
度校正方法及び装置に係り、特に、走行する薄鋼帯をオ
ンラインで探傷する磁気探傷装置の簡易校正に用いるの
に好適な、検査対象ストリップの近傍に配設した磁化器
により、前記ストリップの走行方向に磁界を発生させ、
内部あるいは表面欠陥で生ずる漏洩磁束を、前記ストリ
ップの幅方向に多数並設された感磁性素子群により検出
して、欠陥信号とする磁気探傷装置の感度校正方法及び
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for calibrating the sensitivity of a magnetic flaw detector, and more particularly to an inspection object suitable for simple calibration of a magnetic flaw detector which flaws a traveling thin steel strip online. A magnetic field is generated in the running direction of the strip by a magnetizer disposed near the strip,
The present invention relates to a method and an apparatus for calibrating the sensitivity of a magnetic flaw detector which detects a leakage magnetic flux generated by an internal or surface defect by a group of magnetic sensitive elements arranged in parallel in the width direction of the strip and generates a defect signal.

【0002】[0002]

【従来の技術】磁気を用いた薄鋼帯の非金属介在物を検
出する方法としては、1.0m角程度の鋼板(厚さ0.
15〜0.35mm)を静止したテーブルの上に置き、
これに直流磁界をかけ磁粉探傷することが行われている
が、これは出荷検査を含めた品質管理用として適用さ
れ、又抜取り検査であり、全鋼帯には適用できない。
2. Description of the Related Art As a method for detecting non-metallic inclusions in a thin steel strip by using magnetism, a steel plate of about 1.0 m square (thickness of about 1.0 m) is used.
15-0.35mm) on a stationary table,
A direct magnetic field is applied to this to perform magnetic particle flaw detection, but this is applied for quality control including shipping inspection, and is a sampling inspection and cannot be applied to all steel strips.

【0003】一方、近年、磁束を検出する感磁性素子群
を直線状に配設した探傷ヘッドを備え、一定速度で走行
中の薄鋼帯の全幅に存在する欠陥をオンラインで連続的
に検出する磁気探傷装置が提案されている(実開昭63
−107849)。
On the other hand, in recent years, a flaw detection head having a group of magnetically sensitive elements for detecting magnetic flux arranged in a straight line is provided, and a defect existing in the entire width of a thin steel strip running at a constant speed is continuously detected online. A magnetic flaw detector has been proposed (Japanese Utility Model Application Laid-open 63)
-107849).

【0004】このような磁気探傷装置においては、図1
及び図2に示す如く、検査対象である薄鋼帯10の近傍
に配置した磁化コイル28に励磁電流を供給して、磁化
鉄心26と走行中の薄鋼帯10で閉じた磁路を形成す
る。そして、薄鋼帯10の内部あるいは表面に欠陥が存
在すると、薄鋼帯内の磁路が乱れ、漏洩磁束が生じるた
め、この漏洩磁束を、探傷ヘッド22を構成する感磁性
素子群で検出し、該当結果に対応する欠陥信号として検
出するようにしている。
[0004] In such a magnetic flaw detector, FIG.
As shown in FIG. 2, an exciting current is supplied to a magnetized coil 28 disposed near the thin steel strip 10 to be inspected, and a closed magnetic path is formed between the magnetized iron core 26 and the running thin steel strip 10. . If a defect exists inside or on the surface of the thin steel strip 10, the magnetic path in the thin steel strip is disturbed, and a leakage magnetic flux is generated. This leakage magnetic flux is detected by a magnetic sensitive element group constituting the flaw detection head 22. , As a defect signal corresponding to the corresponding result.

【0005】検出された欠陥信号は、その信号レベルが
薄鋼帯内部又は表面の欠陥の規模(大きさ)と対応する
ので、欠陥信号を検出することによって、薄鋼帯の内部
又は表面に存在する欠陥の幅方向の発生位置と、その規
模が把握できる。
Since the signal level of the detected defect signal corresponds to the size (magnitude) of the defect inside or on the surface of the thin steel strip, by detecting the defect signal, the presence or absence of the defect signal on the inside or surface of the thin steel strip The position and size of the defect occurring in the width direction can be grasped.

【0006】図において、30は、薄鋼帯10の走行と
同期して回転する中空ロール、32は、該中空ロール3
0の内部を貫通する固定軸、34は、前記磁化鉄心26
及び磁化コイル28によって構成される磁化器24及び
探傷ヘッド22を、該固定軸32に固定するための支持
部材、36は、前記磁化コイル28に励磁電流を供給す
るための電源ケーブル、38は、前記探傷ヘッド22内
の感磁性素子群から出力される検出信号を取り出すため
の信号ケーブル、40は、前記中空ロール30を回転自
在に支持するころがり軸受である。
In the drawing, reference numeral 30 denotes a hollow roll which rotates in synchronization with the running of the thin steel strip 10;
0, a fixed axis penetrating through the inside of the magnetized iron core 26
A support member for fixing the magnetizer 24 and the flaw detection head 22 constituted by the magnetizing coil 28 to the fixed shaft 32; 36, a power cable for supplying an exciting current to the magnetizing coil 28; A signal cable 40 for extracting a detection signal output from the magnetic sensitive element group in the flaw detection head 22 is a rolling bearing that rotatably supports the hollow roll 30.

【0007】このような磁気探傷装置20においては、
薄鋼帯10の内部又は表面に存在する欠陥の規模を、探
傷ヘッド22を構成する各感磁性素子で検出された漏洩
磁束の強度で判定している。従って、各感磁性素子の感
度が均一になるように調整する必要がある。又、他の磁
気探傷装置との間における探傷ヘッド全体としての感度
も一致させる必要がある。更に、経時的な感度の変化に
対しては、定期的に調整する必要がある。又、検出量と
欠陥規模の絶対値との対応も把握しておく必要がある。
[0007] In such a magnetic flaw detector 20,
The magnitude of the defect existing inside or on the surface of the thin steel strip 10 is determined based on the intensity of the leakage magnetic flux detected by each of the magnetic sensitive elements constituting the flaw detection head 22. Therefore, it is necessary to make adjustments so that the sensitivity of each magnetic element is uniform. It is also necessary to match the sensitivity of the entire flaw detection head with other magnetic flaw detectors. Further, it is necessary to periodically adjust for a change in sensitivity over time. It is also necessary to grasp the correspondence between the detected amount and the absolute value of the defect scale.

【0008】そのため従来は、特開昭63−27747
に示される如く、標準となる人工欠陥を有した板状の標
準欠陥試料を作成し、該標準欠陥試料を探傷ヘッド22
を構成する各感磁性素子上に置いて、1個ずつ感度を校
正していた。具体的には、校正を始めるに当り、先ず薄
鋼板を磁粉探傷器により探傷して、介在物が存在する部
分を入手し、磁粉探傷、X線写真、顕微鏡等により介在
物の大きさを同定する。次に磁気探傷装置により介在物
の出力を検定する。このとき、薄鋼板と感磁性素子の空
間距離(リフトオフ)0.5mm程度、磁励電流1.0
A程度等、計測条件を把握する。次いで、薄鋼板の健全
部分から同定した介在物に関連した出力を持つ人工線状
傷を作成し、計測条件が把握された磁気探傷装置にて出
力を検定する。このとき介在物と人工線状傷の出力を比
較し、関連性を確認する。人工線状傷の出力は、出力の
同じ部分の長さが50mm程度以上必要である。
[0008] For this reason, conventionally, Japanese Patent Application Laid-Open No. 63-27747
As shown in FIG. 1, a plate-shaped standard defect sample having an artificial defect serving as a standard is prepared, and the standard defect sample is
Was placed on each of the magnetic sensitive elements, and the sensitivity was calibrated one by one. Specifically, before starting calibration, first inspect the thin steel sheet with a magnetic particle flaw detector to obtain the part where inclusions are present, and identify the size of the inclusions using magnetic particle flaw detection, X-ray photography, a microscope, etc. I do. Next, the output of the inclusion is verified by a magnetic flaw detector. At this time, the spatial distance (lift-off) between the thin steel plate and the magnetic sensitive element is about 0.5 mm, and the magnetic excitation current is 1.0
Understand the measurement conditions such as A. Next, an artificial linear flaw having an output related to the identified inclusion is created from the sound portion of the thin steel sheet, and the output is verified by a magnetic flaw detector in which measurement conditions are grasped. At this time, the output of the inclusion and the artificial linear wound are compared to confirm the relevance. The output of the artificial linear wound requires that the length of the same portion of the output is about 50 mm or more.

【0009】又、他の感磁性素子群について、人工線状
傷を幅方向に移動させながら計測し、増幅器の利得によ
り同一出力になるように調整する。
In addition, for the other magnetic sensitive element groups, the artificial linear flaw is measured while being moved in the width direction, and adjusted so as to have the same output by the gain of the amplifier.

【0010】以上で検出を必要とする介在物の出力に関
連した人工線状傷により感磁性素子群の出力も一定とな
り、校正が完了する。
As described above, the output of the magnetic sensitive element group becomes constant due to the artificial linear flaw related to the output of the inclusion requiring detection, and the calibration is completed.

【0011】上述の本格的な校正は、装置を設置したと
きに行うが、時間と労力を必要とするため、度々行うも
のではない。
The above-mentioned full-scale calibration is performed when the apparatus is installed, but is not frequently performed because it requires time and labor.

【0012】一方、このような標準欠陥試料を用いる場
合の煩わしさを解消するものとして、特開平3−134
555では、外部から疑似漏洩磁束となる均一磁界を探
傷ヘッド全体に印加することによって、標準欠陥試料の
使用を排除することが提案されている。
On the other hand, Japanese Patent Application Laid-Open No. 3-134 discloses a method for eliminating the inconvenience of using such a standard defect sample.
No. 555 proposes to eliminate the use of a standard defect sample by applying a uniform magnetic field, which becomes a pseudo leakage magnetic flux, from the outside to the entire flaw detection head.

【0013】即ち、この特開平3−134555に提案
された校正装置においては、図3に示す如く、探傷ヘッ
ドの磁気検出領域より広い領域で疑似漏洩磁束となる均
一磁界を発生させる細長い磁化器50と、この均一磁束
が探傷ヘッドで均一に検出されるように探傷ヘッドと磁
化器50の相対位置を固定する取付固定治具56と、均
一磁界の強度が既知規模の欠陥に起因する漏洩磁束強度
に対応した強度になるように、磁化器50の励磁電流を
可変制御する電源装置70とを備えている。
That is, in the calibration device proposed in Japanese Patent Application Laid-Open No. 3-134555, as shown in FIG. 3, an elongated magnetizer 50 for generating a uniform magnetic field serving as a pseudo leakage magnetic flux in a region wider than the magnetic detection region of the flaw detection head. A fixing jig 56 for fixing the relative position between the flaw detection head and the magnetizer 50 so that the uniform magnetic flux is uniformly detected by the flaw detection head; and a leakage magnetic flux intensity whose uniform magnetic field strength is caused by a defect of a known scale. And a power supply device 70 for variably controlling the exciting current of the magnetizer 50 so as to have an intensity corresponding to.

【0014】この校正装置においては、前記取付固定治
具56の固定部材58A、58Bに、前記磁気探傷装置
20の固定軸32を取り付け、中空ロール30内の探傷
ヘッド22が、磁化器50を構成する細長いヨーク52
の上面52Aに対向するように設置する。
In this calibration apparatus, the fixed shaft 32 of the magnetic flaw detector 20 is mounted on the fixing members 58A and 58B of the mounting jig 56, and the flaw detection head 22 in the hollow roll 30 constitutes the magnetizer 50. Elongate yoke 52
Is installed so as to face the upper surface 52A of the.

【0015】そして、電源装置70を起動させて校正用
磁化器50の細長い励磁コイル54に励磁電流を供給し
て、ヨーク52の周囲に磁界を発生させ、該ヨーク52
の上面52Aに対向している磁気探傷装置20内の探傷
ヘッド22を構成する各感磁性素子に同一磁界を印加
し、このときの感磁性素子の出力から検出される欠陥信
号による測定欠陥規模が既知欠陥規模に一致するよう
に、各感磁性素子の感度を調整する。
Then, the power supply 70 is activated to supply an exciting current to the elongated exciting coil 54 of the magnetizing device 50 for calibration, thereby generating a magnetic field around the yoke 52.
The same magnetic field is applied to each of the magnetic sensitive elements constituting the flaw detection head 22 in the magnetic flaw detection apparatus 20 facing the upper surface 52A of the magnetic head, and the defect size detected by the defect signal detected from the output of the magnetic sensitive element at this time is The sensitivity of each magnetic sensitive element is adjusted to match the known defect size.

【0016】更に、この特開平3−134555を改良
した特開平5−10926では、校正用の励磁コイル5
4を、特開平3−134555のような別体の校正装置
ではなく、探傷ヘッド22や磁化鉄心26の周囲に巻き
回したり、前記磁化鉄心26内に配設したり、薄鋼帯1
0を挟んだ反対側位置に第2の中空ロールと共に配設す
ることが提案されている。
Further, in Japanese Patent Laid-Open No. Hei 5-10926 which is an improvement of the Japanese Patent Laid-Open No. Hei 3-134555, an exciting coil 5 for calibration is used.
4 is wound around the flaw detection head 22 and the magnetized iron core 26, is disposed in the magnetized iron core 26, and is not a thin steel strip 1 instead of a separate calibration device as disclosed in JP-A-3-134555.
It has been proposed to dispose it together with a second hollow roll at a position opposite to zero.

【0017】[0017]

【発明が解決しようとする課題】しかしながら、特開平
5−10926に記載された方法では、複雑で狭い場所
にある感磁性素子群全部や磁化鉄心に新たに校正用コイ
ルを巻回したり、中空ロールを追設する等、多大な労力
と経費及び設備費が必要てあるという問題点を有してい
た。
However, according to the method described in Japanese Patent Application Laid-Open No. HEI 5-10926, a new calibration coil is wound around the entire magnet-sensitive element group or magnetized core in a complicated and narrow space, or a hollow roll is used. However, there is a problem that a great deal of labor, cost and equipment cost are required.

【0018】本発明は、前記従来の問題点を解決するべ
くなされたもので、校正用コイルや中空ロール等を新た
に追加することなく、簡単に校正ができるようにするこ
とを課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to easily perform calibration without newly adding a calibration coil, a hollow roll, and the like.

【0019】[0019]

【課題を解決するための手段】本発明は、検査対象スト
リップの近傍に配設した磁化器により、前記ストリップ
の走行方向に磁界を発生させ、内部あるいは表面欠陥で
生ずる漏洩磁束を、前記ストリップの幅方向に多数並設
された感磁性素子群により検出して、欠陥信号とする磁
気探傷装置の感度校正方法において、前記磁化器に流す
磁界発生用の直流電流に、擬似欠陥に対応する擬似漏洩
磁束発生用の交流電流を重畳させ、該擬似漏洩磁束によ
り、前記感磁性素子群の感度を校正するようにして、前
記課題を解決したものである。
According to the present invention, a magnetic field is generated in the running direction of the strip by a magnetizer disposed near the strip to be inspected, and a leakage magnetic flux generated by an internal or surface defect is reduced. In the method of calibrating the sensitivity of a magnetic flaw detector, which is detected by a group of magnetic sensing elements arranged side by side in the width direction and is used as a defect signal, a pseudo-leakage corresponding to a pseudo defect is added to a direct current for generating a magnetic field flowing through the magnetizer This problem is solved by superimposing an alternating current for generating a magnetic flux and calibrating the sensitivity of the magnetic sensitive element group by the pseudo leakage magnetic flux.

【0020】又、同様の感度校正装置において、擬似欠
陥に対応する擬似漏洩磁束発生用の交流電流を発生する
手段と、該交流電流を、前記磁化器に流す磁界発生用の
直流電流に重畳する手段とを備え、該擬似漏洩磁束によ
り、前記感磁性素子群の感度を校正するようにして、同
じく前記課題を解決したものである。
Further, in the same sensitivity calibration apparatus, means for generating an AC current for generating a pseudo leakage magnetic flux corresponding to a pseudo defect, and superimposing the AC current on a DC current for generating a magnetic field flowing through the magnetizer. Means for correcting the sensitivity of the magnetic-sensitive element group using the pseudo leakage magnetic flux.

【0021】食缶等の材料となる薄鋼板は、ツーピース
缶(DI缶)を製造する際に、強度の加工を受けるよう
になり、鋼板の内部に存在する非金属介在物(以下、単
に介在物と称する)等も加工割れの原因となっている。
検出を要求される介在物の大きさは、長さ1.0×幅
0.1×厚さ0.01mm(楕円計算で0.5×10-3
mm3 )程度であり、薄鋼板の幅方向に設置する感磁性
素子の数は1000個程度必要となる。
A thin steel sheet used as a material for a food can or the like is subjected to high strength processing when a two-piece can (DI can) is manufactured, and nonmetallic inclusions (hereinafter simply referred to as “intervening”) existing inside the steel sheet. Etc.) also cause processing cracks.
The size of the inclusion required to be detected is 1.0 × 0.1 × 0.01 mm (0.5 × 10 −3 by elliptical calculation).
mm 3 ), and the number of magnetically sensitive elements installed in the width direction of the thin steel sheet is required to be about 1,000.

【0022】この1000個もの感磁性素子の特性を揃
えることは、例えセンサホルダに設置したとしても、容
易ではない。それは、感磁性素子群の板幅方向への組込
みが手作業で行われるため、各感磁性素子と鋼板との空
間距離(リフトオフ)のばらつき、漏洩磁束を検出する
磁界方向に対する角度偏位の誤差、感磁性素子自体の磁
界に対する感度の違い等が発生するからである。
It is not easy to make the characteristics of the 1,000 magnetic sensitive elements uniform even if they are installed in the sensor holder. This is because the magnetic sensitive element group is manually assembled in the width direction of the plate, so that the spatial distance (lift-off) between each magnetic sensitive element and the steel sheet varies, and the deviation of the angular deviation from the magnetic field direction for detecting the leakage magnetic flux. This is because a difference in sensitivity to the magnetic field of the magnetic sensitive element itself occurs.

【0023】特に、リフトオフは問題となる。公表され
た介在物検出装置のリフトオフは0.5mmに対し、±
0.1mm程度であるが、この差は、介在物の検出感度
に大きく影響する。図4に、リフトオフと感磁性素子の
出力の関係の例を示す。横軸のリフトオフ0.5mmに
対する0.4mmと0.6mmへの変化で、約±20%
の出力変化を示す。
In particular, lift-off is a problem. The published inclusion detector lift-off is 0.5 mm, ± 0.5 mm.
Although this is about 0.1 mm, this difference greatly affects the detection sensitivity of inclusions. FIG. 4 shows an example of the relationship between the lift-off and the output of the magneto-sensitive element. About ± 20% in change from 0.4mm to 0.6mm with respect to 0.5mm lift-off on the horizontal axis
2 shows the output change.

【0024】又、水平磁界方向に対する変位角度も±2
0°程度の差が発生することもある。図5に、感磁性素
子の水平磁界方向の傾きと出力低下率を示す。横軸が0
°〜20°まで変化すると、最大6.0%低下する。
The displacement angle with respect to the horizontal magnetic field direction is also ± 2.
A difference of about 0 ° may occur. FIG. 5 shows the inclination of the magnetic sensitive element in the horizontal magnetic field direction and the output reduction rate. Horizontal axis is 0
When it changes from ° to 20 °, the maximum reduction is 6.0%.

【0025】上記の誤差に、更に、感磁性素子自身の磁
界に対する感度差が付加される。
In addition to the above error, a difference in sensitivity of the magnetic sensitive element itself to the magnetic field is added.

【0026】本発明の校正対象である磁気探傷装置の回
路は、例えば図6に示す如く、各感磁性素子111毎に
設けられた、コンデンサ162と、増幅器164と、該
増幅器164の出力を通すバンドパスフィルタ166
と、該バンドパスフィルタ166の出力を整流する両波
整流器168と、該両波整流器168の出力を通すバッ
ファ170と、該バッファ170を介して多数の感磁性
素子111の出力を組合せる集合回路172と、該集合
回路172の出力を設定値と比較する比較器174とか
ら構成されている。
As shown in FIG. 6, for example, the circuit of the magnetic flaw detector to be calibrated according to the present invention passes a capacitor 162, an amplifier 164, and an output of the amplifier 164 provided for each magnetic element 111. Band pass filter 166
A dual-wave rectifier 168 that rectifies the output of the band-pass filter 166; a buffer 170 that passes the output of the dual-wave rectifier 168; and an integrated circuit that combines the outputs of many magnetically sensitive elements 111 via the buffer 170 172 and a comparator 174 for comparing the output of the aggregation circuit 172 with a set value.

【0027】従って、前記誤差は、増幅器164の利得
として現われ、出力差が発生する。この出力を第1〜第
nの全感磁性素子について記録しておき、次の簡易校正
時の出力と比較することにより、人工線状傷による本格
的な校正が必要か否か判断する。本発明による、この簡
易校正は、ストリップから磁気探傷装置を離し、磁化器
に交流電流を流すだけで、容易に実施できる。
Therefore, the error appears as a gain of the amplifier 164, and an output difference occurs. This output is recorded for all of the first to n-th magnetically sensitive elements, and is compared with the output at the time of the next simple calibration to determine whether full-scale calibration by artificial linear flaws is necessary. According to the present invention, this simple calibration can be easily performed simply by separating the magnetic flaw detector from the strip and passing an alternating current to the magnetizer.

【0028】図7に、磁化器の励磁電流と極間における
磁界の強さを示す。1.5Aまでは1.5キロガウスと
直線関係にある。
FIG. 7 shows the exciting current of the magnetizer and the strength of the magnetic field between the poles. Up to 1.5A, there is a linear relationship with 1.5 kilogauss.

【0029】図8に、磁化器の励磁電流と介在物による
出力相対値を示す。初期において感度が低く、中期にお
いて高くなり、又後期において低下する。従って、磁化
器の電流0.81A程度で使用することが望ましい。
FIG. 8 shows the excitation current of the magnetizer and the output relative value due to inclusions. The sensitivity is low in the early stage, high in the middle stage, and decreases in the late stage. Therefore, it is desirable to use the magnetizer at a current of about 0.81 A.

【0030】図9に、磁化器の励磁電流と介在物による
出力を示す。一般に感磁性素子の磁界に対する感度は、
図9のように、初期において感度が低く(0.25
A)、中期において高く(0.81A)、後期において
低くなる(1.50A)。図8は図9の微分値である。
感磁性素子は図9の特性で作動しているが、増幅器16
4でコンデンサ162を通るため、直流電圧はカットさ
れ、介在物による変化分のみが通過できる。
FIG. 9 shows the excitation current of the magnetizer and the output due to inclusions. Generally, the sensitivity of a magnetic element to a magnetic field is
As shown in FIG. 9, the sensitivity is initially low (0.25).
A), high in the middle phase (0.81A) and low in the late phase (1.50A). FIG. 8 is a differential value of FIG.
The magneto-sensitive element operates with the characteristics shown in FIG.
Since the DC voltage passes through the capacitor 162 at step 4, the DC voltage is cut off, and only the change due to the inclusion can pass.

【0031】[0031]

【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0032】本実施形態による校正対象である磁気探傷
装置100は、図10及び図11に示す如く、磁化ヨー
ク104と磁化コイル106からなる磁化器102と、
検査対象である薄鋼帯10の幅方向に直線状に配置され
た、例えば1000個の感磁性素子111を含む探傷ヘ
ッド110と、前記磁化コイル106に、励磁用直流電
流及び擬似漏洩磁束発生用の交流電流を供給する電源1
12を備えており、薄鋼帯10を矢印A方向に搬送する
非磁性ロール80外側の、薄鋼帯10と対向する位置に
設けられている。
As shown in FIGS. 10 and 11, the magnetic flaw detector 100 to be calibrated according to the present embodiment includes a magnetizer 102 including a magnetized yoke 104 and a magnetized coil 106;
A flaw detection head 110 including, for example, 1000 magnetically sensitive elements 111 linearly arranged in the width direction of the thin steel strip 10 to be inspected, and a DC current for excitation and a pseudo leakage magnetic flux for the magnetized coil 106. Power supply 1 for supplying AC current
12 is provided at a position facing the thin steel strip 10 outside the non-magnetic roll 80 that transports the thin steel strip 10 in the direction of arrow A.

【0033】前記電源112は、図12に詳細に示す如
く、励磁用の直流電源114と、擬似漏洩磁束発生用の
交流電源116と、前記直流電源114の出力に該交流
電源116の出力を重畳するための重畳回路118と、
通常探傷時は、前記磁化コイル106に直流電流を供給
し、本発明による簡易校正時は、重畳回路118の出力
を供給する切換回路120を含んで構成されている。
As shown in detail in FIG. 12, the power supply 112 includes a DC power supply 114 for excitation, an AC power supply 116 for generating a pseudo leakage magnetic flux, and the output of the AC power supply 116 superimposed on the output of the DC power supply 114. A superimposing circuit 118 for performing
During normal flaw detection, a direct current is supplied to the magnetizing coil 106, and during simple calibration according to the present invention, a switching circuit 120 is provided which supplies the output of the superimposing circuit 118.

【0034】図10において、150は、簡易校正時等
に、磁気探傷装置100を矢印B方向に上昇させて非磁
性ロール80から離すための昇降装置、152は、本格
校正時等に、オフラインで校正用ロール等により校正を
行うため、磁気探傷装置100を矢印C方向に移動させ
る移動装置である。
In FIG. 10, reference numeral 150 denotes an elevating device for raising the magnetic flaw detector 100 in the direction of arrow B to separate it from the non-magnetic roll 80 at the time of simple calibration, etc., and 152 denotes an offline device at the time of full calibration or the like. This is a moving device that moves the magnetic flaw detector 100 in the direction of arrow C in order to perform calibration using a calibration roll or the like.

【0035】以下実施形態の作用を説明する。The operation of the embodiment will be described below.

【0036】まず通常のオンライン状態では、磁気探傷
装置100が図10に実線で示す位置にあり、非磁性ロ
ール80に薄鋼帯10が例えば180°巻き付いて、矢
印A方向に走行している。磁気探傷装置100の下方
の、薄鋼帯10の上方0.5mmの位置には、薄鋼帯1
0に磁束を導入するための磁化ヨーク104が配置さ
れ、その間には感磁性素子111を含む探傷ヘッド11
0も配置されている。前記磁化ヨーク104の上方に設
けられた磁化コイル106には、探傷時に、電源112
からの直流電流の励磁により、薄鋼帯10を、走行方向
に1キロガウス程度に磁化する。この時の磁化電流は、
例えば0.81A(600アンペアターン)である。薄
鋼帯10の走行速度は、例えば最高1200mpmとさ
れている。感磁性素子111の数は1000個程度であ
る。
First, in a normal online state, the magnetic flaw detector 100 is at a position shown by a solid line in FIG. 10, and the thin steel strip 10 is wound around the non-magnetic roll 80 by, for example, 180 °, and runs in the direction of arrow A. At a position 0.5 mm below the thin steel strip 10 below the magnetic flaw detector 100, the thin steel strip 1
A magnetized yoke 104 for introducing a magnetic flux into the magnetic head 110 is disposed between the magnetized yoke 104 and the flaw detection head 11 including the magnetically sensitive element 111.
0 is also arranged. At the time of flaw detection, a power supply 112 is provided to the magnetized coil 106 provided above the magnetized yoke 104.
The thin steel strip 10 is magnetized in the traveling direction to about 1 kilogauss by the excitation of the direct current from the magnet. The magnetizing current at this time is
For example, it is 0.81A (600 ampere turn). The running speed of the thin steel strip 10 is, for example, 1200 mpm at the maximum. The number of the magnetic sensitive elements 111 is about 1,000.

【0037】一方、簡易校正時や、介在物の検出が不要
のときは、磁気探傷装置100を昇降装置150によ
り、矢印Bに示す如く、例えば200mm程度上方に退
避可能とされている。
On the other hand, at the time of simple calibration or when it is not necessary to detect the inclusion, the magnetic flaw detector 100 can be retracted upward, for example, by about 200 mm as shown by the arrow B by the elevating device 150.

【0038】検出できる欠陥は、介在物で0.5×10
-3mm3 程度以上であり、ガウジと称される内部欠陥に
近い表面欠陥であるこれらの欠陥は、光学式表面欠陥検
出装置では検出できない。
Defects that can be detected are 0.5 × 10
These defects, which are about −3 mm 3 or more and are close to internal defects called gouges, cannot be detected by the optical surface defect detection device.

【0039】簡易校正に際しては、オンライン位置にあ
る磁気探傷装置100を、昇降装置150により、矢印
Bに示す如く、例えば200mm程度上方に上昇させ
る。次いで、電源112により、磁化コイル106に、
例えば1000Hz0.01Aの交流を付加して、感磁
性素子群全部の出力を検定する。この際、前述した人工
線状傷で増幅器164の利得調整直後に実施した簡易校
正値との照合を行い、適否を判断する。照合は、第1〜
第n感磁性素子までのパターン、全平均、最高値、最低
値をコンピュータにより行う。図13に、簡易校正値の
日時の異なる比較表の例を示す。
At the time of simple calibration, the magnetic flaw detector 100 located at the online position is raised upward by, for example, about 200 mm as shown by the arrow B by the lifting device 150. Next, the power supply 112 causes the magnetization coil 106 to:
For example, by applying an alternating current of 1000 Hz and 0.01 A, the outputs of all the magnetic sensitive element groups are tested. At this time, a comparison with a simple calibration value performed immediately after the gain adjustment of the amplifier 164 due to the above-mentioned artificial linear flaw is performed to judge the suitability. The collation is
The pattern up to the n-th magnetic sensitive element, the overall average, the maximum value, and the minimum value are calculated by a computer. FIG. 13 shows an example of a comparison table in which the simple calibration values have different dates and times.

【0040】図6に示した磁気探傷装置の電気回路にお
いて、感磁性素子111が検出した介在物や表面傷は、
図14に示す如く、感磁性素子に発生する磁界の強さ
(直流電流)に傷信号が重畳している。例えば感磁性素
子111に4.5Vの直流電圧が作用していると、磁化
器102による1.0キロガウスの磁界が作用し、5.
5Vの直流電圧になる。このとき、検出を必要とする介
在物が通過すると、介在物による出力分が付加され、交
流分(5mV程度)が発生する。図15は簡易校正時の
波形である。
In the electric circuit of the magnetic flaw detector shown in FIG. 6, inclusions and surface flaws detected by the magnetic sensitive element 111 are:
As shown in FIG. 14, a flaw signal is superimposed on the strength (DC current) of the magnetic field generated in the magnetic sensitive element. For example, when a DC voltage of 4.5 V is applied to the magnetic sensitive element 111, a 1.0 kilogauss magnetic field is applied by the magnetizer 102, and
The DC voltage becomes 5V. At this time, when an inclusion that needs to be detected passes, an output component due to the inclusion is added, and an AC component (about 5 mV) is generated. FIG. 15 shows a waveform at the time of simple calibration.

【0041】感磁性素子111の出力は、コンデンサ1
62を通過すると直流分がカットされて交流分のみとな
り、図16に示す如く、傷信号と磁気ノイズになる。
The output of the magnetic sensitive element 111 is
After passing through 62, the direct current component is cut off and becomes only the alternating current component, resulting in a flaw signal and magnetic noise as shown in FIG.

【0042】コンデンサ162の出力は、増幅器164
を通過すると約1000倍程度増幅されるが、波形は図
16と同じである。増幅器164の出力は、バンドパス
フィルタ166を通り、高域、低域の不必要な波形がカ
ットされ、整形されて、SNが向上する。薄鋼帯10の
走行速度によりバンドパスが移動し、速度が速くなれば
高い周波数側に、低くなれば低い周波数側に移動する。
The output of the capacitor 162 is
, The signal is amplified about 1000 times, but the waveform is the same as that in FIG. The output of the amplifier 164 passes through the band-pass filter 166, and unnecessary waveforms in high and low frequencies are cut and shaped, thereby improving SN. The band pass moves according to the running speed of the thin steel strip 10, and moves to a higher frequency side when the speed increases, and moves to a lower frequency side when the speed decreases.

【0043】バンドパスフィルタ166の出力は、両波
整流器168により零からプラスのみの波形になり、図
17に示す如く、傷信号と薄鋼板から発生するノイズに
なる。ここで両波整流しているのは、0より大きい波形
を一元化して検出するためである。図17に対応する簡
易校正による波形は、図18に示す如く、1000HZ
で10mAを付加したものとなる。図17、図18は感
磁性素子単体出力の最終波形である。
The output of the band-pass filter 166 has a waveform from zero to plus only by the dual-wave rectifier 168, and becomes a flaw signal and noise generated from the thin steel plate as shown in FIG. Here, the dual-wave rectification is performed in order to unify and detect a waveform larger than 0. The waveform obtained by the simple calibration corresponding to FIG. 17 is 1000 HZ as shown in FIG.
And 10 mA is added. 17 and 18 show final waveforms of the output of the magnetic sensitive element alone.

【0044】図19は、各感磁性素子の出力を集合した
波形で、検出した傷信号の大きさを比較器174の設定
値と比較して、大、中、小に判別する。
FIG. 19 is a waveform in which the outputs of the respective magnetic sensitive elements are aggregated. The magnitude of the detected flaw signal is compared with the set value of the comparator 174, and is discriminated as large, medium or small.

【0045】本実施形態では、擬似漏洩磁束発生用の交
流電流を正弦波としているので調整が容易である。な
お、交流電流の波形は正弦波に限定されず、三角波やパ
ルス波とすることができる。又、前記実施形態では、交
流電流の周波数及び振幅を1000HZ、10mAとし
たが、これらの数値も、走行する薄鋼帯の速度により変
更できる。
In this embodiment, since the AC current for generating the pseudo leakage magnetic flux is a sine wave, the adjustment is easy. Note that the waveform of the alternating current is not limited to a sine wave, but may be a triangular wave or a pulse wave. In the above embodiment, the frequency and amplitude of the alternating current are set to 1000 HZ and 10 mA, but these values can be changed according to the speed of the traveling thin steel strip.

【0046】前記実施形態は、本発明を、非磁性ロール
に対向して設けられた薄鋼帯用の磁気探傷装置の感度校
正に適用していたが、本発明の適用対象はこれに限定さ
れず、図1、図2に示したような中空ロール内に設けら
れた磁気探傷装置や、一般の磁性体の磁気探傷装置の感
度校正にも適用することができる。
In the above embodiment, the present invention is applied to the sensitivity calibration of a magnetic flaw detector for a thin steel strip provided opposite to a non-magnetic roll, but the present invention is not limited to this. Instead, the present invention can be applied to a magnetic flaw detector provided in a hollow roll as shown in FIGS. 1 and 2 and a sensitivity calibration of a general magnetic flaw detector.

【0047】[0047]

【発明の効果】本発明によれば、磁化器に流す直流電流
に交流電流を付加し重畳させ擬似漏洩磁束とするだけで
簡易校正を行うことができる。従って、労力と時間を要
する人工線状傷による本格校正を度々行う必要がなく、
又校正のために新たにコイルを巻回す必要もない。従っ
て容易に簡易校正ができるので探傷装置の性能を補償す
ることができる。
According to the present invention, simple calibration can be performed only by adding an AC current to a DC current flowing through the magnetizer and superimposing the DC current to produce a pseudo leakage magnetic flux. Therefore, it is not necessary to frequently perform full-scale calibration using an artificial linear wound that requires labor and time,
Also, it is not necessary to newly wind a coil for calibration. Therefore, since the simple calibration can be easily performed, the performance of the flaw detector can be compensated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】特開平3−134555に記載された、従来の
感度校正装置の一例の構成を示す横断面図
FIG. 1 is a cross-sectional view showing an example of a configuration of a conventional sensitivity calibration device described in Japanese Patent Application Laid-Open No. 3-134555.

【図2】同じく、縦断面図FIG. 2 is also a longitudinal sectional view

【図3】特開平3−134555に記載された、従来の
感度校正装置の他の例の構成を示す斜視図
FIG. 3 is a perspective view showing the configuration of another example of a conventional sensitivity calibration device described in Japanese Patent Application Laid-Open No. 3-134555.

【図4】従来の問題点を説明するための、介在物による
リフトオフと感磁性素子の出力の関係の例を示す線図
FIG. 4 is a diagram illustrating an example of the relationship between lift-off due to inclusions and the output of a magneto-sensitive element for explaining a conventional problem.

【図5】同じく、感磁性素子の水平磁界方向の傾きと出
力低下率の関係の例を示す線図
FIG. 5 is a diagram showing an example of the relationship between the inclination of the magnetically sensitive element in the horizontal magnetic field direction and the output reduction rate.

【図6】本発明の校正対象である磁気探傷装置の回路構
成例を示すブロック線図
FIG. 6 is a block diagram showing a circuit configuration example of a magnetic flaw detector to be calibrated according to the present invention.

【図7】本発明の原理を説明するための、磁化器の励磁
電流と極間における磁界の強さの関係の例を示す線図
FIG. 7 is a diagram showing an example of a relationship between an exciting current of a magnetizer and a magnetic field strength between poles for explaining the principle of the present invention.

【図8】同じく、磁化器の励磁電流と介在物による出力
相対値の関係の例を示す線図
FIG. 8 is a diagram showing an example of a relationship between an exciting current of a magnetizer and an output relative value due to inclusions.

【図9】同じく、磁化器の励磁電流と介在物による出力
の関係の例を示す線図
FIG. 9 is a diagram showing an example of a relationship between an exciting current of a magnetizer and an output by an inclusion.

【図10】本発明の実施形態のオンライン位置を示す側
面図
FIG. 10 is a side view showing the online position of the embodiment of the present invention.

【図11】同じく、正面図FIG. 11 is also a front view

【図12】前記実施形態で用いられている電源の構成例
を示すブロック線図
FIG. 12 is a block diagram showing a configuration example of a power supply used in the embodiment.

【図13】前記実施形態により得られた、簡易校正値の
日時の異なる比較例を示す図表
FIG. 13 is a chart showing a comparative example obtained by the above-described embodiment, in which the simple calibration values have different dates and times.

【図14】前記磁気探傷装置の回路における通常探傷時
の感磁性素子出力波形の例を示す線図
FIG. 14 is a diagram showing an example of an output waveform of a magnetic sensitive element during normal flaw detection in the circuit of the magnetic flaw detection apparatus.

【図15】同じく簡易校正時の感磁性素子出力波形の例
を示す線図
FIG. 15 is a diagram showing an example of an output waveform of a magneto-sensitive element during simple calibration.

【図16】同じく通常探傷時のコンデンサ出力波形の例
を示す線図
FIG. 16 is a diagram showing an example of a capacitor output waveform during normal flaw detection.

【図17】同じく通常探傷時の両波整流器出力波形の例
を示す線図
FIG. 17 is a diagram showing an example of a double-wave rectifier output waveform during normal flaw detection.

【図18】同じく簡易校正時の両波整流器出力波形の例
を示す線図
FIG. 18 is a diagram showing an example of an output waveform of a double-wave rectifier during simple calibration.

【図19】同じく通常探傷時の集合回路出力波形の例を
示す線図
FIG. 19 is a diagram showing an example of an output waveform of a collective circuit during normal flaw detection.

【符号の説明】[Explanation of symbols]

10…薄鋼帯 80…非磁性ロール 100…磁気探傷装置 102…磁化器 104…磁化ヨーク 106…磁化コイル 110…探傷ヘッド 111…感磁性素子 112…電源 114…直流電源 116…交流電源 118…重畳回路 120…切換回路 162…コンデンサ 164…増幅器 166…バンドパスフィルタ 168…両波整流器 170…バッファ 172…集合回路 174…比較器 DESCRIPTION OF SYMBOLS 10 ... Thin steel strip 80 ... Non-magnetic roll 100 ... Magnetic flaw detector 102 ... Magnetizer 104 ... Magnetization yoke 106 ... Magnetization coil 110 ... Flaw detection head 111 ... Magnetic sensitive element 112 ... Power supply 114 ... DC power supply 116 ... AC power supply 118 ... Superposition Circuit 120 Switching circuit 162 Capacitor 164 Amplifier 166 Bandpass filter 168 Dual-wave rectifier 170 Buffer 172 Collective circuit 174 Comparator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 嘉秀 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 鶴岡 繁利 山口県徳山市大字徳山5635番地の6 株式 会社システムハイテック内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshihide Yamamoto 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Inside the Chiba Works of Kawasaki Steel Corp. In company system high tech

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】検査対象ストリップの近傍に配設した磁化
器により、前記ストリップの走行方向に磁界を発生さ
せ、内部あるいは表面欠陥で生ずる漏洩磁束を、前記ス
トリップの幅方向に多数並設された感磁性素子群により
検出して、欠陥信号とする磁気探傷装置の感度校正方法
において、 前記磁化器に流す磁界発生用の直流電流に、擬似欠陥に
対応する擬似漏洩磁束発生用の交流電流を重畳させ、 該擬似漏洩磁束により、前記感磁性素子群の感度を校正
することを特徴とする磁気探傷装置の感度校正方法。
1. A magnetic field is generated in the running direction of the strip by a magnetizer disposed near the strip to be inspected, and a large number of leakage magnetic fluxes generated due to internal or surface defects are arranged in the width direction of the strip. In the method of calibrating the sensitivity of a magnetic flaw detector, which is detected by a group of magnetically sensitive elements and serves as a defect signal, an alternating current for generating a pseudo leakage magnetic flux corresponding to a pseudo defect is superimposed on a direct current for generating a magnetic field flowing through the magnetizer. A method of calibrating the sensitivity of the magnetic flaw detection device, wherein the pseudo leakage magnetic flux is used to calibrate the sensitivity of the magnetic sensitive element group.
【請求項2】検査対象ストリップの近傍に配設した磁化
器により、前記ストリップの走行方向に磁界を発生さ
せ、内部あるいは表面欠陥で生ずる漏洩磁束を、前記ス
トリップの幅方向に多数並設された感磁性素子群により
検出して、欠陥信号とする磁気探傷装置の感度校正装置
において、 擬似欠陥に対応する擬似漏洩磁束発生用の交流電流を発
生する手段と、 該交流電流を、前記磁化器に流す磁界発生用の直流電流
に重畳する手段とを備え、 該擬似漏洩磁束により、前記感磁性素子群の感度を校正
することを特徴とする磁気探傷装置の感度校正装置。
2. A magnetic field is generated in the running direction of the strip by a magnetizer disposed near the strip to be inspected, and a large number of leakage magnetic fluxes generated by internal or surface defects are arranged in parallel in the width direction of the strip. In a sensitivity calibration device of a magnetic flaw detector which detects a defect signal and detects a defect signal, a means for generating an alternating current for generating a pseudo leakage magnetic flux corresponding to a pseudo defect, and supplying the alternating current to the magnetizer Means for superimposing on a direct current for generating a flowing magnetic field, wherein the sensitivity of the magnetic sensitive element group is calibrated by the pseudo leakage magnetic flux.
JP26573597A 1997-09-30 1997-09-30 Method and apparatus for calibration of sensitivity of magnetic flaw-detecting device Pending JPH11108900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26573597A JPH11108900A (en) 1997-09-30 1997-09-30 Method and apparatus for calibration of sensitivity of magnetic flaw-detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26573597A JPH11108900A (en) 1997-09-30 1997-09-30 Method and apparatus for calibration of sensitivity of magnetic flaw-detecting device

Publications (1)

Publication Number Publication Date
JPH11108900A true JPH11108900A (en) 1999-04-23

Family

ID=17421275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26573597A Pending JPH11108900A (en) 1997-09-30 1997-09-30 Method and apparatus for calibration of sensitivity of magnetic flaw-detecting device

Country Status (1)

Country Link
JP (1) JPH11108900A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064907A (en) * 2005-09-02 2007-03-15 Jfe Steel Kk Magnetic flux leakage flaw detection apparatus
WO2008121529A1 (en) * 2007-03-30 2008-10-09 Liebert Corporation Method and apparatus for monitoring an electric load
CN104796002A (en) * 2015-04-28 2015-07-22 深圳市神视检验有限公司 Power processing circuit of AC/DC magnetic defect detector and magnetic defect detector
CN106940342A (en) * 2017-04-14 2017-07-11 沧州市计量测试所 A kind of yoke formula magnaflux overall calibration standard set-up
CN113728226A (en) * 2019-04-24 2021-11-30 杰富意钢铁株式会社 Magnetic leakage flaw detection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064907A (en) * 2005-09-02 2007-03-15 Jfe Steel Kk Magnetic flux leakage flaw detection apparatus
JP4742757B2 (en) * 2005-09-02 2011-08-10 Jfeスチール株式会社 Magnetic flux leakage inspection device
WO2008121529A1 (en) * 2007-03-30 2008-10-09 Liebert Corporation Method and apparatus for monitoring an electric load
US7969156B2 (en) 2007-03-30 2011-06-28 Liebert Corporation Method and apparatus for monitoring a load
RU2486650C2 (en) * 2007-03-30 2013-06-27 Либерт Корпорейшн Method for electric load monitoring and device for its realisation
CN104796002A (en) * 2015-04-28 2015-07-22 深圳市神视检验有限公司 Power processing circuit of AC/DC magnetic defect detector and magnetic defect detector
CN106940342A (en) * 2017-04-14 2017-07-11 沧州市计量测试所 A kind of yoke formula magnaflux overall calibration standard set-up
CN106940342B (en) * 2017-04-14 2023-10-24 沧州市计量测试所 Comprehensive calibration standard device of magnetic yoke type magnetic particle inspection machine
CN113728226A (en) * 2019-04-24 2021-11-30 杰富意钢铁株式会社 Magnetic leakage flaw detection device

Similar Documents

Publication Publication Date Title
CA2088918C (en) Magnetic detecting method and apparatus therefor
EP2746761B1 (en) Method for magnetic flaw detection and magnetic flaw detector
CN103076390B (en) Be applied to the localization method of eddy current test, device and eddy current flaw detec
EP2360467A1 (en) Barkhausen noise inspection apparatus and inspection method
CN102759567A (en) Eddy current testing recognition and evaluation method for defects of inner wall and outer wall of steel pipe under direct current magnetization
US4477776A (en) Apparatus and process for flux leakage testing using transverse and vectored magnetization
WO2002033398A1 (en) Leakage magnetism detecting sensor of magnetic penetration apparatus
JP2605519B2 (en) Magnetic flaw detection method and apparatus therefor
JP2015135261A (en) Leakage magnetic flux method and leakage magnetic flux device for flaw detection of thin steel strip
JPH11108900A (en) Method and apparatus for calibration of sensitivity of magnetic flaw-detecting device
JP2697435B2 (en) Calibration method and apparatus for magnetic flaw detector
JP4175181B2 (en) Magnetic flux leakage flaw detector
JP2002257789A (en) Leakage flux detecting device
JPH11108899A (en) Method and apparatus for calibration of sensitivity of magnetic flaw-detecting device
EP0544911B1 (en) Device for detecting magnetic flux
JP2617605B2 (en) Magnetic measuring device and diagnostic method for magnetic flaw detector
JPH08193980A (en) Method and device for magnetic flaw detection
JPH11211698A (en) Method and apparatus for calibration of sensitivity of magnetic testing device as well as calibration
JP2897283B2 (en) Calibration method and apparatus for magnetic flaw detector
JPH04296648A (en) Method and device for magnetic crack detection
JPH06242076A (en) Electromagnetic flaw detecting equipment
JP4349012B2 (en) Magnetic flaw detection method for ferromagnetic materials
JP2005024295A (en) Leakage flux flaw detection test
JPH09166582A (en) Electromagnetic flaw detection method
JP2014044151A (en) Defect detection device