JPH11108833A - Method for spectroscopic analysis of substance - Google Patents

Method for spectroscopic analysis of substance

Info

Publication number
JPH11108833A
JPH11108833A JP27255797A JP27255797A JPH11108833A JP H11108833 A JPH11108833 A JP H11108833A JP 27255797 A JP27255797 A JP 27255797A JP 27255797 A JP27255797 A JP 27255797A JP H11108833 A JPH11108833 A JP H11108833A
Authority
JP
Japan
Prior art keywords
substance
measured
time
group
mixed system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27255797A
Other languages
Japanese (ja)
Inventor
Naomichi Watanabe
直道 渡邉
Yukiko Satou
由希子 佐藤
Kazuo Hirowatari
和生 広渡
Yoshihiro Komura
善博 甲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP27255797A priority Critical patent/JPH11108833A/en
Publication of JPH11108833A publication Critical patent/JPH11108833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an analyzed value before variation of a substance which varies with time by applying a mixed system containing a substance to be measured which varies with time and a volatile substance which interferes with spectrum analysis onto a plate-shaped body, vaporizing a volatile substance, and performing analysis before variation with time develops. SOLUTION: A substance to be measured has a -OH group and a group capable of reacting with a -OH group and condensing, and a siloxane compound expressed by a general formula [SiOa (OH)b (OR<1> )c (OR<2> )d ] in the formula, 0.8<=a<=1.6, 0.3<=b<=1.3, 0.2<=c+d<=1.9, b=4-(2a+c+d), R<1> is a methyl group or a ethyl group, R<2> is an organic group different from R<1> } becomes an object. An infrared spectroscopic method is used as an analyzing method. Variations with time include changes in the amount of functional groups, gelation, etc., as well as, for example, chemical changes, physical changes such as liquefaction from a solid, sublimation, etc. Here, a mixed system containing a substance to be measured is applied onto a plate-shaped body, and spectroscopic analysis is performed after vaporizing a volatile substance in the mixed system while the mixed substance is present on the plate-shaped body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は分光分析法に関す
る。特に、本発明は、経時変化を起こしうる物質の測定
に好適な分光分析法に関するものである。
[0001] The present invention relates to a spectroscopic analysis method. In particular, the present invention relates to a spectroscopic analysis method suitable for measurement of a substance that can change over time.

【0002】[0002]

【従来の技術】分光分析は、物質からの発光または、物
質を透過する光のスペクトルを測定し、存在する物質の
種類、量などを求める分析法である。分光分析法におい
て、光源からの光線を被測定物質に照射して通過する光
を測定する方法では、透過光を入射光と比較して評価
し、透過光の強度を光の透過率または吸光度として求
め、これらの強度の波長または波数における変化をプロ
ットする方法が一般的である。測定する光の領域が赤外
線領域である赤外分光分析法と、紫外可視領域である紫
外可視分光分析法が典型的な分析法である。これらの分
析において、被測定物質はサンプルホルダーあるいはセ
ルに入れて測定する。サンプルホルダーには、被測定物
質の形態に合わせてそのまま、あるいは無機塩等に希釈
して入れられる。そのままあるいは溶媒中に溶かした液
体状被測定物質も又、シールしたセルを用いて分析され
得る。
2. Description of the Related Art Spectroscopic analysis is an analytical method in which the spectrum of light emitted from a substance or the spectrum of light transmitted through a substance is measured to determine the type and amount of a substance present. In the spectroscopic analysis method, in the method of measuring the light passing through by irradiating a light beam from a light source onto a substance to be measured, the transmitted light is compared with the incident light and evaluated, and the intensity of the transmitted light is determined as the light transmittance or absorbance. It is common to determine and plot changes in wavelength or wavenumber of these intensities. Typical analysis methods are an infrared spectroscopic analysis method in which the light to be measured is in the infrared region and an ultraviolet-visible spectroscopic method in which the light is measured in the ultraviolet-visible region. In these analyses, the substance to be measured is measured in a sample holder or cell. The sample holder is placed as it is or diluted with an inorganic salt or the like according to the form of the substance to be measured. Liquid analytes as such or dissolved in solvents can also be analyzed using sealed cells.

【0003】溶媒中の被測定物質をセルで測定する場
合、差スペクトル法によって、溶媒中の被測定物質のス
ペクトルから、溶媒のスペクトルを差し引く方法がとら
れる。しかし、特に赤外分光分析法に於いては、溶媒も
かなり強い吸収バンドを数多くもっている物が多く、溶
媒に強い吸収バンドがある波長域では、赤外スペクトル
の検出は不可能である。この場合、従来は溶液を乾燥等
の手段により除去して被測定物質のみを測定されること
が行われてきた。具体的には、例えば、被測定物質を含
む溶液を、ポリテトラフルオロエチレンのフィルム上に
コートし、乾燥させ、そして得られた薄いフィルムをポ
リテトラフルオロエチレンから剥がして分析する方法が
提案されている(特表平7−500180号公報等参
照)。
[0003] When a substance to be measured in a solvent is measured by a cell, a method is used in which the spectrum of the solvent is subtracted from the spectrum of the substance to be measured in the solvent by a difference spectrum method. However, particularly in infrared spectroscopy, many solvents also have a considerably strong absorption band, and it is impossible to detect an infrared spectrum in a wavelength region where the solvent has a strong absorption band. In this case, conventionally, only the substance to be measured is measured by removing the solution by means such as drying. Specifically, for example, a method has been proposed in which a solution containing the substance to be measured is coated on a polytetrafluoroethylene film, dried, and the obtained thin film is peeled off from polytetrafluoroethylene and analyzed. (See Japanese Unexamined Patent Publication No. 7-500180).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、分析の
対象となる物質によっては、共に存在する溶媒等の揮発
性物質を蒸発させると経時変化が進行する物があり、こ
のような物質では、溶媒などを乾燥して測定するまでの
間に経時変化を起こし、被測定物質本来のスペクトルを
測定することが出来ないことがある。一方、経時変化を
進行させないために迅速に測定すると、溶媒など共存す
る物質の乾燥が不十分となって実質量残存し、この残存
する溶媒等の揮発性物質がスペクトルに影響し、被測定
物質のみのスペクトルを測定することが出来ないことが
多く、このような経時変化を生じる物質をも分析可能な
方法が求められていた。
However, depending on the substance to be analyzed, a volatile substance such as a solvent that coexists may evaporate over time, and such a substance may be a solvent or the like. Of the substance to be measured may not be able to measure the original spectrum of the substance to be measured. On the other hand, when the measurement is performed quickly to prevent the change over time, the coexisting substance such as a solvent is insufficiently dried to leave a substantial amount, and the remaining volatile substance such as a solvent affects the spectrum, and the substance to be measured is In many cases, it is not possible to measure only the spectrum, and there has been a demand for a method capable of analyzing a substance which causes such a change with time.

【0005】本発明の目的は、このような従来の方法で
は測定が不可能であった物質をも測定できる分光分析方
法を提供することにある。
An object of the present invention is to provide a spectroscopic analysis method capable of measuring even a substance which cannot be measured by such a conventional method.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記従来技
術の問題に鑑み、種々検討した結果、特定の分析方法を
採ることにより、経時変化を生じる被測定物質の分光分
析が可能となることを見いだして、本発明に到達した。
さらに、本発明の特定手段により、継続して経時変化の
進行状況を測定することもできる。また、被測定物質中
に含まれる存在量既知の官能基由来の吸光度、又は添加
した内部標準物質に由来する吸光度との対比によって定
量分析も可能となった。
Means for Solving the Problems In view of the above-mentioned problems of the prior art, the present inventors have made various investigations and, by adopting a specific analysis method, it has become possible to carry out spectroscopic analysis of a substance to be measured which changes with time. Having found this, the present invention has been reached.
Further, the progress of the temporal change can be continuously measured by the specifying means of the present invention. In addition, quantitative analysis was made possible by comparison with the absorbance derived from a functional group having a known abundance contained in the substance to be measured or the absorbance derived from the added internal standard substance.

【0007】すなわち、本発明は、経時変化を起こす被
測定物質及び分光分析を妨害する揮発性物質を含む混合
系の分光分析法において、前記混合系を板状体上に塗布
し、揮発性物質を蒸発させた後、経時変化の進行する前
に分析を行うことを特徴とする分光分析法に存する。
That is, the present invention relates to a method for spectroscopic analysis of a mixed system containing a substance to be measured which causes a change with time and a volatile substance which interferes with spectroscopic analysis. Is characterized by performing an analysis after evaporating and before a change with time progresses.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明では、被測定物質を含む混合系を分光分析の対象
とする。適用しうる分光分析法は特に限定されず、分光
分析法として知られている方法を適宜使用しうる。典型
的な分析法として、光源として赤外線を測定する赤外分
光分析法と、紫外可視領域を測定する紫外可視分光分析
法とが挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In the present invention, a mixed system containing a substance to be measured is subjected to spectroscopic analysis. The applicable spectroscopic analysis method is not particularly limited, and a method known as a spectroscopic analysis method can be appropriately used. Typical analysis methods include infrared spectroscopy, which measures infrared light as a light source, and ultraviolet-visible spectroscopy, which measures the ultraviolet-visible region.

【0009】赤外分光分析法を用いると被測定物質の特
性的吸収帯の位置によって、官能基情報を得ることがで
きる。通常は波数4000cm-1(2.5μm)と450
cm -1(22μm)の間の領域を測定するが、広くは1
6666cm-1(0.6μm)と200cm-1(50μ
m)の間の近赤外領域や遠赤外領域も含まれる。スペク
トルを吸光度でプロットすると、その吸光度は濃度に比
例する事を利用して定量分析に用いられる。吸光度は−
log(透過率(パーセント)/100)で表される。
The use of infrared spectroscopy makes it possible to determine the characteristics of the substance to be measured.
Functional group information can be obtained depending on the position of the sexual absorption band.
Wear. Normally wave number 4000cm-1(2.5 μm) and 450
cm -1(22 μm), but broadly 1
6666cm-1(0.6μm) and 200cm-1(50μ
m), the near-infrared region and the far-infrared region are also included. Spec
If you plot the torr in absorbance, the absorbance is
It is used for quantitative analysis using examples. Absorbance is-
It is expressed by log (transmittance (percent) / 100).

【0010】紫外可視分光分析法は、分子中の電子が基
底状態から励起状態へ高められる際に吸収するエネルギ
ーを測定する分析法で、分子の電子構造によって吸収波
長が定まる。測定領域は0.18μmと0.78μmの
間である。赤外分光分析法と同じく、吸光度でプロット
すると、定量分析に用いられる。被測定物質としては、
分光分析により検出できる物質であれば特に限定されな
いが、本発明では、何らかの経時変化を生じて分光分析
の測定値が変化する物質が対象となる。経時変化として
は、化学反応によって他の化合物に変化する化学変化、
固体からの液化、液体からの気化、固体から気体への昇
華などの物理変化などが挙げられる他、官能基の量の変
化、高分子量化、ゲル化といった経時変化をする場合も
含む。特には共存する揮発性物質を蒸発させると経時変
化が進行する物質、例えば−OH基と、−OH基と縮合
反応しうる基とを有する化合物、例えば、アルコキシシ
ランを加水分解縮合してなるポリシロキサン化合物、特
に揮発性物質である溶媒として、OH基を有しており分
光分析を妨害するアルコール以外の溶媒を用いるのが難
しいためにシラノール基の定量が困難であるようなシロ
キサン化合物に好適に使用することができる。
[0010] UV-visible spectroscopy is a method of measuring the energy absorbed when electrons in a molecule are raised from a ground state to an excited state, and the absorption wavelength is determined by the electronic structure of the molecule. The measurement area is between 0.18 μm and 0.78 μm. As in the case of infrared spectroscopy, plotting by absorbance is used for quantitative analysis. As the substance to be measured,
The substance is not particularly limited as long as it is a substance that can be detected by spectroscopic analysis. However, in the present invention, a substance whose measured value of spectroscopic analysis changes due to some change with time is targeted. Changes over time include chemical changes that change to other compounds due to chemical reactions,
Examples include physical changes such as liquefaction from a solid, vaporization from a liquid, and sublimation from a solid to a gas, as well as changes over time such as changes in the amount of functional groups, high molecular weight, and gelation. In particular, a substance which changes with time when a coexisting volatile substance evaporates, for example, a compound having an -OH group and a group capable of undergoing a condensation reaction with the -OH group, for example, a polycondensation obtained by hydrolyzing and condensing an alkoxysilane Suitable for siloxane compounds, especially siloxane compounds in which it is difficult to use a solvent other than an alcohol that has an OH group and interferes with spectroscopic analysis as a solvent that is a volatile substance, and thus it is difficult to determine silanol groups. Can be used.

【0011】このようなシロキサン化合物としては、代
表的には一般式[I]
[0011] Such siloxane compounds are typically represented by the general formula [I]

【0012】[0012]

【化2】 SiOa(OH)b(OR1c(OR2)d・・・・・[I] (式中、0.8≦a≦1.6,0.3≦b≦1.3,
0.2≦c+d≦1.9,b=4−(2a+c+d),
1はメチル基又はエチル基であり、R2はR1と相異な
る有機基である。) あるいは、一般式[II]
Embedded image SiO a (OH) b (OR 1 ) c (OR 2 ) d... [I] (where 0.8 ≦ a ≦ 1.6, 0.3 ≦ b ≦ 1. 3,
0.2 ≦ c + d ≦ 1.9, b = 4- (2a + c + d),
R 1 is a methyl group or an ethyl group, and R 2 is an organic group different from R 1 . ) Alternatively, the general formula [II]

【0013】[0013]

【化3】 SiOa(OH)b(OR1c(OR2d・・・・・[II] (式中、1.0≦a≦1.6,0≦b≦0.3,0.2
≦c≦2.0,0≦d≦1.4, b=4−(2a+c
+d),R1はメチル基又はエチル基であり、R2はR1
とは相異なる有機基である。)が挙げられる。
Embedded image SiO a (OH) b (OR 1 ) c (OR 2 ) d ... [II] (where 1.0 ≦ a ≦ 1.6, 0 ≦ b ≦ 0.3, 0.2
≤c≤2.0, 0≤d≤1.4, b = 4- (2a + c
+ D), R 1 is a methyl group or an ethyl group, and R 2 is R 1
Are different organic groups. ).

【0014】これらのシロキサン化合物、特に一般式
[I]で示される化合物は、上述のように経時変化に影
響を及ぼすシラノール基の存在により、経時変化、特に
高分子量化、増粘といった変化を生じやすい。このため
従来技術により単に溶媒を除去してから測定を行ったの
では、経時変化が大きく、正確な測定を行うのは困難で
あった。本発明により、溶媒の除去後であって経時変化
が進行するより前に分光分析を行えば、シロキサン化合
物の物性制御のみならず、反応機構の究明にも大きく貢
献することができ、産業的、技術的意義は大きい。
As described above, these siloxane compounds, particularly the compounds represented by the general formula [I], undergo a time-dependent change, in particular, a change such as increase in molecular weight and thickening due to the presence of a silanol group which influences the time-dependent change. Cheap. For this reason, if the measurement was performed after simply removing the solvent according to the conventional technique, the change with time was large, and it was difficult to perform an accurate measurement. According to the present invention, if spectroscopic analysis is performed after the removal of the solvent and before the change with time progresses, not only the control of the physical properties of the siloxane compound, but also it can greatly contribute to the investigation of the reaction mechanism, and industrial, The technical significance is great.

【0015】以上説明したシロキサン化合物の他、エポ
キシ樹脂塗料、ポリウレタン樹脂塗料等の、高分子化、
ゲル化等の変化を生じて分光分析の測定値が変化する物
質にも好適に適用することができる。等で表されるシロ
キサン化合物、エポキシ樹脂塗料,ポリウレタン樹脂塗
料など、高分子化、ゲル化等の変化を生じて分光分析の
測定値が変化する物質が適している。
[0015] In addition to the siloxane compounds described above, polymerization of epoxy resin paint, polyurethane resin paint, etc.,
The present invention can also be suitably applied to a substance that causes a change such as gelation and changes the measured value of spectroscopic analysis. Substances that cause a change such as polymerization, gelling, etc., and change the measured value of spectroscopic analysis, such as siloxane compounds, epoxy resin paints, polyurethane resin paints, etc., which are represented by the following formulas, are suitable.

【0016】本発明における混合系は、上記被測定物質
と、特定の揮発性物質とを含む。揮発性物質は、分光分
析を妨害する物質であるが、これは混合系に存在するこ
とによって被測定物質の分光分析を妨害しうる物質、代
表的には被測定物質の測定波長領域に重なり合うような
強い吸収バンドを持っているような物質が挙げられる。
また、混合系が板状体に塗布された状態で蒸発しうる物
質であって、そのような状態において少なくとも被測定
物質に対して相対的に蒸発(揮発)速度の速い物質であ
る。
The mixed system in the present invention contains the above-mentioned substance to be measured and a specific volatile substance. Volatile substances are substances that interfere with the spectroscopic analysis, but are substances that can interfere with the spectroscopic analysis of the analyte by being present in a mixed system, typically overlapping the measurement wavelength range of the analyte. Substances having a strong absorption band.
Further, it is a substance that can evaporate in a state where the mixed system is applied to the plate-like body, and in such a state, is a substance having a relatively high evaporation (volatilization) rate at least with respect to the substance to be measured.

【0017】典型的には揮発性物質の中に被測定物質を
溶解又は分散、好ましくは溶解しうる液体(溶媒)であ
るが、さらには不純物、安定剤などを含んでもよい。1
成分又は複数成分を含んでもよい。溶媒として使用され
る揮発性物質の例としては、水のほかに、ヘキサン、ヘ
プタン等の炭化水素類、メタノール、エタノール等のア
ルコール類、酢酸エチル、酢酸プロピルなどの脂肪族カ
ルボン酸アルキルエステル類などの有機溶媒が挙げられ
る。揮発性物質は、常温常圧において自然蒸発可能な物
質以外に、ヒーター等で強制蒸発させることにより蒸発
できる物質も含まれる。または排気装置を接続し、減圧
状態にして強制蒸発させることにより、蒸発できる物質
も含まれる。場合によっては、被測定物質の蒸発を抑制
するために、冷却下、又は加圧下で蒸発を行ってもよ
い。なお、この時、揮発性物質の蒸発速度をあまり遅く
すると、蒸発途中に被測定物質の経時変化が進行してし
まう可能性があるので望ましくない。
Typically, the liquid (solvent) is capable of dissolving or dispersing, preferably dissolving, the substance to be measured in the volatile substance, but may further contain impurities, stabilizers and the like. 1
It may contain one or more components. Examples of volatile substances used as solvents include, in addition to water, hydrocarbons such as hexane and heptane, alcohols such as methanol and ethanol, and aliphatic carboxylic acid alkyl esters such as ethyl acetate and propyl acetate. Organic solvents. Volatile substances include substances which can be evaporated by forced evaporation with a heater or the like, in addition to substances which can be naturally evaporated at normal temperature and normal pressure. Alternatively, a substance which can be evaporated by connecting an exhaust device and forcibly evaporating under reduced pressure is also included. In some cases, evaporation may be performed under cooling or under pressure in order to suppress evaporation of the substance to be measured. At this time, if the evaporation rate of the volatile substance is too slow, it is not desirable because the substance to be measured may change with time during the evaporation.

【0018】本発明における分光分析対象試料は、上記
被測定物質と揮発性物質を含有する混合系である。混合
系中の被測定物質の濃度は、揮発性物質に対する飽和濃
度に近い方が好ましく、用いる物質にもよるが、1〜8
0重量%程度が好ましい。該混合系は、分光分析を実質
的に阻害しない範囲で他の物質、例えば、被測定物質を
合成した際に得られる不純物、被測定物質から分解した
物質などを含有してもよい。
The sample to be analyzed in the present invention is a mixed system containing the above-mentioned substance to be measured and a volatile substance. The concentration of the substance to be measured in the mixed system is preferably closer to the saturated concentration for volatile substances, and depends on the substance used.
About 0% by weight is preferable. The mixed system may contain other substances, for example, impurities obtained when synthesizing the substance to be measured, substances decomposed from the substance to be measured, and the like within a range that does not substantially inhibit the spectroscopic analysis.

【0019】混合系には、分光分析の種類に応じた内部
標準物質を混合させることが好ましい。後述するよう
に、本発明の分析法は被測定物質を適量塗布する手法で
あるため、試料量を定量的に取り扱うのが困難である。
内部標準物質の使用によって、被測定物質の定量的な測
定が可能となる。用いる内部標準物質は、被測定物質の
測定しようとする波長域に影響が無い物、又は、影響を
与えても被測定物質の吸収と異なる波長領域に特異な吸
収を示すなどの理由により、差スペクトル法等の手法に
よって影響を除外できる物質が好ましい。更に内部標準
物質に適した特性としては、揮発性物質を蒸発、除去さ
せる際に蒸発しない程度に充分に高沸点であること、被
測定物質及び揮発性物質と反応しないこと、揮発性物質
に溶解して揮発性物質を蒸発する際に被測定物質と分離
しないこと、経時変化をしない安定性などが挙げられ
る。適した内部標準物質の例としては、赤外分光分析法
においてはフタル酸ジブチル、ジフェニルアミン、ポリ
アクリロニトリルがあげられ、紫外分光分析法において
も、フタル酸ジブチル、ジフェニルアミンがあげらる。
It is preferable to mix an internal standard substance according to the type of spectroscopic analysis in the mixed system. As described below, the analysis method of the present invention is a method of applying an appropriate amount of a substance to be measured, and thus it is difficult to quantitatively handle a sample amount.
The use of the internal standard material enables a quantitative measurement of the substance to be measured. The internal reference material used may be different because the substance to be measured does not affect the wavelength range to be measured, or even if it does, it exhibits specific absorption in the wavelength range different from the absorption of the substance to be measured. Substances whose effects can be excluded by a technique such as a spectral method are preferred. In addition, the characteristics suitable for the internal standard substance are that it has a sufficiently high boiling point so that it does not evaporate when evaporating or removing volatile substances, does not react with the substance to be measured and volatile substances, and dissolves in volatile substances. When the volatile substance evaporates, it does not separate from the substance to be measured, and stability that does not change over time. Examples of suitable internal standard materials include dibutyl phthalate, diphenylamine, and polyacrylonitrile in infrared spectroscopy, and dibutyl phthalate and diphenylamine in ultraviolet spectroscopy.

【0020】本発明において、被測定物質を含む混合系
は板状体上に塗布し、混合系中の揮発性物質を蒸発させ
た後に、該板状体上にあるまま分光分析を行う。板状体
は、薄膜などのフィルム、板などと称されるものを含
む。板状体は、一般に、被測定物質、及び内部標準物質
を使用する場合には内部標準物質の、分光分析測定対象
波長域を妨害しない適当な材質及び厚さで、かつ、被測
定物質を保持できる材質及び形状で、さらに内部標準物
質を使用する場合には内部標準物質を保持できる材質で
形成する。更にこの材質は被測定物質、内部標準物質、
揮発性物質の何れにも溶解したり、反応したりしない物
を選択する。例えばポリオレフィン樹脂、フッ素樹脂、
無機塩、石英などが挙げられ、ホルダーにセットされて
も良い。混合系を塗布する面を多孔性として表面積を増
加させると、揮発性物質の蒸発速度が速くなるので好ま
しい。
In the present invention, a mixed system containing the substance to be measured is applied on a plate-shaped body, and after volatile substances in the mixed system are evaporated, spectroscopic analysis is performed while the mixture is still on the plate-shaped body. The plate-like body includes what is called a film such as a thin film and a plate. In general, the plate-shaped body should be made of an appropriate material and thickness that does not interfere with the wavelength range of the analyte, if the analyte and the internal standard are used, and that the analyte is retained. When the internal standard is used, the material and the shape are made of a material that can hold the internal standard. Furthermore, this material is a substance to be measured, an internal standard substance,
Select a substance that does not dissolve or react with any of the volatile substances. For example, polyolefin resin, fluororesin,
Inorganic salts, quartz and the like may be mentioned, and may be set in a holder. It is preferable to increase the surface area by making the surface to which the mixed system is applied porous so that the evaporation rate of the volatile substance is increased.

【0021】特に被測定物質が、揮発性物質蒸発後、又
は経時変化後に高分子量化及び又はゲル化する物質であ
る場合では、樹脂フィルムを利用し、使い捨てにするこ
とが望ましい。そのような樹脂フィルムの例としては、
赤外分光分析に用いるミクロ細孔性(例えば孔径0.1
〜50ミクロン)のポリエチレン又はポリテトラフルオ
ロエチレンで、特に厚紙等の支持体で支持された物が挙
げられ、これら樹脂フィルムは赤外分光分析に限れば、
被測定物質の保持、揮発性物質の蒸発、赤外光透過性の
面で優れている。この種のフィルムは、特表平7−50
0180号公報に例示されており、商品名「Dispo
sable IR Card」としてミネソタ・マイニ
ング社から市販されている物も使用できる。
In particular, when the substance to be measured is a substance which has a high molecular weight and / or gels after evaporation of volatile substances or changes with time, it is desirable to use a resin film and dispose it. Examples of such a resin film include:
Microporosity (for example, pore size 0.1
-50 μm) of polyethylene or polytetrafluoroethylene, particularly those supported on a support such as cardboard. These resin films are limited to infrared spectroscopy.
It is excellent in retention of the substance to be measured, evaporation of volatile substances, and infrared light transmission. This type of film is known in
No. 0180, the trade name "Dispo"
A product commercially available from Minnesota Mining Company as "sable IR Card" can also be used.

【0022】被測定物質を含む混合系の板状体上への塗
布方法は、適宜選択できるが、揮発性物質を速やかに蒸
発させる為に、混合系の液滴を0.01〜0.5g程度
板状体上へ滴下する方法が一般的である。ついで、揮発
性物質を蒸発させる。蒸発は、測定する混合系によっ
て、常温での自然乾燥、加熱下での蒸発、冷却下での蒸
発などいずれの方法でも適宜選択しうるが、特に適した
手段は、揮発性物質の種類、被測定物質の混合系中の濃
度によって大きく変化する。また、揮発性物質の蒸発に
要する時間も大きく変わるが、混合系の塗布量が上記の
ように極めて少量である場合は、揮発性物質の蒸発は1
秒〜10分程度の短時間で生じる。一般には、蒸発に要
する時間は、揮発性物質を含む被測定物質を塗布後、分
光分析計によって連続的に揮発性物質由来の吸光度を測
定することで判断される。すなわち揮発性物質由来の吸
光度が急激に減少した後、安定し始める時間を指す。
The method of applying the mixed system containing the substance to be measured on the plate-like body can be appropriately selected. However, in order to quickly evaporate the volatile substance, 0.01 to 0.5 g of the mixed system droplets are applied. Generally, a method of dripping onto a plate-like body is used. The volatiles are then evaporated. Evaporation can be appropriately selected depending on the mixed system to be measured, such as natural drying at room temperature, evaporation under heating, and evaporation under cooling.Especially suitable means are the type of volatile substance, It changes greatly depending on the concentration of the analyte in the mixed system. Also, the time required for the evaporation of the volatile substance varies greatly, but when the amount of application of the mixed system is extremely small as described above, the evaporation of the volatile substance is one time.
It occurs in a short time of about 10 seconds. In general, the time required for evaporation is determined by continuously measuring the absorbance derived from a volatile substance using a spectrophotometer after applying the substance to be measured containing the volatile substance. That is, it refers to the time at which the absorbance derived from volatile substances suddenly decreases and then starts to stabilize.

【0023】本発明においては、被測定物質の測定を、
上記の揮発性物質を蒸発させた後であって、被測定物質
の経時変化が進行する前に行う。経時変化の進行する前
とは、被測定物質の実質的な経時変化が進行するより以
前であることを指し、経時変化の進行状態は、揮発性物
質及び被測定物質を含む混合系板状体に塗布した後、分
光分析計によって連続的に又は特定時間毎に吸光度を測
定することにより判断することができる。
In the present invention, the measurement of the substance to be measured is
This is performed after the volatile substance is evaporated and before the change with time of the substance to be measured progresses. The term “before the time-dependent change” refers to a time before the substantial time-dependent change of the substance to be measured progresses, and the progress of the time-dependent change is a mixed plate-like body containing a volatile substance and the substance to be measured. After the application, the absorbance can be determined by measuring the absorbance continuously or at a specific time by a spectrophotometer.

【0024】揮発性物質が揮発して揮発性物質由来の吸
光度が急激に減少した後、吸光度が安定し始める時点以
降の吸光度の変化は、実質的に被測定物質の経時変化に
よるものととらえることができるため、それ以降の吸光
度を測定して外挿することにより、測定開始当初(板状
体への塗布時)からの被測定物質自体による吸光度が変
化していく様子を推測することができる。
After the volatile substance volatilizes and the absorbance derived from the volatile substance sharply decreases, the change in the absorbance after the point at which the absorbance starts to stabilize is considered to be substantially due to the change with time of the substance to be measured. Therefore, by measuring and extrapolating the absorbance thereafter, it is possible to infer the state in which the absorbance of the substance to be measured itself changes from the beginning of the measurement (at the time of application to the plate-like body). .

【0025】本発明においては、外挿により求まる測定
開始時(板状体への塗布時)の被測定物質の吸光度から
判断して実質的に経時変化の進行するより以前に、被測
定物質の分光分析を行う。こうすることにより、揮発性
物質の影響を受けることなく、被測定物質本来の分析値
を求めることができるのである。実質的に経時変化の進
行するより以前であることは、被測定物質の吸光度が、
外挿により求まる測定開始時の被測定物質の吸光度の一
定の割合以内であることにより確かめられる。特に、測
定開始時の被測定物質の吸光度に対して変化率5パーセ
ント以内の吸光度を示す時期において、被測定物質の分
光分析を行うのが望ましい。
In the present invention, judging from the absorbance of the substance to be measured at the start of the measurement (at the time of application to the plate-like body) determined by extrapolation, the substance to be measured is measured before the change with time substantially progresses. Perform spectroscopic analysis. By doing so, the original analysis value of the substance to be measured can be obtained without being affected by the volatile substance. It is substantially before the change over time progresses that the absorbance of the analyte is
This can be confirmed by being within a certain ratio of the absorbance of the substance to be measured at the start of measurement determined by extrapolation. In particular, it is desirable to perform the spectroscopic analysis of the substance to be measured at a time when the change in the absorbance of the substance to be measured at the start of measurement is within 5%.

【0026】本発明の分析方法においては、被測定物質
を含む混合系を板状体上に塗布して溶媒などの揮発性物
質を蒸発させることにより、揮発性物質がは極めて短時
間で蒸発、除去できるため、経時変化を生じる物質であ
っても実質的変化が発生する前に分光分析を実施するこ
とができる。 例えば、一般式 SiOa(OH)b(OR1c(OR2)d (式中、0.8≦a≦1.6,0.3≦b≦1.3,
0.2≦c+d≦1.9,b=4−(2a+c+d),
1はメチル基又はエチル基であり、R2はR1と相異
なる有機基である。)で表されるシロキサン化合物にお
いて、平均構造はその性能を議論する上で重要である。
シロキサン化合物中のシラノール基の定量は、赤外分光
光度計による測定が適している。しかし、シロキサン化
合物のアルコール溶液の場合には、アルコールは同じO
H基として、シロキサン化合物中のシラノール基の吸収
と近い位置に幅の広い吸収を示すため、吸収が重なって
しまい定量できなかった。この溶液はアルコール溶媒を
蒸発させると経時変化が進行することから、アルコール
溶媒を蒸発させてからシロキサン化合物のみを分離して
赤外分光分析を行うと、シラノール基の正確な定量がで
きなかった。その他の基はNMR等により測定可能であ
ったが、シラノール基量は直接測定できないため、Si
量及びa,c,dの値から、bの値を算出し推定してい
た。これに対し本発明の分析方法によって、シロキサン
化合物の経時変化を追跡可能となり、従って、経時変化
の進行する前の段階での実際のシラノール基量が定量可
能となる。
In the analysis method of the present invention, the volatile substance such as a solvent is evaporated in a very short time by applying a mixed system containing the substance to be measured on a plate and evaporating a volatile substance such as a solvent. Since the substance can be removed, spectroscopic analysis can be performed even before a substantial change occurs even for a substance that changes over time. For example, the general formula SiO a (OH) b (OR 1 ) c (OR 2 ) d (where 0.8 ≦ a ≦ 1.6, 0.3 ≦ b ≦ 1.3,
0.2 ≦ c + d ≦ 1.9, b = 4- (2a + c + d),
R 1 is a methyl group or an ethyl group, and R 2 is an organic group different from R 1 . In the siloxane compound represented by the formula (1), the average structure is important in discussing its performance.
The quantitative determination of the silanol group in the siloxane compound is suitably measured by an infrared spectrophotometer. However, in the case of an alcohol solution of a siloxane compound, the alcohol is the same O
As the H group, a broad absorption was shown at a position close to the absorption of the silanol group in the siloxane compound, so that the absorptions overlapped and could not be quantified. This solution changes over time when the alcohol solvent is evaporated. Therefore, when the alcohol solvent is evaporated and only the siloxane compound is separated and subjected to infrared spectroscopy, accurate determination of the silanol group cannot be performed. Other groups could be measured by NMR or the like, but the amount of silanol groups could not be directly measured.
The value of b was calculated and estimated from the amount and the values of a, c, and d. On the other hand, according to the analysis method of the present invention, the change with time of the siloxane compound can be traced, and therefore, the actual amount of the silanol group at the stage before the change with time can be quantified.

【0027】さらに、本発明により経時変化を起こす被
測定物質と分光分析を妨害する揮発性物質とを含む混合
系を、板状体上に塗布し、揮発性物質を揮発させた後、
分光分析を行うことにより、被測定物質の経時変化の進
行状態を測定することにより、上述したような経時変化
しやすい被測定物質の官能基量等の経時変化の状態の把
握が可能となる。
Further, a mixed system containing a substance to be measured which undergoes a temporal change according to the present invention and a volatile substance which hinders spectroscopic analysis is applied on a plate-like body, and after the volatile substance is volatilized,
By performing the spectroscopic analysis, by measuring the progress of the change with time of the substance to be measured, it is possible to grasp the state of the change with time such as the amount of the functional group of the substance to be measured which is easily changed with time as described above.

【0028】[0028]

【実施例】以下、本発明を実施例により、更に詳細に説
明する。あらかじめ内部標準物質としてフタル酸ジブチ
ル(沸点:摂氏341度)の10重量/体積%メタノール
溶液(フタル酸ジブチル10gが溶液100cc中に含
まれる。)を調製した。被測定物質として一般式[I]
で表されるシロキサン化合物を選び、この約50%メタ
ノール溶液を調整し、被測定物質1gに対して内部標準
物質溶液1mlを混合した。
The present invention will be described in more detail with reference to the following examples. A 10 wt / vol% methanol solution of dibutyl phthalate (boiling point: 341 ° C.) in methanol (10 g of dibutyl phthalate is contained in 100 cc of the solution) was prepared in advance as an internal standard substance. The general formula [I] as the substance to be measured
A siloxane compound represented by the formula was selected, and a 50% methanol solution was prepared, and 1 ml of the internal standard substance solution was mixed with 1 g of the substance to be measured.

【0029】得られた混合溶液をミクロ細孔性ポリエチ
レンフィルムを厚紙で挟んだサンプルホルダー(商品名
「Disposable IR Card」。ミネソタ
・マイニング社製)にピペットを用いて1滴滴下し、直
後に該ホルダーを赤外分光光度計に設置して、溶媒であ
るメタノールの蒸発及びシロキサン化合物の経時変化
を、約5秒ごとにIRスペクトルで観察した。
One drop of the obtained mixed solution was dropped on a sample holder (trade name “Disposable IR Card”, manufactured by Minnesota Mining Co., Ltd.) using a pipette, and a microporous polyethylene film was sandwiched between cardboards. The holder was set on an infrared spectrophotometer, and the evaporation of methanol as a solvent and the change over time of the siloxane compound were observed by an IR spectrum about every 5 seconds.

【0030】その結果、OHの吸収である3400cm
-1の吸光度が設置直後2.98であったが約40秒で
0.299まで減少した。その後減少速度は急激に低下
して、9分後で吸光度は0.293であり、21分後で
吸光度は0.272であった。これらの吸光度変化は、
約40秒後に対して9分後で2%、21分後で9%が減
少したこととなる。平行してシラノール基の経時変化を
SiOSi結合由来の1100cmー1の吸光度増加によ
って確認した結果、40秒まではアルコール溶媒が蒸発
し、その後はシラノール基が経時変化して減少したこと
が判明した。
As a result, the absorption of OH of 3400 cm
The absorbance at -1 was 2.98 immediately after installation, but decreased to 0.299 in about 40 seconds. Thereafter, the rate of decrease decreased sharply, and the absorbance was 0.293 after 9 minutes and 0.272 after 21 minutes. These absorbance changes are:
This means that 2 minutes after 9 minutes and 9% after 21 minutes compared to about 40 seconds later. In parallel, the change with time of the silanol group was confirmed by an increase in the absorbance of 1100 cm -1 derived from the SiOSi bond. As a result, it was found that the alcohol solvent evaporated until 40 seconds, and thereafter the silanol group changed with time and decreased.

【0031】次にシラノール基を定量するため、シラノ
ール基の標品としてトリフェニルシラノールの10重量
/体積%メタノール溶液(トリフェニルシラノール10
gが溶液100cc中に含まれる。)を調製した。検量
線供試液は、内部標準溶液1体積部に対し、トリフェニ
ルシラノールのメタノール溶液をそれぞれ1、2、5体
積部の割合で混合し、その各溶液をシロキサン化合物と
同様に「Disposable IR Card」に1
滴塗布して測定した。
Next, in order to quantify the silanol group, a 10% by weight / volume methanol solution of triphenylsilanol (triphenylsilanol 10
g is contained in 100 cc of the solution. ) Was prepared. The calibration curve test solution was prepared by mixing 1, 2 and 5 parts by volume of a methanol solution of triphenylsilanol with 1 part by volume of the internal standard solution, and dissolving each solution in the same manner as the siloxane compound in "Disposable IR Card". 1 in
The measurement was performed by applying a drop.

【0032】フタル酸ジブチルのエステル基由来の吸光
度(1728cm-1)に対するトリフェニルシラノール
のシラノール基由来の吸光度(3400cm-1)の比率
を、仕込みの濃度比に対してプロットした物を検量線と
した。この検量線からシロキサン化合物のシラノール基
を定量できた。
A plot of the ratio of the absorbance (3400 cm -1 ) derived from the silanol groups of triphenylsilanol to the absorbance (1728 cm -1 ) derived from the ester groups of dibutyl phthalate was plotted against the concentration ratio of the charge. did. From this calibration curve, the silanol groups of the siloxane compound could be quantified.

【0033】[0033]

【発明の効果】本発明の分析方法により、従来は分析が
極めて困難であった経時変化を生じる物質に対して、変
化前の分析値を求めることが容易となり、工業的に極め
て有用なものである。
According to the analysis method of the present invention, it is easy to obtain an analytical value before the change for a substance which undergoes a change with time, which has been extremely difficult to analyze in the past, and is extremely useful industrially. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 甲村 善博 北九州市八幡西区黒崎城石1番1号 三菱 化学株式会社黒崎事業所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshihiro Komura 1-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City Inside Kurosaki Plant of Mitsubishi Chemical Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】経時変化を起こす被測定物質及び分光分析
を妨害する揮発性物質を含む混合系の分光分析法におい
て、前記混合系を板状体上に塗布し、揮発性物質を蒸発
させた後、経時変化の進行する前に分析を行うことを特
徴とする分光分析法。
In a spectroscopic analysis method of a mixed system containing a substance to be measured causing a change with time and a volatile substance which hinders spectroscopic analysis, the mixed system is applied on a plate-like body to evaporate the volatile substance. After that, the spectroscopic analysis method is characterized in that the analysis is performed before the time-dependent change progresses.
【請求項2】板状体が多孔体であることを特徴とする請
求項1記載の分光分析法。
2. The spectroscopic analysis method according to claim 1, wherein the plate-like body is a porous body.
【請求項3】被測定物質を含む混合系中に、内部標準物
質を含むことを特徴とする請求項1又は2に記載の分光
分析法。
3. The spectroscopic method according to claim 1, wherein an internal standard substance is contained in the mixed system containing the substance to be measured.
【請求項4】被測定物質が、経時変化によって高分子量
化またはゲル化の少なくとも一方を生じる物質であるこ
とを特徴とする請求項1〜3のいずれかに記載の分光分
析法。
4. The spectroscopic method according to claim 1, wherein the substance to be measured is a substance which produces at least one of a high molecular weight and a gelation with the lapse of time.
【請求項5】被測定物質が、−OH基と、−OH基と縮
合反応しうる基とを有する化合物である請求項1〜4の
いずれかに記載の分光分析法。
5. The spectroscopic method according to claim 1, wherein the substance to be measured is a compound having an —OH group and a group capable of undergoing a condensation reaction with the —OH group.
【請求項6】被測定物質が、一般式[I] 【化1】 SiOa(OH)b(OR1c(OR2)d・・・・・[I] (式中、0.8≦a≦1.6,0.3≦b≦1.3,
0.2≦c+d≦1.9,b=4−(2a+c+d)で
あり,R1はメチル基又はエチル基であり、R2はR 1
相異なる有機基である。)で表されるシロキサン化合物
であり、分析法として赤外分光法を用いることを特徴と
する請求項1〜4のいずれかに記載の分光分析法。
6. The substance to be measured is represented by the general formula [I]:a(OH)b(OR1)c(ORTwo) D... [I] (where, 0.8 ≦ a ≦ 1.6, 0.3 ≦ b ≦ 1.3,
0.2 ≦ c + d ≦ 1.9, b = 4- (2a + c + d)
Yes, R1Is a methyl group or an ethyl group;TwoIs R 1When
Different organic groups. The siloxane compound represented by
Characterized in that infrared spectroscopy is used as an analytical method.
The spectroscopic method according to any one of claims 1 to 4.
【請求項7】経時変化を起こす被測定物質と分光分析を
妨害する揮発性物質とを含む混合系を、板状体上に塗布
し、揮発性物質を揮発させた後、分析を行うことによ
り、被測定物質の経時変化の進行状態を測定することを
特徴とする分光分析法。
7. A method comprising applying a mixed system containing a substance to be measured which undergoes a change with time and a volatile substance which hinders spectroscopic analysis to a plate-like body, volatilizing the volatile substance, and performing analysis. A spectroscopic method characterized by measuring the progress of a change with time of a substance to be measured.
JP27255797A 1997-10-06 1997-10-06 Method for spectroscopic analysis of substance Pending JPH11108833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27255797A JPH11108833A (en) 1997-10-06 1997-10-06 Method for spectroscopic analysis of substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27255797A JPH11108833A (en) 1997-10-06 1997-10-06 Method for spectroscopic analysis of substance

Publications (1)

Publication Number Publication Date
JPH11108833A true JPH11108833A (en) 1999-04-23

Family

ID=17515575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27255797A Pending JPH11108833A (en) 1997-10-06 1997-10-06 Method for spectroscopic analysis of substance

Country Status (1)

Country Link
JP (1) JPH11108833A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117202A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd Method of forming calibration curve for quantitation assay in infrared spectroscopy and quantity determination method
WO2010132589A2 (en) * 2009-05-13 2010-11-18 Cv Holdings, Llc Outgassing method for inspecting a coated surface
US8834954B2 (en) 2009-05-13 2014-09-16 Sio2 Medical Products, Inc. Vessel inspection apparatus and methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117202A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd Method of forming calibration curve for quantitation assay in infrared spectroscopy and quantity determination method
WO2010132589A2 (en) * 2009-05-13 2010-11-18 Cv Holdings, Llc Outgassing method for inspecting a coated surface
WO2010132589A3 (en) * 2009-05-13 2011-03-31 Cv Holdings, Llc Outgassing method for inspecting a coated surface
US8834954B2 (en) 2009-05-13 2014-09-16 Sio2 Medical Products, Inc. Vessel inspection apparatus and methods
US10390744B2 (en) 2009-05-13 2019-08-27 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US10537273B2 (en) 2009-05-13 2020-01-21 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer
US9572526B2 (en) 2009-05-13 2017-02-21 Sio2 Medical Products, Inc. Apparatus and method for transporting a vessel to and from a PECVD processing station
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US11148856B2 (en) 2011-11-11 2021-10-19 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11724860B2 (en) 2011-11-11 2023-08-15 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US10577154B2 (en) 2011-11-11 2020-03-03 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11884446B2 (en) 2011-11-11 2024-01-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US11406765B2 (en) 2012-11-30 2022-08-09 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US10363370B2 (en) 2012-11-30 2019-07-30 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US11344473B2 (en) 2013-03-11 2022-05-31 SiO2Medical Products, Inc. Coated packaging
US10537494B2 (en) 2013-03-11 2020-01-21 Sio2 Medical Products, Inc. Trilayer coated blood collection tube with low oxygen transmission rate
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US11298293B2 (en) 2013-03-11 2022-04-12 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11684546B2 (en) 2013-03-11 2023-06-27 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate

Similar Documents

Publication Publication Date Title
JPH11108833A (en) Method for spectroscopic analysis of substance
EP1924843B1 (en) Process, material and sensor for detecting, dosing and / or trapping an aldehyde, and process for preparing the material.
JP5819841B2 (en) Materials and methods for capturing, detecting and quantifying heteroaromatic compounds, etc.
CN109021283B (en) CsPbBr for detecting omethoate3Perovskite quantum dot-molecularly imprinted fluorescent sensor and preparation method thereof
EP3165915B1 (en) Use of nanoparticles of transition-metal oxides as sensitive materials in chemical sensors for detecting or assaying target molecule vapours
CN108801990B (en) CsPbBr-based3Omethoate detection method of perovskite quantum dot-molecular imprinting fluorescence sensor
US20160061741A1 (en) Polydiacetylene and polydiacetylene/zno nanocomposite sensors
Duan et al. SERS-based chip for discrimination of formaldehyde and acetaldehyde in aqueous solution using silver reduction
Harvey et al. Optical properties of secondary organic aerosol from cis-3-hexenol and cis-3-hexenyl acetate: effect of chemical composition, humidity, and phase
Sawicka et al. The application of 7H-indolo [1, 2-a] quinolinium merocyanine as a new water sensor in organic solvents
Shipalova et al. Influence of structure and solvatation on photophysical characteristics of meso-substituted boron dipyrrins in solution and bulk hybrid materials
Quaranta et al. Highly fluorescent xerogels with entrapped carbon dots for organic scintillators
Dickert et al. Substituted 3, 3-diphenylphthalides as optochemical sensors for polar solvent vapors
CN111189816B (en) Three-dimensional SiO 2 Preparation of-Ag porous structure and application of-Ag porous structure in volatile organic compound detection
CN110632046B (en) Carbon nitride paper-based fluorescence sensor and preparation method and application thereof
Ahmad et al. Sensing material for oxygen gas prepared by doping sol–gel film with tris (2, 2-bipyridyl) dichlororuthenium complex
JP2014527173A (en) Nitrite test strip sensor based on sol-gel film with captured dye and process for preparing the strip sensor
JP6787555B2 (en) Fluorescent silane layer for explosive detection
Fuyi et al. Use of polytetrafluoroethylene slurry for silica matrix removal in ETAAS direct determination of trace cobalt and nickel in silicon dioxide powder
KR20220112816A (en) Probes for chemical analysis and related methods
RU2734499C9 (en) Chemosensors based on europium (iii) carboxylatodibenzoylmethanates for determining ammonia and amines
Ding et al. Photochemically stable fluorescence from hybrid of thionine/silica matrix
Matuzenko et al. Synthesis and protection effect of fullerenol-d
Dong et al. Preparation and optical properties of UV dye DMT-doped silica films
Medel et al. Modification of UV‐cured epoxy resins with fluorescent sensors through photopolymerization and click chemistry reactions and preparation of polarity‐sensitive films