JPH11107807A - Emission control device of internal combustion engine - Google Patents

Emission control device of internal combustion engine

Info

Publication number
JPH11107807A
JPH11107807A JP9269946A JP26994697A JPH11107807A JP H11107807 A JPH11107807 A JP H11107807A JP 9269946 A JP9269946 A JP 9269946A JP 26994697 A JP26994697 A JP 26994697A JP H11107807 A JPH11107807 A JP H11107807A
Authority
JP
Japan
Prior art keywords
fuel ratio
nox
air
exhaust
nox catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9269946A
Other languages
Japanese (ja)
Inventor
Takashi Dougahara
隆 堂ヶ原
Yoshiaki Higuchi
義明 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP9269946A priority Critical patent/JPH11107807A/en
Publication of JPH11107807A publication Critical patent/JPH11107807A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To regenerate a NOx catalyzer simply and efficiently by controlling an exhaust air-fuel ratio to be rich when more than a specified amount of nitrogen oxides is adsorbed to the NOx catalyzer, and also installing an air-fuel ratio control means to terminate this rich control on the basis of output of a combustible sensor. SOLUTION: When an adsorbed quantity of nitrogen oxides in a NOx catalyzer 3 has exceeded the specified quantity, this exhaust emission control device is equipped with an air-fuel ratio control means 5a to discharge the nitrogen oxides adsorbed to the catalyzer 3. Also in this emission control device, an operating control part 5 is equipped with a reducing gas quantity detecting means 5b detecting a reducing gas quantity in the exhaust gas on the basis of output of a combustible sensor 4 at a time when it temporarily operates an engine body 1 to be rich under the control of the air-fuel ratio control means 5a and the exhaust air-fuel ratio is made into being rich and thereby the nitrogen oxides are discharged out of the NOx catalyzer 3. At the air-fuel ratio control means 5a, when more than a specified amount of the reducing gas is detected at the downstream side of the catalyzer 3, the activation of the NOx catalyzer 3 by the rich control of the exhaust air-fuel ratio is terminated by the detecting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気通路
に設けられたNOx触媒を効率的に活性化することので
きる内燃機関の排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine capable of efficiently activating a NOx catalyst provided in an exhaust passage of the internal combustion engine.

【0002】[0002]

【関連する背景技術】燃費の向上を図るべくリーンな空
燃比で運転される、所謂リーンバーン・エンジンにおい
ては、通常の理論空燃比で運転されるエンジンに比較し
て、有害物質の1つである窒素酸化物(NOx)が多く
排出される。このような排気ガス中のNOxを除去する
べく、内燃機関(エンジン)の排気通路に吸蔵型NOx
触媒を設けることが提唱されている。尚、上記吸蔵型N
Ox触媒は、排気空燃比がリーンなときに排気ガス中の
NOxを吸着し、例えば排気空燃比がリッチ化されて排
気ガス中の酸素濃度が低下したときに、既に吸着したN
Oxを放出する作用を呈する。
2. Related Background Art In a so-called lean burn engine which is operated at a lean air-fuel ratio in order to improve fuel efficiency, one of harmful substances is used as compared with an engine which is operated at a normal stoichiometric air-fuel ratio. A large amount of nitrogen oxides (NOx) are emitted. In order to remove NOx in such exhaust gas, a storage NOx is inserted into an exhaust passage of an internal combustion engine (engine).
It has been proposed to provide a catalyst. In addition, the storage type N
The Ox catalyst adsorbs NOx in the exhaust gas when the exhaust air-fuel ratio is lean. For example, when the exhaust air-fuel ratio is enriched and the oxygen concentration in the exhaust gas decreases, the Ox catalyst already adsorbs NOx.
It acts to release Ox.

【0003】[0003]

【発明が解決しようとする課題】ところでNOx触媒に
所定量以上のNOxが吸着されたときには、上述したよ
うに内燃機関を一時的にリッチ運転して排気ガス中の酸
素濃度を低下させ、これによってNOx触媒に吸着され
たNOxを放出させる、即ち、NOx触媒の浄化効率を復
活させる空燃比制御が実行される。しかし上記リッチ運
転が不十分な場合には、NOxが完全に放出されないの
で、NOx触媒の浄化能力が十分に復活しないと言う不
具合が生じる。またリッチ運転が過剰な場合には、リッ
チ運転に伴って排出されるHCおよびCOの量が増大す
る上、燃費の悪化を招く。従ってNOx触媒に吸着され
たNOxの放出を完了するまでの期間だけ、排気空燃比
をリッチ化することが望ましい。
When the NOx catalyst adsorbs a predetermined amount or more of NOx, the internal combustion engine is temporarily operated in a rich manner as described above to reduce the oxygen concentration in the exhaust gas. The air-fuel ratio control is executed to release the NOx adsorbed on the NOx catalyst, that is, to restore the purification efficiency of the NOx catalyst. However, when the rich operation is insufficient, NOx is not completely released, so that a problem occurs that the purification ability of the NOx catalyst is not sufficiently restored. If the rich operation is excessive, the amounts of HC and CO discharged along with the rich operation increase, and the fuel efficiency is deteriorated. Therefore, it is desirable to make the exhaust air-fuel ratio rich only until the release of the NOx adsorbed on the NOx catalyst is completed.

【0004】しかしながらNOx触媒の浄化能力(吸着
能力)は、NOxの吸着とその放出の繰り返しに伴って
徐々に低下することが否めない。しかもNOx触媒から
のNOxの放出(NOx触媒の復活)に要する時間は、そ
のときのリッチ化条件、具体的には排気ガス中の酸素濃
度や触媒温度によって変化する。従って排気ガス特性の
悪化を招くことなしにNOx触媒を効率的に復活させる
には、例えば排気空燃比のリッチ化に伴うNOx触媒の
復活の状況を把握することが必要となる。
[0004] However, it cannot be denied that the purifying ability (adsorbing ability) of the NOx catalyst gradually decreases as NOx is adsorbed and released repeatedly. In addition, the time required for releasing NOx from the NOx catalyst (restoring the NOx catalyst) varies depending on the enrichment conditions at that time, specifically, the oxygen concentration in the exhaust gas and the catalyst temperature. Therefore, in order to efficiently recover the NOx catalyst without deteriorating the exhaust gas characteristics, it is necessary to grasp the state of the recovery of the NOx catalyst due to, for example, enrichment of the exhaust air-fuel ratio.

【0005】本発明はこのような事情を考慮してなされ
たもので、その目的は、燃費の悪化等の問題を招くこと
なしに排気通路に設けられるNOx触媒を簡易に、且つ
効率的に復活させることのできる内燃機関の排気浄化装
置を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to simply and efficiently recover a NOx catalyst provided in an exhaust passage without causing a problem such as deterioration of fuel efficiency. An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine that can be operated.

【0006】[0006]

【課題を解決するための手段】上述した目的を達成する
べく本発明に係る内燃機関の排気浄化装置は、排気空燃
比がリーンのときに排気ガス中のNOxを吸着し、前記
排気ガス中の酸素濃度が低下したときに既に吸着したN
Oxを放出するNOx触媒を内燃機関の排気通路に設ける
と共に、このNOx触媒の下流側に可燃物センサを設け
てなり、前記NOx触媒に所定量以上のNOxが吸着され
たとき、前記排気空燃比をリッチ化制御する空燃比制御
手段として、前記可燃物センサの出力に基づいて上記リ
ッチ化制御を終了させる手段を備えていることを特徴と
している。
In order to achieve the above object, an exhaust gas purifying apparatus for an internal combustion engine according to the present invention adsorbs NOx in exhaust gas when the exhaust air-fuel ratio is lean, and removes NOx in the exhaust gas. N already adsorbed when oxygen concentration decreases
A NOx catalyst for releasing Ox is provided in an exhaust passage of the internal combustion engine, and a combustible sensor is provided downstream of the NOx catalyst. When a predetermined amount or more of NOx is adsorbed on the NOx catalyst, the exhaust air-fuel ratio As an air-fuel ratio control means for controlling the enrichment of the fuel cell, means for terminating the enrichment control based on the output of the combustible substance sensor is provided.

【0007】即ち、本発明は排気通路のNOx触媒の下
流側に設けた、例えばCO/HCセンサや還元ガスセン
サからなる可燃物センサの出力から、空燃比をリッチ化
してNOx触媒を復活させているときの還元ガスを検出
するようにし、前記可燃物センサによって上記還元ガス
が検出されたとき、これを還元ガスが酸化されなくなっ
た状態、つまり前記NOx触媒が復活された状態である
として検出し、この検出タイミングで前記空燃比制御手
段による排気空燃比のリッチ化を終了させることを特徴
としている。
That is, according to the present invention, the air-fuel ratio is enriched from the output of a combustible sensor, such as a CO / HC sensor or a reducing gas sensor, provided downstream of the NOx catalyst in the exhaust passage, and the NOx catalyst is restored. When the reducing gas is detected by the combustible substance sensor, it is detected that the reducing gas is no longer oxidized, that is, the NOx catalyst is recovered, At this detection timing, the enrichment of the exhaust air-fuel ratio by the air-fuel ratio control means is terminated.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態に係る内燃機関の排気浄化装置について説明す
る。図1は実施形態に係る内燃機関の排気浄化装置の概
略構成図で、1はエンジン(内燃機関)本体である。こ
のエンジン本体1の排気通路2には、排気空燃比がリー
ンのときに排気ガス中のNOxを吸着し、前記排気ガス
中の酸素濃度が低下したときに既に吸着したNOxを放
出するNOx触媒3が設けられている。更にこのNOx触
媒3の下流側には、例えばCO/HCセンサや還元ガス
センサからなる可燃物センサ4が設けられている。この
可燃物センサ4は、例えばSnO2やZnOを母体材料と
する半導体センサからなり、エンジン本体1から排出さ
れる排気ガス中に含まれる炭化水素(HC)や一酸化炭
素(CO)、或いはその他の還元ガス成分を検出する役
割を担う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An exhaust gas purifying apparatus for an internal combustion engine according to one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine according to an embodiment, and 1 is an engine (internal combustion engine) main body. The exhaust passage 2 of the engine body 1 adsorbs NOx in the exhaust gas when the exhaust air-fuel ratio is lean, and releases the already adsorbed NOx when the oxygen concentration in the exhaust gas decreases. Is provided. Further, on the downstream side of the NOx catalyst 3, a combustible substance sensor 4 including, for example, a CO / HC sensor and a reducing gas sensor is provided. The combustible substance sensor 4 is composed of a semiconductor sensor using SnO 2 or ZnO as a base material, for example, and contains hydrocarbon (HC), carbon monoxide (CO), or other components contained in exhaust gas discharged from the engine body 1. It plays the role of detecting the reducing gas component of the gas.

【0009】尚、上記NOx触媒3の下流側に三元触媒
(図示せず)が設けられる場合もある。この三元触媒
は、その触媒近傍に存在するHCとCOとを用いてNO
xを還元する作用を呈する。この三元触媒によって、例
えばNOx触媒3の吸着能力が低下したことにより該N
Ox触媒3により吸着されなかったNOxの還元、更には
NOx触媒3の還元時に該NOx触媒3から放出されるN
Oxの還元が行われる。
A three-way catalyst (not shown) may be provided downstream of the NOx catalyst 3 in some cases. This three-way catalyst uses NO and HC existing near the catalyst to produce NO.
It acts to reduce x. This three-way catalyst reduces the Nx
The reduction of NOx not adsorbed by the Ox catalyst 3 and the N released from the NOx catalyst 3 when the NOx catalyst 3 is reduced
Ox reduction takes place.

【0010】さてエンジン本体1の運転を制御する運転
制御部5は、例えばマイクロプロセッサを主体として構
成されるもので、基本的にはアクセル操作等の運転状態
と、そのときのエンジン負荷等に応じてスロットル開度
や燃料噴射量等の制御を実行する。特に運転制御部5
は、例えばエンジン本体1を希薄空燃比で運転している
ときであって(リーン運転時)、前記NOx触媒3にお
けるNOxの吸着量が所定量を越えたとき、前記エンジ
ン本体1を一時的にリッチ運転し、排気ガス中の酸素濃
度を低下させ、且つNOx触媒3の還元に必要なH2やH
C,CO等の還元ガスを増大させることで前記NOx触
媒3に吸着されたNOxを放出させる空燃比制御手段5
aを備えている。更に運転制御部5は、上記空燃比制御
手段5aの制御の下で上述したようにエンジン本体1を
一時的にリッチ運転しているとき、つまり排気空燃比を
リッチ化してNOx触媒3からNOxを放出させている
際、前記可燃物センサ4の出力に基づいて排気ガス中の
還元ガス量を検出する還元ガス量検出手段5bを備えて
いる。そして前記空燃比制御手段5aにおいては、上記
還元ガス量検出手段5bによってNOx触媒3の下流側
において所定量以上の還元ガスが検出されたとき、これ
を受けて前述した排気空燃比のリッチ化制御によるNO
x触媒3の活性化を終了させるものとなっている。
The operation control unit 5 for controlling the operation of the engine body 1 is mainly composed of, for example, a microprocessor, and basically has an operation state such as an accelerator operation and an engine load at that time. To control the throttle opening, fuel injection amount, and the like. Especially the operation control unit 5
For example, when the engine body 1 is operating at a lean air-fuel ratio (in a lean operation) and the NOx adsorption amount in the NOx catalyst 3 exceeds a predetermined amount, the engine body 1 is temporarily stopped. A rich operation is performed to reduce the concentration of oxygen in the exhaust gas and to reduce H 2 and H
Air-fuel ratio control means 5 for releasing NOx adsorbed on said NOx catalyst 3 by increasing reducing gas such as C, CO, etc.
a. Further, the operation control unit 5 performs the rich operation of the engine body 1 temporarily under the control of the air-fuel ratio control unit 5a as described above, that is, makes the exhaust air-fuel ratio rich and removes NOx from the NOx catalyst 3. A reducing gas amount detecting means 5b for detecting the amount of reducing gas in the exhaust gas based on the output of the combustible substance sensor 4 when discharging is provided. When the reducing gas amount detecting means 5b detects a predetermined amount or more of reducing gas downstream of the NOx catalyst 3 in the air-fuel ratio controlling means 5a, the air-fuel ratio controlling means 5a receives the exhaust gas air-fuel ratio enrichment control. NO by
x The activation of the catalyst 3 is terminated.

【0011】即ち、空燃比制御手段5aは、空燃比をリ
ッチ化制御してNOx触媒3を復活させている際、可燃
物センサ4の出力からNOx触媒3の下流側における還
元ガスの量をモニタし、還元ガス量検出手段5bによっ
て排気ガス中の還元ガスが所定量を越えたことが検出さ
れたとき、これをエンジン本体1から排出されたHCや
CO等の還元ガスがNOx触媒3をそのまま通過してい
る状態、つまり還元ガスが酸化されなくなった状態、ひ
いては前記NOx触媒3が完全に復活された状態である
として検出している。そして前記空燃比制御手段5aで
は、上記還元ガスの検出タイミングで前述した排気空燃
比のリッチ化制御を終了し、排気空燃比を元の状態(リ
ーン運転状態)に戻すものとなっている。
That is, the air-fuel ratio control means 5a monitors the amount of reducing gas on the downstream side of the NOx catalyst 3 from the output of the combustible substance sensor 4 when the NOx catalyst 3 is restored by controlling the enrichment of the air-fuel ratio. When the reducing gas amount detecting means 5b detects that the amount of reducing gas in the exhaust gas exceeds a predetermined amount, the reducing gas such as HC and CO discharged from the engine body 1 passes through the NOx catalyst 3 as it is. It is detected that the gas passes through, that is, the reducing gas is no longer oxidized, and that the NOx catalyst 3 is completely restored. The air-fuel ratio control means 5a terminates the exhaust air-fuel ratio enrichment control at the detection timing of the reducing gas and returns the exhaust air-fuel ratio to the original state (lean operation state).

【0012】尚、空燃比制御手段5aにおいては、この
ような可燃物センサ4の出力に基づくリッチ化運転の停
止制御のみならず、リッチ化運転の継続時間に基づい
て、或る程度長期間に亘ってリッチ化運転が行われた場
合においても、その停止制御を実行している。このよう
なリッチ運転の継続時間に基づく停止制御を併用するこ
とで、仮に可燃物センサ4の検出特性が劣化した場合
や、その検出系に故障が発生した場合であっても、不本
意に長時間に亘ってリッチ化運転が実行されることがな
いように、その空燃比制御を円滑に実行するものとなっ
ている。
In the air-fuel ratio control means 5a, not only the control for stopping the enrichment operation based on the output of the combustible substance sensor 4 but also the operation for a certain period based on the duration of the enrichment operation is performed. Even when the enrichment operation is performed over a period of time, the stop control is executed. By using such stop control based on the duration of the rich operation, even if the detection characteristic of the combustible substance sensor 4 is deteriorated or a failure occurs in the detection system, it is undesirably long. The air-fuel ratio control is performed smoothly so that the enrichment operation is not performed over time.

【0013】図2は上述した空燃比制御を実行する空燃
比制御手段5aにおける制御処理の手順の一例を示して
いる。この処理は、NOx触媒3が所定量以上のNOxを
吸着したか否かを判定することから開始される[ステッ
プS1]。ちなみにNOx触媒3におけるNOx吸着量
は、例えばエンジン本体1の運転モードがリーンモード
であるときの燃料噴射パルス時間幅を積算することによ
って等価的に求められる。或いはエンジン本体1がリー
ン運転されているときのNOx排出量を、エンジン回転
数Neおよびエンジン出力Peに応じて求め、このNOx
排出量にNOx触媒4のNOx吸着率に依存する吸着係
数、および触媒温度に依存するNOx吸着率の補正係数
をそれぞれ乗じたものを積算することによって求められ
る。
FIG. 2 shows an example of a procedure of a control process in the air-fuel ratio control means 5a for executing the above-described air-fuel ratio control. This process is started by determining whether or not the NOx catalyst 3 has adsorbed a predetermined amount or more of NOx [Step S1]. Incidentally, the NOx adsorption amount in the NOx catalyst 3 is equivalently obtained by, for example, integrating the fuel injection pulse time width when the operation mode of the engine body 1 is the lean mode. Alternatively, the amount of NOx emission when the engine body 1 is operating lean is determined according to the engine speed Ne and the engine output Pe.
The emission amount is obtained by multiplying the product obtained by multiplying the emission amount by the adsorption coefficient depending on the NOx adsorption rate of the NOx catalyst 4 and the correction coefficient of the NOx adsorption rate depending on the catalyst temperature.

【0014】このようにして求められるNOx触媒4の
NOx吸着量を、予め設定された判定閾値(所定量)と
比較し、その吸着量が上記所定量を越えたか否かを判定
することで、NOx触媒3の活性化(再生)が必要であ
るか否かを判定する。尚、NOx吸着量が所定値に満た
ない場合には、NOx再生条件が満たされていないと判
断し、以下に示す処理を実行することなくそのままリタ
ーンする。
The NOx adsorption amount of the NOx catalyst 4 thus obtained is compared with a predetermined threshold (predetermined amount) to determine whether or not the adsorption amount exceeds the predetermined amount. It is determined whether activation (regeneration) of the NOx catalyst 3 is necessary. If the NOx adsorption amount is less than the predetermined value, it is determined that the NOx regeneration condition is not satisfied, and the routine returns without executing the following processing.

【0015】さて上記ステップS1においてNOx触媒
3に吸着されたNOx量が所定値に達していることが判
定されたならば、空燃比制御手段5aはNOx触媒3に
対する再生制御を起動する。この再生制御は、例えばエ
ンジン本体1の運転モードを一時的にリッチ運転とし、
排気空燃比をリッチ化して排気ガス中の酸素濃度を低下
させることによって実現される。
If it is determined in step S1 that the amount of NOx adsorbed on the NOx catalyst 3 has reached a predetermined value, the air-fuel ratio control means 5a starts regeneration control for the NOx catalyst 3. In this regeneration control, for example, the operation mode of the engine body 1 is temporarily set to the rich operation,
This is realized by enriching the exhaust air-fuel ratio to lower the oxygen concentration in the exhaust gas.

【0016】このようにして排気空燃比をリッチ化制御
してNOx触媒3に吸着されたNOxを放出させ、NOx
触媒3を復活させる動作モードに移行した後、前記空燃
比制御手段5aにおいては、次に前記還元ガス量検出手
段5bを起動し、前記可燃物センサ4の出力からNOx
触媒3の下流側における還元ガス量を検出する。そして
検出された還元ガス量を所定値と比較することで、NO
x触媒3の下流側における排気ガス中の還元ガスの有無
を判定している[ステップS3]。具体的には、排気ガ
ス中のHCやCOの量を検出することで、前述したよう
にNOx触媒3が復活したか否かを判定している。
In this way, the exhaust air-fuel ratio is controlled to be rich to release the NOx adsorbed on the NOx catalyst 3,
After shifting to the operation mode in which the catalyst 3 is reactivated, the air-fuel ratio control means 5a next activates the reducing gas amount detection means 5b and outputs NOx from the output of the combustible substance sensor 4.
The amount of reducing gas on the downstream side of the catalyst 3 is detected. By comparing the detected amount of reducing gas with a predetermined value, NO
It is determined whether there is a reducing gas in the exhaust gas on the downstream side of the x catalyst 3 [Step S3]. Specifically, by detecting the amounts of HC and CO in the exhaust gas, it is determined whether the NOx catalyst 3 has been restored as described above.

【0017】そして空燃比制御手段5aは、ステップS
3の処理において可燃物センサ4の出力から還元ガスが
検出されたとき、これをNOx触媒3の還元完了と判定
し、その検出タイミングで前述した排気空燃比のリッチ
化制御を停止している[ステップS4]。即ち、一時的
に実行した空燃比のリッチ化を終了し、元の運転モード
に戻している。
Then, the air-fuel ratio control means 5a executes step S
When the reducing gas is detected from the output of the combustible substance sensor 4 in the process of 3, the determination is made that the reduction of the NOx catalyst 3 is completed, and the exhaust air-fuel ratio enrichment control described above is stopped at the detection timing [ Step S4]. That is, the temporarily executed air-fuel ratio enrichment is terminated, and the operation mode is returned to the original operation mode.

【0018】尚、可燃物センサ4の出力から還元ガスの
濃度が所定値以下の場合には、排気空燃比のリッチ化に
よってNOx触媒3に導入されている還元ガスがNOx触
媒3の復活作用に供されていると判断される。従ってこ
の場合には、上記排気空燃比のリッチ化制御がそのまま
継続され、前述したステップS3からの処理が繰り返し
実行される。しかしこの際、排気空燃比のリッチ化によ
るNOx触媒3の還元処理時間、つまりリッチ化の継続
時間の判定が行われる[ステップS5]。そして上記リ
ッチ化制御の継続時間が所定時間tに至ったとき、これ
をリッチ化の終了時点として検出し、前述した排気空燃
比のリッチ化制御を停止させるものとなっている[ステ
ップS4]。
When the concentration of the reducing gas from the output of the combustible substance sensor 4 is equal to or lower than a predetermined value, the reducing gas introduced into the NOx catalyst 3 due to the enrichment of the exhaust air-fuel ratio is used to restore the NOx catalyst 3. It is determined that it is provided. Therefore, in this case, the exhaust air-fuel ratio enrichment control is continued as it is, and the processing from step S3 described above is repeatedly executed. However, at this time, the reduction processing time of the NOx catalyst 3 due to the enrichment of the exhaust air-fuel ratio, that is, the continuation time of the enrichment is determined [Step S5]. When the continuation time of the enrichment control reaches a predetermined time t, this is detected as the end point of the enrichment, and the above-described enrichment control of the exhaust air-fuel ratio is stopped [Step S4].

【0019】このように本装置においてはNOx触媒3
を復活させるべく、上述したように空燃比制御手段5a
の下で排気空燃比のリッチ化制御を実行している際、可
燃物センサ4の出力からNOx触媒3の下流側における
排気ガス中の還元ガス成分を検出している。ちなみにエ
ンジン本体1をリッチ化運転すると、これに伴って排気
ガス中の酸素濃度が低くなり、同時にH2,HC,CO
等の還元ガス成分が排出される。そしてこれらの還元ガ
ス成分は、NOx触媒3に取り込まれたNOxにより酸化
されて該NOx触媒3の下流側に排出される。しかしN
Ox触媒3からのNOxの放出が少なくなり、これに伴っ
てNOx触媒3中のNOxが少なくなると、前記還元ガス
が消費され難くなり、還元ガス成分はそのままNOx触
媒3の下流側に流出する。
As described above, in the present apparatus, the NOx catalyst 3
As described above, the air-fuel ratio control means 5a
When the exhaust air-fuel ratio enrichment control is executed under the condition, the reducing gas component in the exhaust gas on the downstream side of the NOx catalyst 3 is detected from the output of the combustible substance sensor 4. By the way, when the engine body 1 is enriched, the oxygen concentration in the exhaust gas is reduced accordingly, and at the same time, H 2 , HC, CO
And other reducing gas components are discharged. Then, these reducing gas components are oxidized by NOx taken into the NOx catalyst 3 and discharged downstream of the NOx catalyst 3. But N
When the release of NOx from the Ox catalyst 3 decreases, and the NOx in the NOx catalyst 3 decreases accordingly, the reducing gas becomes difficult to consume, and the reducing gas component flows out of the NOx catalyst 3 as it is downstream.

【0020】可燃物センサ4はこのような還元ガスの流
出をNOxセンサの下流側において検出しており、該可
燃物センサ4の出力から還元ガス成分が所定量以上検出
されたとき、還元ガス量検出手段5bにおいて、これを
還元ガスがNOx触媒3において消費されなくなった状
態、つまりNOx触媒3が完全に復活したとして検出し
ている。そして空燃比制御手段5aでは上記還元ガスの
検出タイミングを以て、前述したリッチ化制御を終了さ
せている。
The combustible material sensor 4 detects such outflow of the reducing gas downstream of the NOx sensor, and when the reducing gas component is detected from the output of the combustible material sensor 4 by a predetermined amount or more, the amount of the reducing gas is detected. The detecting means 5b detects this as a state in which the reducing gas is no longer consumed in the NOx catalyst 3, that is, as a complete recovery of the NOx catalyst 3. The air-fuel ratio control means 5a terminates the above-described enrichment control at the detection timing of the reducing gas.

【0021】従って上述した制御によれば、エンジン本
体1のリッチ運転の期間を必要最小限に抑えることがで
きる。つまり可燃物センサ4の出力からNOx触媒3の
還元完了を速やかに検出し、その検出タイミングを以て
NOx触媒3を還元する為のリッチ化制御を停止するこ
とができる。この結果、NOx触媒3を完全に復活し得
ない状態のままリッチ化制御を終了することがなくな
り、NOx触媒3の不十分な復活(再生)と言う不具合
を防ぐことができる。またNOx触媒3が復活されたに
も拘わらずリッチ運転を継続することで、燃費が悪化し
たり、その冗長期間においてHCやCOが多量に排出さ
れて排気ガス特性が悪化する等の不具合を未然に防ぐこ
とができる。
Therefore, according to the above-described control, the period of the rich operation of the engine body 1 can be minimized. That is, the completion of the reduction of the NOx catalyst 3 is promptly detected from the output of the combustible substance sensor 4, and the enrichment control for reducing the NOx catalyst 3 can be stopped at the detection timing. As a result, the enrichment control does not end in a state in which the NOx catalyst 3 cannot be completely restored, and the problem of insufficient restoration (regeneration) of the NOx catalyst 3 can be prevented. In addition, by continuing the rich operation despite the NOx catalyst 3 being restored, problems such as deterioration of fuel consumption and deterioration of exhaust gas characteristics due to emission of a large amount of HC and CO during the redundant period can be prevented. Can be prevented.

【0022】特にNOx触媒3の下流側に設けた可燃物
センサ4によって排気ガス中の還元ガス成分を検出する
と言う簡便な手法を用いて、NOx触媒3の復活の為の
リッチスパイクの期間、特にその終了時点を、NOx触
媒3の復活の程度に応じて確実に制御するので、排気ガ
ス特性の悪化を招来することなしに、簡易にして効果的
にNOx触媒3を十分に復活させることができる。しか
もリッチ化された空燃比や触媒温度等のリッチ化条件が
異なる場合であっても、NOx触媒3の復活状態に応じ
て適切にそのリッチ化制御を停止することができる。
In particular, by using a simple method of detecting the reducing gas component in the exhaust gas by the combustible substance sensor 4 provided on the downstream side of the NOx catalyst 3, the period of the rich spike for restoring the NOx catalyst 3, especially Since the end point is reliably controlled in accordance with the degree of restoration of the NOx catalyst 3, the NOx catalyst 3 can be simply and effectively restored sufficiently without deteriorating the exhaust gas characteristics. . In addition, even when the enrichment conditions such as the enriched air-fuel ratio and the catalyst temperature are different, the enrichment control can be appropriately stopped in accordance with the reactivated state of the NOx catalyst 3.

【0023】尚、本発明は上述した実施形態に限定され
るものではない。例えばNOx触媒3の下流側に三元触
媒が設けられる場合には、該三元触媒の下流側に可燃物
センサ4を設けるようにしても良い。またNOx触媒3
を復活させるべくリッチ化運転するタイミングを、リー
ン運転による走行距離を判定することで、簡単に制御す
ることも可能である。その他、本発明はその要旨を逸脱
しない範囲で種々変形して実施することができる。
The present invention is not limited to the above embodiment. For example, when a three-way catalyst is provided downstream of the NOx catalyst 3, the combustible sensor 4 may be provided downstream of the three-way catalyst. NOx catalyst 3
It is also possible to easily control the timing of the enrichment operation in order to restore the vehicle by determining the traveling distance by the lean operation. In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、N
Ox触媒の下流側に設けた可燃物センサの出力からNOx
触媒の復活時における還元ガス成分を検出し、検出され
た還元ガスの量に基づいてNOx触媒の復活の度合いを
判定して排気空燃比のリッチ化制御を停止するので、N
Ox触媒の復活に要するリッチ化の期間を必要最小限に
抑えることができる。この結果、排気ガス特性の悪化を
招来することなく、また燃費を悪化させることなしにN
Ox触媒を確実に復活(再生)することができる等の実
用上多大なる効果が奏せられる。
As described above, according to the present invention, N
From the output of the combustible sensor provided downstream of the Ox catalyst, NOx
Since the reducing gas component at the time of catalyst recovery is detected, the degree of recovery of the NOx catalyst is determined based on the detected amount of reducing gas, and the exhaust air-fuel ratio enrichment control is stopped.
The period of enrichment required for the restoration of the Ox catalyst can be minimized. As a result, without deteriorating exhaust gas characteristics and without deteriorating fuel economy,
Practically great effects are obtained, such as the Ox catalyst can be surely restored (regenerated).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る内燃機関の排気浄化
装置の概略構成図。
FIG. 1 is a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine according to an embodiment of the present invention.

【図2】実施形態に係る空燃比制御の処理手順の一例を
示す図。
FIG. 2 is a diagram showing an example of a processing procedure of air-fuel ratio control according to the embodiment.

【符号の説明】[Explanation of symbols]

1 エンジン本体 3 NOx触媒 4 可燃物センサ 5 運転制御部 5a 空燃比制御手段 5b 還元ガス量検出手段 DESCRIPTION OF SYMBOLS 1 Engine main body 3 NOx catalyst 4 Combustible substance sensor 5 Operation control part 5a Air-fuel ratio control means 5b Reduction gas amount detection means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/24 ZAB B01D 53/36 101A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F01N 3/24 ZAB B01D 53/36 101A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に設けられて、排気
空燃比がリーンのときに排気ガス中のNOxを吸着し、
前記排気ガス中の酸素濃度が低下したときに既に吸着し
たNOxを放出するNOx触媒と、 前記排気通路の上記NOx触媒の下流側に設けられた可
燃物センサと、 前記NOx触媒に所定量以上のNOxが吸着されたとき、
前記排気空燃比をリッチ化制御すると共に、前記可燃物
センサの出力に基づいて上記リッチ化制御を終了させる
空燃比制御手段とを具備したことを特徴とする内燃機関
の排気浄化装置。
1. An exhaust passage provided in an internal combustion engine for adsorbing NOx in exhaust gas when an exhaust air-fuel ratio is lean,
A NOx catalyst that releases NOx that has already been adsorbed when the oxygen concentration in the exhaust gas is reduced; a combustible substance sensor provided downstream of the NOx catalyst in the exhaust passage; When NOx is adsorbed,
An exhaust gas purifying apparatus for an internal combustion engine, comprising: air-fuel ratio control means for controlling the exhaust air-fuel ratio to be rich and terminating the rich control based on the output of the combustible substance sensor.
JP9269946A 1997-10-02 1997-10-02 Emission control device of internal combustion engine Withdrawn JPH11107807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9269946A JPH11107807A (en) 1997-10-02 1997-10-02 Emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9269946A JPH11107807A (en) 1997-10-02 1997-10-02 Emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH11107807A true JPH11107807A (en) 1999-04-20

Family

ID=17479417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9269946A Withdrawn JPH11107807A (en) 1997-10-02 1997-10-02 Emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH11107807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504422A (en) * 1998-02-27 2002-02-12 フオルクスワーゲン・アクチエンゲゼルシヤフト Control method of NOx absorption catalyst
US7255098B1 (en) 2006-04-27 2007-08-14 Caterpillar Inc. Engine emissions control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504422A (en) * 1998-02-27 2002-02-12 フオルクスワーゲン・アクチエンゲゼルシヤフト Control method of NOx absorption catalyst
US7255098B1 (en) 2006-04-27 2007-08-14 Caterpillar Inc. Engine emissions control system

Similar Documents

Publication Publication Date Title
JP2605586B2 (en) Exhaust gas purification device for internal combustion engine
US7662197B2 (en) Method of operating an exhaust gas cleaning unit with particle filter and nitrogen oxygen store
JP3284274B2 (en) Nitrogen oxide purification control method for diesel vehicles
JP2001355485A (en) Exhaust emission control device having nitrogen oxides storage and reduction type catalyst
EP1449575B1 (en) NOx catalyst regeneration method for NOx purifying system and NOx purifying system
KR20070049859A (en) A exhaust gas purification system of diesel vehicle and method for regeneration thereof
JPH0610725A (en) Exhaust emission control device for internal combustion engine
JP2009174445A (en) Exhaust emission control device for internal combustion engine
JP4341196B2 (en) Exhaust gas purification device for internal combustion engine
JP4357918B2 (en) Exhaust gas purification device for internal combustion engine
JP2002097938A (en) Deterioration detector of catalyst for exhaust emission control
JPH11107807A (en) Emission control device of internal combustion engine
JP4093302B2 (en) NOx purification system catalyst deterioration judgment method and NOx purification system
JP4075641B2 (en) Exhaust gas purification system for internal combustion engine
JP2830668B2 (en) Exhaust gas purification device for internal combustion engine
JP4161429B2 (en) Lean combustion internal combustion engine
JP2010031737A (en) Air-fuel ratio control device and hybrid vehicle
JP3487269B2 (en) Exhaust gas purification device for internal combustion engine
JP3358485B2 (en) Exhaust purification system for lean burn internal combustion engine
JP3777788B2 (en) Lean combustion internal combustion engine
JP2842122B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176632A (en) Exhaust emission control device for internal combustion engine
JP3496572B2 (en) Exhaust gas purification device for internal combustion engine
JP2001271697A (en) Exhaust emission control device
JP2004360593A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207