JP2001271697A - Exhaust emission control device - Google Patents

Exhaust emission control device

Info

Publication number
JP2001271697A
JP2001271697A JP2000090835A JP2000090835A JP2001271697A JP 2001271697 A JP2001271697 A JP 2001271697A JP 2000090835 A JP2000090835 A JP 2000090835A JP 2000090835 A JP2000090835 A JP 2000090835A JP 2001271697 A JP2001271697 A JP 2001271697A
Authority
JP
Japan
Prior art keywords
nox
deterioration
fuel ratio
reduction catalyst
nox adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000090835A
Other languages
Japanese (ja)
Inventor
Kazuhiro Enoki
和広 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2000090835A priority Critical patent/JP2001271697A/en
Publication of JP2001271697A publication Critical patent/JP2001271697A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas emission control device for an internal combustion engine, capable of reducing NOx discharge into the atmosphere left unpurified by release of NOx, at the of regeneration of an NOx adsorption reduction type catalyst and deciding deterioration of the NOx adsorption reduction type catalyst. SOLUTION: This device is provided with a NOx sensor 3 disposed on the downstream side the NOx adsorption reduction catalyst 2 for detecting NOx concentration; an air-fuel control means 7 for reducing NOx adsorbed in the NOx adsorption reduction type catalyst 2 by transferring to a rich air-fuel ratio before NOx concentration on the downstream side of the NOx adsorption reduction type catalyst 2; a deterioration decision means 5 for deciding deterioration of the NOx adsorption reduction type catalyst 2 at a point of time, when NOx concentration detected by the NOx sensor 3 increases; and an inhibiting means for inhibiting the transfer to the rich air-fuel ratio by the air-fuel control means 7, based on deterioration decision timing of the preliminarily set NPx adsorption reduction type catalyst 2. The device determines deterioration of the NOx adsorption reduction type catalyst 2, by inhibiting the transfer to the rich air-fuel ratio when timing reaches deterioration decision time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気ガス
浄化装置に関し、特にNOx吸着還元型触媒を配設した
排気ガス浄化装置において前記NOx吸着還元型触媒の
劣化を判定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly to an apparatus for judging deterioration of the NOx adsorbing and reducing catalyst in an exhaust gas purifying apparatus provided with a NOx adsorbing and reducing catalyst.

【0002】[0002]

【従来の技術】内燃機関の排気ガス浄化装置としては、
希薄燃焼状態であるリーン空燃比での運転時に生じるN
Oxを排気通路に配設したNOx吸着還元型触媒に吸着
させ、一時的に酸素濃度が低下状態であるリッチ空燃比
での運転により吸着したNOxを放出させるとともに、
放出されたNOxを排気中の未燃HC、CO等の成分に
より還元させて浄化を図るようにしたものがある。以
下、本明細書では、前記のリッチ空燃比での運転により
吸着したNOxを放出させるとともに、放出されたNO
xを排気中の未燃HC、CO等の成分により還元させて
浄化する操作を「NOx吸着還元型触媒の再生」とい
う。ところで、NOx吸着還元型触媒では、長期間の使
用に伴う劣化が生じ、NOxの吸着量は減少してくる。
劣化した触媒は、そのままの使用を続けると浄化性能等
に悪影響を与えるので、交換あるいは補修が必要とな
る。
2. Description of the Related Art As an exhaust gas purifying apparatus for an internal combustion engine,
N generated during operation at a lean air-fuel ratio that is a lean burn state
Ox is adsorbed by the NOx adsorption reduction catalyst disposed in the exhaust passage, and the adsorbed NOx is released by operation at a rich air-fuel ratio in which the oxygen concentration is temporarily reduced,
There is one that purifies the exhausted NOx by reducing it with components such as unburned HC and CO in the exhaust gas. Hereinafter, in this specification, NOx adsorbed by the operation at the rich air-fuel ratio is released, and the released NOx is released.
The operation of purifying x by reducing x with components such as unburned HC and CO in the exhaust gas is referred to as “regeneration of the NOx adsorption reduction catalyst”. By the way, in the NOx adsorption reduction catalyst, deterioration occurs due to long-term use, and the adsorption amount of NOx decreases.
If the deteriorated catalyst continues to be used as it is, it will have an adverse effect on the purification performance and the like, so that replacement or repair is required.

【0003】このような排気ガス浄化装置として、特許
第2985638号公報ではNOx吸着還元型触媒の下
流のNOx濃度が増加したことを検出し、NOx吸着還
元型触媒の再生を行うものが開示されている。また、特
開平7−208151号公報では、NOx吸着還元型触
媒の熱劣化や硫黄被毒などによる劣化の判定について、
触媒の下流のNOx濃度の増加を検出し、リーン空燃比
でのNOxの吸着を再開してからNOx吸着量が飽和に
達し、下流のNOx濃度が増加するまでの時間が設定値
より低下した場合に劣化と判定する排気ガス浄化装置が
開示されている。
[0003] As such an exhaust gas purifying apparatus, Japanese Patent Publication No. 2985638 discloses an apparatus that detects an increase in the NOx concentration downstream of a NOx adsorption reduction catalyst and regenerates the NOx adsorption reduction catalyst. I have. Further, Japanese Patent Application Laid-Open No. 7-208151 discloses a method of judging deterioration of a NOx adsorption reduction catalyst due to thermal deterioration, sulfur poisoning, or the like.
When the increase in NOx concentration downstream of the catalyst is detected, the NOx adsorption amount reaches saturation after the NOx adsorption at the lean air-fuel ratio is restarted, and the time until the downstream NOx concentration increases decreases below the set value. An exhaust gas purifying device that is judged to be deteriorated is disclosed.

【0004】[0004]

【発明が解決しようとする課題】NOx吸着還元型触媒
はNOx吸着量が飽和に近づくとNOx吸着能力が低下
し、触媒の下流のNOx濃度が増加してくる。上記のよ
うな従来の排気ガス浄化装置は、この触媒の下流のNO
x濃度の増加を検出し、NOx吸着還元型触媒の再生を
行ない、また、劣化判断を行っている。しかしながら、
NOx吸着還元型触媒のNOx吸着量が飽和に近づきN
Ox吸着能力が低下したところでNOx吸着還元型触媒
の再生を行なうと、還元されきれないで触媒の下流に放
出されるNOxが増え(以下、本明細書では、「 NO
xのリリース」という)、浄化されないまま大気に放出
されるNOxが増えるという問題がある。
When the amount of adsorbed NOx approaches saturation, the NOx adsorbing capacity of the NOx adsorbing reduction catalyst decreases, and the NOx concentration downstream of the catalyst increases. The conventional exhaust gas purifying apparatus as described above uses NOx downstream of the catalyst.
The increase in the x concentration is detected, the NOx adsorption-reduction catalyst is regenerated, and the deterioration is determined. However,
When the NOx adsorption amount of the NOx adsorption reduction catalyst approaches saturation, N
When the regeneration of the NOx adsorption-reduction catalyst is performed when the Ox adsorption capacity is reduced, the amount of NOx that cannot be reduced and is released to the downstream of the catalyst increases (hereinafter, “NO
x), which increases the amount of NOx released to the atmosphere without purification.

【0005】図4はNOx吸着還元型触媒のNOxのリ
リースを説明する図である。NOx吸着還元型触媒の下
流のNOx濃度が増加してNOx濃度C1となった時点
t1でNOx吸着還元型触媒の再生A1を行なうと、
NOxのリリースa1が発生し、一時的にNOx濃度が
増加する。また、NOx濃度がC1より大きいC2とな
った時点t2でNOx吸着還元型触媒の再生A2を行な
うと、 NOxのリリースa2は更に増加する。これに
対し、NOx吸着還元型触媒の下流のNOx濃度が増加
する前のt3時点でNOx吸着還元型触媒の再生A3を
行なうと、下流のNOx濃度の増加がほとんど見られず
(a3)にNOx吸着還元型触媒は再生される。
FIG. 4 is a view for explaining the release of NOx of the NOx adsorption reduction catalyst. When the regeneration A1 of the NOx adsorption-reduction catalyst is performed at time t1 when the NOx concentration downstream of the NOx adsorption-reduction catalyst increases to reach the NOx concentration C1,
NOx release a1 occurs, and the NOx concentration temporarily increases. When the regeneration A2 of the NOx adsorption-reduction catalyst is performed at time t2 when the NOx concentration becomes C2 larger than C1, the release a2 of NOx further increases. In contrast, if the regeneration A3 of the NOx adsorption-reduction catalyst is performed at time t3 before the NOx concentration downstream of the NOx adsorption-reduction catalyst increases, the downstream NOx concentration hardly increases (a3) and the NOx concentration increases. The adsorptive reduction catalyst is regenerated.

【0006】このNOxのリリースは、燃料噴射制御や
排気還流浄化装置(EGR)の制御により空燃比をリッ
チとするディーゼルエンジンにおいては、空燃比をリッ
チ化するために要する時間がガソリンエンジンに比べ長
くなるので、特に顕著となる。
[0006] This release of NOx is caused by the fact that the time required for enriching the air-fuel ratio is longer in a diesel engine that enriches the air-fuel ratio by controlling the fuel injection control and the exhaust gas recirculation purification device (EGR) than in a gasoline engine. , Which is particularly noticeable.

【0007】よって、NOxのリリースを低減し、浄化
されないまま大気に放出されるNOxをより低減する為
にはNOx吸着還元型触媒の下流のNOx濃度が増加す
る前(t3)にNOx吸着還元型触媒の再生(A3)を
行なうことが必要である。
Therefore, in order to reduce the release of NOx and to further reduce the NOx released to the atmosphere without being purified, the NOx adsorption-reduction type is required before the NOx concentration downstream of the NOx adsorption-reduction catalyst increases (t3). It is necessary to regenerate the catalyst (A3).

【0008】しかしながら、下流のNOx濃度が増加す
る前にNOx吸着還元型触媒の再生を行なうと下流のN
Ox濃度の増加を検出するNOx吸着還元型触媒の劣化
判断ができないと言う問題がある。劣化判断は、前掲の
特開平7−208151号公報に示されるように、下流
のNOx濃度が増加する時点において、つまり、NOx
吸着還元型触媒の飽和現象を利用して実行されるため、
これを発生させないと劣化の判断は不可能となる。
However, if the regeneration of the NOx adsorption-reduction type catalyst is performed before the downstream NOx concentration increases, the downstream Nx concentration decreases.
There is a problem that it is not possible to judge the deterioration of the NOx adsorption-reduction catalyst for detecting the increase in the Ox concentration. As described in the above-mentioned Japanese Patent Application Laid-Open No. 7-208151, the deterioration is determined when the downstream NOx concentration increases, that is, when the NOx concentration increases.
Because it is performed using the saturation phenomenon of the adsorption reduction catalyst,
Unless this occurs, it is impossible to judge deterioration.

【0009】本発明は上記のような問題点に着目し、N
Ox吸着還元型触媒の下流のNOx濃度が増加する前に
再生をおこなうとともに、予め設定されたNOx吸着還
元型触媒の劣化判定時期に基づいて、NOx吸着還元型
触媒の劣化を判定することにより、通常の再生時のNO
xリリースによる浄化されないまま大気に放出されるN
Oxをより低減し、且つNOx吸着還元型触媒の劣化を
判定することができる排気浄化装置を提供することを目
的としている。
The present invention pays attention to the above problems, and
By performing regeneration before the NOx concentration downstream of the Ox adsorption reduction catalyst increases, and by judging the deterioration of the NOx adsorption reduction catalyst based on a preset deterioration judgment timing of the NOx adsorption reduction catalyst, NO during normal playback
N released to the atmosphere without purification by x release
It is an object of the present invention to provide an exhaust gas purification apparatus that can further reduce Ox and determine deterioration of a NOx adsorption reduction catalyst.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
請求項1に係る発明では、内燃機関の排気通路に配設さ
れ、リーン空燃比での運転時にNOxを吸着し、リッチ
空燃比での運転時に吸着したNOxを還元するNOx吸
着還元型触媒と、前記NOx吸着還元型触媒の下流に配
設されNOx濃度を検出するNOxセンサと、前記NO
x吸着還元型触媒の下流のNOx濃度が増加する前にリ
ッチ空燃比に移行して前記NOx吸着還元型触媒に吸着
したNOxを還元する空燃比制御手段と、前記NOxセ
ンサにより検出されるNOx濃度が増加する時点におい
て前記NOx吸着還元型触媒の劣化を判定する劣化判定
手段と、予め設定された前記NOx吸着還元型触媒の劣
化判定時期に基づいて前記空燃比制御手段によるリッチ
空燃比への移行を禁止する禁止手段とを備え、前記劣化
判定時期に達するとリッチ空燃比への移行を禁止して前
記NOx吸着還元型触媒の劣化を判定することを特徴と
する内燃機関の排気ガス浄化装置が提供される。
According to the first aspect of the present invention, there is provided an exhaust passage of an internal combustion engine, which adsorbs NOx during operation at a lean air-fuel ratio and provides a rich air-fuel ratio. A NOx adsorption-reduction catalyst that reduces NOx adsorbed during operation, a NOx sensor that is disposed downstream of the NOx adsorption-reduction catalyst, and detects a NOx concentration;
air-fuel ratio control means for shifting to a rich air-fuel ratio before the NOx concentration downstream of the x-adsorption reduction catalyst increases to reduce NOx adsorbed on the NOx adsorption-reduction catalyst, and a NOx concentration detected by the NOx sensor At the time of increase in the NOx adsorption reduction catalyst, and a transition to a rich air-fuel ratio by the air-fuel ratio control means based on a preset deterioration judgment timing of the NOx adsorption reduction catalyst. Prohibiting means for prohibiting the exhaust gas purifying apparatus, wherein when the deterioration determination time is reached, the shift to the rich air-fuel ratio is prohibited to determine the deterioration of the NOx adsorption-reduction type catalyst. Provided.

【0011】請求項2に係る発明では、前記劣化判定時
期を前記NOx吸着還元型触媒のリーン空燃比とリッチ
空燃比の繰り返し数、または内燃機関の累積運転時間、
または車両の累積走行距離に基づく劣化判定時期とした
内燃機関の排気浄化装置が提供される。
In the invention according to claim 2, the deterioration determination time is determined by the number of repetitions of the lean air-fuel ratio and the rich air-fuel ratio of the NOx adsorption reduction catalyst, or the cumulative operation time of the internal combustion engine.
Alternatively, there is provided an exhaust gas purification device for an internal combustion engine in which the deterioration is determined based on the accumulated traveling distance of the vehicle.

【0012】請求項3に係る発明では、前記内燃機関が
ディーゼルエンジンである内燃機関の排気浄化装置が提
供される。
According to a third aspect of the present invention, there is provided an exhaust gas purifying apparatus for an internal combustion engine, wherein the internal combustion engine is a diesel engine.

【0013】[0013]

【発明の実施の形態】以下、本発明の1実施形態例につ
いて図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は本発明の排気浄化装置を適用した内
燃機関の全体図である。図1において1はディーゼルエ
ンジン等の内燃機関、2はNOx吸着還元型触媒、3は
NOxセンサ、6は排気通路、8はコントローラを示
す。内燃機関1の排気通路6にNOx吸着還元型触媒2
は配設されており、 NOx吸着還元型触媒2の下流に
はNOxセンサ3が配設されている。また、コントロー
ラ8は内燃機関の運転状態判断手段4と、NOx吸着還
元型触媒2の劣化判定手段5と、前記運転状態判断手段
4の情報によりNOx吸着還元型触媒2の再生を行う空
燃比制御手段7とを備えている。
FIG. 1 is an overall view of an internal combustion engine to which the exhaust gas purifying apparatus of the present invention is applied. In FIG. 1, 1 is an internal combustion engine such as a diesel engine, 2 is a NOx adsorption reduction catalyst, 3 is a NOx sensor, 6 is an exhaust passage, and 8 is a controller. In the exhaust passage 6 of the internal combustion engine 1, the NOx adsorption-reduction catalyst 2
The NOx sensor 3 is provided downstream of the NOx adsorption-reduction type catalyst 2. The controller 8 determines the operating state of the internal combustion engine 4, the deterioration determining means 5 of the NOx adsorption-reduction catalyst 2, and the air-fuel ratio control for regenerating the NOx adsorption-reduction catalyst 2 based on the information of the operating state determining means 4. Means 7.

【0015】内燃機関1には機関回転数を検出する機関
回転数センサ、機関の冷却水温を検出する水温センサ、
EGRが取付けられている機関ではEGRの状況を検出
するEGRセンサ、過給機が取付けられている機関では
過給圧を検出する過給圧センサ等が取付けられている。
また、内燃機関1には燃料噴射量、燃料噴射タイミング
を制御できる燃料噴射装置、吸入空気量を制御できるス
ロットル弁が設けられている。
The internal combustion engine 1 has an engine speed sensor for detecting the engine speed, a water temperature sensor for detecting the engine coolant temperature,
An engine provided with an EGR is provided with an EGR sensor for detecting the condition of the EGR, and an engine provided with a supercharger is provided with a supercharging pressure sensor for detecting a supercharging pressure.
Further, the internal combustion engine 1 is provided with a fuel injection device capable of controlling a fuel injection amount and a fuel injection timing, and a throttle valve capable of controlling an intake air amount.

【0016】運転状態判断手段4は内燃機関1に取付け
られた前記の各センサ及び車両(図示せず)に取付けら
れたアクセルセンサにより内燃機関1の運転状態を検出
し、予めROM(リードオンリメモリ)に記憶されたマ
ップに基づき NOx排出量を算出する。尚、前記アク
セルセンサはガソリンエンジンではスロットルセンサ、
エンジン発電機では発電指示信号や発電負荷センサであ
っても良く、内燃機関の負荷を指示もしくは検出するも
ので良い。
The operating state judging means 4 detects the operating state of the internal combustion engine 1 by means of the above-mentioned sensors attached to the internal combustion engine 1 and an accelerator sensor attached to a vehicle (not shown). The NOx emission amount is calculated based on the map stored in (2). The accelerator sensor is a throttle sensor in a gasoline engine,
The engine generator may be a power generation instruction signal or a power generation load sensor, and may be one that indicates or detects the load of the internal combustion engine.

【0017】空燃比制御手段7は前記の運転状態判断手
段4により内燃機関1のNOx排出量Sを算出して積算
し、NOx吸着還元型触媒2のNOx吸着量が飽和に達
する以前のある所定値以上になった時にNOx吸着還元
型触媒2の再生を行う。すなわち、本発明においては、
NOxセンサ3で検出される濃度が増加する前にリッチ
空燃比とすることにより、リリースに起因するNOx排
出量の増加を防ぐ。NOx吸着還元型触媒2の再生は内
燃機関1の燃料噴射装置の燃料噴射量、燃料噴射タイミ
ング、あるいはスロットル弁を制御することにより、リ
ッチ空燃比とすることで行われる。尚、前記NOx吸着
還元型触媒2のNOx吸着量の所定値はNOx吸着還元
型触媒2の下流のNOx濃度が増加しはじめるまでのN
Ox吸着量を予め実験等により求め、これに対して一定
量の余裕を見込んで決定される。
The air-fuel ratio control means 7 calculates and integrates the NOx emission amount S of the internal combustion engine 1 by the above-mentioned operating state determination means 4, and a predetermined value before the NOx adsorption amount of the NOx adsorption reduction catalyst 2 reaches saturation. When the value becomes equal to or more than the value, the NOx adsorption reduction type catalyst 2 is regenerated. That is, in the present invention,
By setting the rich air-fuel ratio before the concentration detected by the NOx sensor 3 increases, an increase in NOx emission due to release is prevented. The regeneration of the NOx adsorption reduction catalyst 2 is performed by controlling the fuel injection amount, the fuel injection timing, or the throttle valve of the fuel injection device of the internal combustion engine 1 to obtain a rich air-fuel ratio. It should be noted that the predetermined value of the NOx adsorption amount of the NOx adsorption-reduction type catalyst 2 is N until the NOx concentration downstream of the NOx adsorption-reduction type catalyst 2 starts to increase.
The Ox adsorption amount is obtained in advance by an experiment or the like, and is determined in consideration of a certain amount of margin.

【0018】図2は内燃機関1の運転状態について予め
NOx排出量を実測し、ROM(リードオンリメモリ)
に記憶されたマップを示す。機関回転数Nと機関負荷L
(アクセルセンサ値、スロットルセンサ値等)とを変え
た時のNOx排出量が数値テーブルの形で運転状態判断
手段4のROMに記憶されている。また、 NOx排出
量は前記水温センサ、EGRセンサ、過給圧センサ等に
より検出された値により、適宜補正される。補正は実測
に基づき求めた補正係数や補正マップを用いて行われ
る。
FIG. 2 shows an actual measurement of the NOx emission amount for the operating state of the internal combustion engine 1 and a ROM (Read Only Memory).
Shows the map stored in the. Engine speed N and engine load L
(The accelerator sensor value, the throttle sensor value, etc.) are stored in the ROM of the operating state determining means 4 in the form of a numerical table in the form of a numerical value table. Further, the NOx emission amount is appropriately corrected based on values detected by the water temperature sensor, the EGR sensor, the supercharging pressure sensor, and the like. The correction is performed using a correction coefficient or a correction map obtained based on actual measurement.

【0019】劣化判定手段5は予め設定された劣化判定
時期X0に基づいて、劣化判定時期であるか否かを判定
し、劣化判定時期であると判定された時に劣化判定を行
う。この劣化判定時期においては、空燃比制御手段7に
よるリッチ空燃比への移行を一時的に禁止し、NOx吸
着還元型触媒2の吸着量を飽和させて、NOxセンサ3
で検出されるNOx濃度を増加させる。そして、NOx
センサ3において検出された濃度が、予め実験等により
設定されたNOx濃度の増加判定値C0以上になった時
に、それまでに内燃機関1から排出されたNOx排出量
Sを運転状態判断手段4により算出して積算した値、す
なわち、NOx吸着量ΣSと、予め実験等により設定さ
れたNOx吸着還元型触媒2の劣化判定値であるNOx
吸着量S0とを対比し、積算値であるNOx吸着量ΣS
が少ない場合には劣化と判断する。あるいは、NOxセ
ンサにおいて検出されたNOx濃度の増加する時間的変
化量が一定値を越えた時に劣化と判断するようにしても
よい。
The deterioration judging means 5 judges whether or not it is a deterioration judging time based on a preset deterioration judging time X0, and makes a judgment of deterioration when it is judged that it is the deterioration judging time. During this deterioration determination time, the shift to the rich air-fuel ratio by the air-fuel ratio control means 7 is temporarily prohibited, the adsorption amount of the NOx adsorption-reduction catalyst 2 is saturated, and the NOx sensor 3
To increase the NOx concentration detected. And NOx
When the concentration detected by the sensor 3 becomes equal to or greater than the NOx concentration increase determination value C0 set in advance by an experiment or the like, the operating state determination means 4 determines the amount of NOx emission S discharged from the internal combustion engine 1 until then. The calculated and integrated value, that is, the NOx adsorption amount ΣS, and the NOx, which is a deterioration determination value of the NOx adsorption-reduction catalyst 2 set in advance through experiments or the like,
The adsorption amount S0 is compared with the NOx adsorption amount 0S which is an integrated value.
If the number is small, it is determined that there is deterioration. Alternatively, the deterioration may be determined when the temporal change amount of the NOx concentration detected by the NOx sensor exceeds a certain value.

【0020】前記劣化判定時期X0は前記NOx吸着還
元型触媒2のリーン空燃比とリッチ空燃比の繰り返し
数、または内燃機関1の累積運転時間、もしくは車両の
累積走行距離のいずれか一つ、あるいはこれらを組み合
わせて設定してもよい。エンジン発電機等の走行しない
内燃機関1では前記NOx吸着還元型触媒2のリーン空
燃比とリッチ空燃比の繰り返し数、または内燃機関1の
累積運転時間で設定される。尚、前記劣化判定時期X0
の値はNOx吸着還元型触媒2の種類、サイズ、燃料中
の硫黄含有量等によりNOx吸着還元型触媒2の劣化時
期が異なってくるため、実験等により決定することが好
ましい。
The deterioration determination time X0 is one of the number of repetitions of the lean air-fuel ratio and the rich air-fuel ratio of the NOx adsorption reduction catalyst 2, the cumulative operation time of the internal combustion engine 1, or the cumulative travel distance of the vehicle, or These may be set in combination. In the internal combustion engine 1 that does not run, such as an engine generator, the number of repetitions of the lean air-fuel ratio and the rich air-fuel ratio of the NOx adsorption reduction catalyst 2 or the cumulative operation time of the internal combustion engine 1 is set. Note that the deterioration determination timing X0
Since the deterioration time of the NOx adsorption-reduction type catalyst 2 varies depending on the type and size of the NOx adsorption-reduction type catalyst 2, the sulfur content in the fuel, and the like, it is preferable to determine the value by an experiment or the like.

【0021】図3はコントローラ8で一定時間毎(例え
ば数百μs)に実行される劣化判定ルーチンのフローチ
ャートの一例を示す。ステップ101ではNOx吸着還
元型触媒2のリーン空燃比とリッチ空燃比の繰り返し数
Xが劣化判定時期X0以上であるか否か判定され、X<
X0の場合はまだ劣化判定時期になっていないと判定さ
れステップ102に進み、X≧X0の場合は劣化判定時
期になったと判定しステップ105に進む。
FIG. 3 shows an example of a flowchart of a deterioration determination routine executed by the controller 8 at regular intervals (for example, several hundred μs). In step 101, it is determined whether or not the repetition number X of the lean air-fuel ratio and the rich air-fuel ratio of the NOx adsorption reduction catalyst 2 is equal to or greater than the deterioration determination time X0.
In the case of X0, it is determined that it is not yet the deterioration determination time, and the process proceeds to step 102. In the case of X ≧ X0, it is determined that the deterioration determination time has come, and the process proceeds to step 105.

【0022】ステップ102ではNOx吸着還元型触媒
2が再生中か否か判定され、再生中と判定された場合は
ステップ103で再生中の再生フラグR=1としルーチ
ンを終了する。また、再生中でないと判定された場合は
ステップ104で再生フラグR=0としルーチンを終了
する。
In step 102, it is determined whether or not the NOx adsorption reduction catalyst 2 is being regenerated. If it is determined that regeneration is being performed, in step 103, the regeneration flag R during regeneration is set to 1 and the routine is terminated. If it is determined that the reproduction is not being performed, the reproduction flag is set to R = 0 in step 104, and the routine ends.

【0023】ステップ105、ステップ106では以降
の劣化判定を行う為にNOx吸着還元型触媒2の再生終
了を待つ。ステップ105では前回までの判定が再生中
であるか否かを再生フラグRで判定し、再生中でないR
=0の場合はステップ102以降へ進み、再生が開始さ
れて再生フラグR=1になるのを待つ。ステップ105
で前回までの判定が再生中である再生フラグR=1の場
合はステップ106へ進む。
In steps 105 and 106, the end of the regeneration of the NOx adsorption-reduction catalyst 2 is waited in order to determine the subsequent deterioration. In step 105, the reproduction flag R determines whether or not the reproduction up to the previous time is being reproduced.
If = 0, the process proceeds to step 102 and thereafter, and waits until the reproduction is started and the reproduction flag R = 1. Step 105
If it is determined in the previous step that the reproduction flag R = 1 that the reproduction is being performed, the process proceeds to step 106.

【0024】ステップ106では再生が継続中か否かを
判定し、継続中の場合はそのままルーチンを終了し再生
の終了を待つ。再生が継続中でない場合、すなわち再生
が終了された場合、ステップ107に進み劣化判定を開
始する。
In step 106, it is determined whether or not the reproduction is continuing. If the reproduction is continuing, the routine is terminated and the reproduction is terminated. If the reproduction is not being continued, that is, if the reproduction has been completed, the process proceeds to step 107 to start the deterioration determination.

【0025】ステップ107では劣化判定が終了するま
では再生を禁止する。
In step 107, reproduction is prohibited until the deterioration judgment is completed.

【0026】ステップ108では運転状態判断手段4に
より内燃機関1の運転状態がよみこまれ、ステップ10
9でROMに記憶されたマップを参照し、適宜補正され
た内燃機関1のNOx排出量Sが算出される。続くステ
ップ110ではNOx排出量Sを積算し、NOx吸着量
ΣSが算出される。
In step 108, the operating state of the internal combustion engine 1 is read by the operating state determining means 4, and in step 10
In step 9, the NOx emission amount S of the internal combustion engine 1 that is appropriately corrected is calculated with reference to the map stored in the ROM. In the following step 110, the NOx emission amount S is integrated, and the NOx adsorption amount ΣS is calculated.

【0027】ステップ111ではNOxセンサによる値
からNOx吸着還元型触媒2の下流のNOx濃度Cが算
出され、続くステップ112では前記NOx濃度Cが予
め実験等により設定されたNOx濃度の増加判定値C0
以上であるか否かが判定され、C<C0の場合はそのま
まルーチンを終了しNOx濃度Cが増加するのを待つ。
また、C≧C0の場合はステップ113へ進み劣化判定
を行う。
In step 111, the NOx concentration C downstream of the NOx adsorption-reduction type catalyst 2 is calculated from the value obtained by the NOx sensor. In the subsequent step 112, the NOx concentration C is determined in advance by an experiment or the like.
It is determined whether or not this is the case. If C <C0, the routine is terminated as it is, and the process waits until the NOx concentration C increases.
If C ≧ C0, the process proceeds to step 113 to make a deterioration determination.

【0028】ステップ113ではステップ110で算出
されたNOx吸着量ΣSが予め実験等により設定された
NOx吸着還元型触媒2の劣化判定値S0以上であるか
否かが判定され、ΣS≧S0の場合はNOx吸着還元型
触媒2が劣化していないと判定され、ステップ115へ
進み再生を行う。ΣS<S0の場合はNOx吸着還元型
触媒2が劣化していると判定され、ステップ114へ進
み劣化の対応処理を行う。
In step 113, it is determined whether or not the NOx adsorption amount ΣS calculated in step 110 is equal to or larger than a deterioration determination value S0 of the NOx adsorption-reduction catalyst 2 set in advance through experiments or the like. It is determined that the NOx adsorption reduction catalyst 2 has not deteriorated, and the routine proceeds to step 115 and performs regeneration. If ΣS <S0, it is determined that the NOx adsorption-reduction catalyst 2 has deteriorated, and the routine proceeds to step 114, where processing for dealing with deterioration is performed.

【0029】ステップ114ではステップ113でNO
x吸着還元型触媒2が劣化していると判定されたので、
劣化の対応処理が行われ、続いてステップ114へ進
む。劣化の対応処理は、例えばNOx吸着還元型触媒2
の劣化を示す警報が動作され運転者に報知する。また、
電源がきれても記憶保持可能なバックアップメモリに劣
化診断情報として保持される。
In step 114, NO in step 113
Since it was determined that the x adsorption-reduction catalyst 2 was deteriorated,
Deterioration response processing is performed, and then the routine proceeds to step 114. Deterioration response processing is performed by, for example, the NOx adsorption reduction catalyst 2
An alarm indicating deterioration of the vehicle is activated to notify the driver. Also,
Even when the power is turned off, the information is retained as deterioration diagnosis information in a backup memory that can be retained.

【0030】ステップ115ではステップ113でNO
x吸着還元型触媒2の劣化判定が終了したのでステップ
107の再生禁止を解除し、再生を行う。
In step 115, NO in step 113
Since the determination of deterioration of the x-adsorption-reduction catalyst 2 has been completed, the prohibition of regeneration in step 107 is released, and regeneration is performed.

【0031】ステップ116では一連の劣化判定時期の
判定、 NOx吸着還元型触媒2の劣化判定が完了した
ので、劣化判定時期を判定するためのリーン空燃比とリ
ッチ空燃比の繰り返し数Xをクリアしてルーチンを終了
する。
In step 116, since a series of determinations of the deterioration determination time and the deterioration determination of the NOx adsorption reduction catalyst 2 have been completed, the repetition number X of the lean air-fuel ratio and the rich air-fuel ratio for determining the deterioration determination time is cleared. To end the routine.

【0032】本実施例においては、劣化判定時期の判定
としてリーン空燃比とリッチ空燃比の繰り返し数Xで行
う場合を示したが、車両用内燃機関の場合には車両の累
積走行距離としてもよい。この場合、図3のステップ1
01において累積走行距離Xと予め実験等により決定さ
れた劣化判定累積走行距離X0とで判定し、また、ステ
ップ116で劣化判定時期を判定するための累積走行距
離Xをクリアしてルーチンを終了する。
In this embodiment, the case where the deterioration determination time is determined by the repetition number X of the lean air-fuel ratio and the rich air-fuel ratio has been described. However, in the case of a vehicular internal combustion engine, the cumulative travel distance of the vehicle may be used. . In this case, step 1 in FIG.
In step 01, the cumulative traveling distance X is determined based on the accumulated traveling distance X0 and a deterioration determination cumulative traveling distance X0 determined in advance by an experiment or the like. In step 116, the accumulated traveling distance X for determining the deterioration determination timing is cleared, and the routine ends. .

【0033】また、エンジン発電機等の走行しない内燃
機関の場合には内燃機関の累積運転時間としてもよい。
この場合、図3のステップ101において累積運転時間
Xと予め実験等により決定された劣化判定累積運転時間
X0とで判定し、また、ステップ116で劣化判定時期
を判定するための累積運転時間Xをクリアしてルーチン
を終了する。
In the case of a non-running internal combustion engine such as an engine generator, the cumulative operation time of the internal combustion engine may be used.
In this case, in step 101 of FIG. 3, the cumulative operation time X is determined based on the cumulative operation time X0 and the cumulative deterioration operation time X0 determined in advance by experiments or the like. In step 116, the cumulative operation time X for determining the deterioration determination time is determined. Clear and end the routine.

【0034】[0034]

【発明の効果】本発明によれば、NOx吸着還元型触媒
の下流のNOx濃度が増加する前に再生をおこなうとと
もに、予め設定されたNOx吸着還元型触媒の劣化判定
時期に基づいて、NOx吸着還元型触媒の劣化を判定す
ることにより、NOx吸着還元型触媒の再生時にNOx
のリリースによる浄化されないまま大気に放出されるN
Oxを低減し、且つNOx吸着還元型触媒の劣化を判定
することができる。特に、NOxのリリースが顕著なデ
ィーゼルエンジンに本発明を適用した場合においては、
NOx排出を低減するうえでの効果が非常に大きなもの
となる。
According to the present invention, the regeneration is performed before the NOx concentration downstream of the NOx adsorption-reduction catalyst increases, and the NOx adsorption-reduction catalyst is set based on a preset deterioration judgment timing of the NOx adsorption-reduction catalyst. By determining the deterioration of the reduction catalyst, NOx can be reduced during regeneration of the NOx adsorption reduction catalyst.
Released into the atmosphere without purification by the release of N
Ox can be reduced, and deterioration of the NOx adsorption reduction catalyst can be determined. In particular, when the present invention is applied to a diesel engine having a remarkable NOx release,
The effect in reducing NOx emission is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の排気ガス浄化装置を適用する内燃機
関の1実施形態例の概略図である。
FIG. 1 is a schematic diagram of an embodiment of an internal combustion engine to which an exhaust gas purification device of the present invention is applied.

【図2】 本発明の運転状態判断手段に記憶されたNO
x排出量のマップを示す図である。
FIG. 2 shows the NO stored in the operating state determining means of the present invention.
It is a figure which shows the map of x discharge amount.

【図3】 本発明の劣化判定ルーチンのフローチャート
である。
FIG. 3 is a flowchart of a deterioration determination routine according to the present invention.

【図4】 NOx吸着還元型触媒のリリースを説明する
図である。
FIG. 4 is a diagram illustrating release of a NOx adsorption reduction catalyst.

【符号の説明】[Explanation of symbols]

1… 内燃機関 2… NOx吸着還元型触媒 3… NOxセンサ 4… 運転状態判断手段 5… 劣化判定手段 6… 排気通路 7… 空燃比制御手段 8… コントローラ DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... NOx adsorption-reduction type catalyst 3 ... NOx sensor 4 ... Operating state determination means 5 ... Deterioration determination means 6 ... Exhaust passage 7 ... Air-fuel ratio control means 8 ... Controller

フロントページの続き Fターム(参考) 3G084 AA01 BA09 BA24 DA10 DA27 EB22 FA10 FA12 FA20 FA28 FA33 FA37 3G091 AA02 AA10 AA11 AA12 AA18 AA28 AB06 AB09 BA14 BA33 CB02 CB03 CB07 DA01 DA02 DA08 DB06 DB10 EA01 EA06 EA07 EA16 EA21 EA26 EA33 EA38 FB10 FB11 FB12 FC02 HA18 HA37 HB05 HB06 3G301 HA02 HA15 JA25 JB09 MA01 PA06Z PD01Z PD15Z PE01Z PE08Z PF03Z Continued on the front page F term (reference) 3G084 AA01 BA09 BA24 DA10 DA27 EB22 FA10 FA12 FA20 FA28 FA33 FA37 3G091 AA02 AA10 AA11 AA12 AA18 AA28 AB06 AB09 BA14 BA33 CB02 CB03 CB07 DA01 DA02 DA08 DB06 DB10 EA01 EA06 EA06 EA06 EA06 FB11 FB12 FC02 HA18 HA37 HB05 HB06 3G301 HA02 HA15 JA25 JB09 MA01 PA06Z PD01Z PD15Z PE01Z PE08Z PF03Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関1の排気通路6に配設され、リ
ーン空燃比での運転時にNOxを吸着し、リッチ空燃比
での運転時に吸着したNOxを還元するNOx吸着還元
型触媒2と、前記NOx吸着還元型触媒2の下流に配設
されNOx濃度を検出するNOxセンサ3と、前記NO
x吸着還元型触媒2の下流のNOx濃度が増加する前に
リッチ空燃比に移行して前記NOx吸着還元型触媒2に
吸着したNOxを還元する空燃比制御手段7と、前記N
Oxセンサ3により検出されるNOx濃度が増加する時
点において前記NOx吸着還元型触媒2の劣化を判定す
る劣化判定手段5と、予め設定された前記NOx吸着還
元型触媒2の劣化判定時期に基づいて前記空燃比制御手
段7によるリッチ空燃比への移行を禁止する禁止手段と
を備え、前記劣化判定時期に達するとリッチ空燃比への
移行を禁止して前記NOx吸着還元型触媒2の劣化を判
定することを特徴とする内燃機関の排気ガス浄化装置。
1. A NOx adsorption reduction catalyst 2 disposed in an exhaust passage 6 of an internal combustion engine 1 for adsorbing NOx during operation at a lean air-fuel ratio and reducing NOx adsorbed during operation at a rich air-fuel ratio. A NOx sensor 3 disposed downstream of the NOx adsorption reduction catalyst 2 for detecting NOx concentration;
an air-fuel ratio control means 7 for shifting to a rich air-fuel ratio before the NOx concentration downstream of the x-adsorption-reduction catalyst 2 increases to reduce NOx adsorbed on the NOx adsorption-reduction catalyst 2;
At the time when the NOx concentration detected by the Ox sensor 3 increases, the deterioration determining means 5 for determining the deterioration of the NOx adsorption-reduction type catalyst 2 and the deterioration judgment timing of the NOx adsorption-reduction type catalyst 2 set in advance are set. Prohibiting means for prohibiting a transition to the rich air-fuel ratio by the air-fuel ratio control means 7, and prohibiting the transition to the rich air-fuel ratio when the deterioration determination time is reached to determine the deterioration of the NOx adsorption reduction catalyst 2. An exhaust gas purifying apparatus for an internal combustion engine, comprising:
【請求項2】 前記劣化判定時期は前記NOx吸着還元
型触媒2のリーン空燃比とリッチ空燃比の繰り返し数、
または内燃機関の累積運転時間、もしくは車両の累積走
行距離に基づく劣化判定時期とする請求項1に記載の排
気ガス浄化装置。
2. The deterioration determination time is determined by the number of repetitions of a lean air-fuel ratio and a rich air-fuel ratio of the NOx adsorption reduction catalyst 2,
The exhaust gas purifying device according to claim 1, wherein the deterioration determination time is based on an accumulated operation time of the internal combustion engine or an accumulated traveling distance of the vehicle.
【請求項3】 前記内燃機関1がディーゼルエンジンで
ある請求項1並びに請求項2に記載の排気ガス浄化装
置。
3. The exhaust gas purifying apparatus according to claim 1, wherein the internal combustion engine 1 is a diesel engine.
JP2000090835A 2000-03-29 2000-03-29 Exhaust emission control device Withdrawn JP2001271697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090835A JP2001271697A (en) 2000-03-29 2000-03-29 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090835A JP2001271697A (en) 2000-03-29 2000-03-29 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2001271697A true JP2001271697A (en) 2001-10-05

Family

ID=18606383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090835A Withdrawn JP2001271697A (en) 2000-03-29 2000-03-29 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2001271697A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040186A (en) * 2005-08-03 2007-02-15 Toyota Motor Corp Nox generation amount estimation device for internal combustion engine and control device for internal combustion engine
JP2010001781A (en) * 2008-06-19 2010-01-07 Toyota Motor Corp Catalyst deterioration diagnosis device for internal combustion engine
JP2013072328A (en) * 2011-09-27 2013-04-22 Isuzu Motors Ltd Exhaust emission control system for internal combustion engine, internal combustion engine, and exhaust emission control method for internal combustion engine
JP2014094628A (en) * 2012-11-08 2014-05-22 Toyota Motor Corp Vehicle controlling device
WO2015045378A1 (en) 2013-09-25 2015-04-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for an internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040186A (en) * 2005-08-03 2007-02-15 Toyota Motor Corp Nox generation amount estimation device for internal combustion engine and control device for internal combustion engine
JP2010001781A (en) * 2008-06-19 2010-01-07 Toyota Motor Corp Catalyst deterioration diagnosis device for internal combustion engine
JP2013072328A (en) * 2011-09-27 2013-04-22 Isuzu Motors Ltd Exhaust emission control system for internal combustion engine, internal combustion engine, and exhaust emission control method for internal combustion engine
JP2014094628A (en) * 2012-11-08 2014-05-22 Toyota Motor Corp Vehicle controlling device
WO2015045378A1 (en) 2013-09-25 2015-04-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for an internal combustion engine
US9816415B2 (en) 2013-09-25 2017-11-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for an internal combustion engine

Similar Documents

Publication Publication Date Title
JP5061861B2 (en) Control device for internal combustion engine
US6128899A (en) Exhaust gas purification system for internal combustion engine
KR100385820B1 (en) Exhaust purge apparatus of internal combustion engine
JP4314135B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine
JPH07305644A (en) Air-fuel ratio controller of internal combustion engine
JPH11117786A (en) Exhaust emission control device for internal combustion engine
JP3806399B2 (en) Exhaust gas purification device for internal combustion engine
JP4636273B2 (en) Exhaust gas purification device for internal combustion engine
JP2001271697A (en) Exhaust emission control device
JP4380902B2 (en) Deterioration detection device for exhaust gas purification catalyst
JPH11101154A (en) Emission control device for internal combustion engine
JP4389141B2 (en) Exhaust gas purification device for internal combustion engine
JP2003314257A (en) Exhaust emission control device for internal combustion engine and controlling method thereof
JP3747693B2 (en) Exhaust gas purification device for internal combustion engine
JP3539286B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176632A (en) Exhaust emission control device for internal combustion engine
JP4635868B2 (en) Exhaust gas purification device for internal combustion engine
JP3358485B2 (en) Exhaust purification system for lean burn internal combustion engine
JP2002256858A (en) Exhaust emission control device for internal combustion engine
JPH11107810A (en) Controller device for nox catalyzer
JP3661464B2 (en) Exhaust gas purification device for internal combustion engine
JP2006112289A (en) Air-fuel ratio control device of internal combustion engine
JP2000120428A (en) Exhaust emission control device of internal combustion engine
JP3849529B2 (en) Exhaust gas purification method and apparatus for internal combustion engine
JP3468139B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060609