JPH11106343A - Displacement type pump - Google Patents

Displacement type pump

Info

Publication number
JPH11106343A
JPH11106343A JP26760797A JP26760797A JPH11106343A JP H11106343 A JPH11106343 A JP H11106343A JP 26760797 A JP26760797 A JP 26760797A JP 26760797 A JP26760797 A JP 26760797A JP H11106343 A JPH11106343 A JP H11106343A
Authority
JP
Japan
Prior art keywords
rotor
housing
pump
screw
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26760797A
Other languages
Japanese (ja)
Inventor
Kiyozumi Fukui
清純 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TD GIKEN KK
Original Assignee
TD GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TD GIKEN KK filed Critical TD GIKEN KK
Priority to JP26760797A priority Critical patent/JPH11106343A/en
Publication of JPH11106343A publication Critical patent/JPH11106343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a displacement type pump capable of being prevented from seizing by maintaining fine gaps around a rotor within a prescribed region even when being at a high temperature in an expanded state by setting different values on linear expansion coefficients of a housing and the rotor respectively by considering degrees of the thermal expansions of the housing and the rotor. SOLUTION: This displacement type pump having a housing 11, and a rotor for sucking a compressed fluid from a sucking opening 11a of the housing 11 to a rotor room 12, and discharging the fluid from a discharging opening 11b, and installed in the rotor room 12, is regulated so that the housing 11 may have a prescribed thermal expansion coefficient, and the rotor 21 and 22 may have a linear thermal expansion coefficient smaller than that of the housing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、容積形ポンプ、例
えば空気やこれと他の気体が交じった圧縮性流体を排気
する真空ポンプに好適な容積形ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive displacement pump suitable for a positive displacement pump, for example, a vacuum pump for evacuating a compressive fluid in which air or another gas is mixed.

【0002】[0002]

【従来の技術】従来、低圧作業空間を得るための真空排
気等に使用される真空ポンプとして、ルーツ型、クロー
型、スクリュー型といった容積形ポンプが多用されてい
る。この種の容積形ポンプの排気運転に際しては、排出
口までの移送中に所定の圧縮率で容積を減少した気体移
送室が次々と連続的に排出口に連通し、大気中への排気
がなされる。この排気のための断熱圧縮によって生じる
熱や、漏れにより大気側(排出口側)からポンプ内(後
続の気体移送室側)に逆流する気体が再度大気側に戻さ
れる損失サイクル等により、ポンプの排出口側は高温と
なる。このとき、排出口近傍のロータ部が相当高温とな
って大きく熱膨張するのに対し、排出口近傍のハウジン
グ部は大気にさらされていることによる放熱や強制冷却
による冷却があるのでロータ部ほどは大きく熱膨張しな
い。
2. Description of the Related Art Conventionally, positive displacement pumps such as a roots type, a claw type, and a screw type have been widely used as vacuum pumps used for evacuation for obtaining a low-pressure working space. During the evacuation operation of this type of positive displacement pump, the gas transfer chamber whose volume has been reduced at a predetermined compression rate during the transfer to the outlet is continuously connected to the outlet one after another, and the air is exhausted to the atmosphere. You. The heat generated by the adiabatic compression for the exhaust and the loss cycle in which the gas flowing backward from the atmosphere side (discharge port side) into the pump (the subsequent gas transfer chamber side) due to the leakage is returned to the atmosphere side again, etc. The outlet side becomes hot. At this time, the rotor near the outlet has a considerably high temperature and undergoes significant thermal expansion, whereas the housing near the outlet has heat radiation and cooling by forced cooling due to exposure to the atmosphere. Does not undergo significant thermal expansion.

【0003】[0003]

【発明が解決しようとする課題】したがって、上述のよ
うな従来の容積形ポンプは、排出口側の温度が高くなる
と、上記ロータ部と上記ハウジング部との熱膨張の差が
大きくなり、次のような問題が生じる。図3に示すよう
に、ロータ(回転子)5の外周部とハウジング6の内周
面の間の微小隙間ga、並びに、隣接する複数のロータ
間の微小隙間(図示していない)等が熱膨張によって過
小となり、ロータ5の焼付きによる拘束現象あるいは軸
受3の焼付きが生じることがある。また、排出口側のロ
ータ5の端面とこれに対向するハウジング6の内壁面の
間の微小隙間gbが過大となり、該隙間を介しての、大
気側からポンプ内部への空気の逆流が増大し、排気性能
が低下するという問題が生じる。
Therefore, in the conventional positive displacement pump as described above, when the temperature on the discharge port side increases, the difference in thermal expansion between the rotor section and the housing section increases, and the following problem occurs. Such a problem arises. As shown in FIG. 3, the minute gap ga between the outer peripheral portion of the rotor (rotor) 5 and the inner peripheral surface of the housing 6 and the minute gap (not shown) between a plurality of adjacent rotors are heat. The expansion may be too small, resulting in a seizure of the rotor 5 or a seizure of the bearing 3. Further, the minute gap gb between the end face of the rotor 5 on the discharge port side and the inner wall face of the housing 6 opposed thereto becomes excessively large, and the backflow of air from the atmosphere side to the inside of the pump through the gap increases. This causes a problem that the exhaust performance is reduced.

【0004】さらに、実際のポンプ運転においては、以
上のような問題を生じないようにするため、ポンプ排気
口側が過度に高温とならないような運転条件(例えばポ
ンプ回転数等の条件)で使用せざるを得ないという問題
があった。その結果、例えば半導体製造装置の真空排気
においては、特に比較的低温(例えば100度以下)と
なるポンプの吸入口側のロータ外周等に、低圧作業空間
内から排気される特定のガス(例えばCVD法による薄
膜成形工程における反応ガス)に起因する固形生成物が
付着し、その固形生成物除去のためメンテナンスを頻繁
に行わなければならないという問題があった。
Further, in order to prevent the above problems from occurring in the actual operation of the pump, the pump must be operated under operating conditions (for example, conditions such as the number of revolutions of the pump) at which the temperature at the pump outlet side does not become excessively high. There was a compelling problem. As a result, for example, in vacuum evacuation of a semiconductor manufacturing apparatus, a specific gas (for example, CVD) exhausted from the low-pressure working space is provided on the outer periphery of the rotor on the suction port side of the pump, which is relatively low in temperature (for example, 100 degrees or less). However, there is a problem that a solid product resulting from a reaction gas in the thin film forming process by the method adheres and maintenance must be frequently performed to remove the solid product.

【0005】本発明は、上述のような解決すべき課題に
鑑みてなされたもので、ポンプ内部の温度が上昇しても
ロータ周りの径方向および軸方向の微小隙間を所定範囲
内に保つようにして、ロータ等の焼付きを防止するとと
もに、排気性能が大きく低下しない容積形ポンプを提供
することを目的とする。
The present invention has been made in view of the above-mentioned problems to be solved, and keeps a small radial and axial clearance around the rotor within a predetermined range even when the temperature inside the pump rises. Accordingly, an object of the present invention is to provide a positive displacement pump that prevents seizure of a rotor or the like and does not significantly reduce exhaust performance.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、吸入口および排出口を有し、内部にロー
タ室が形成されたハウジングと、吸入口からロータ室に
圧縮性流体を吸入するとともに該流体を排出口から排出
するようロータ室内に回転可能に設けられたロータと、
を備えた容積形ポンプにおいて、前記ハウジングが所定
の線膨張係数を有するとともに、前記ロータが該ハウジ
ングの線膨張係数より小さい線膨張係数を有することを
特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a housing having a suction port and a discharge port and having a rotor chamber formed therein, and a compressible fluid from the suction port to the rotor chamber. A rotor rotatably provided in the rotor chamber so as to suck the fluid and discharge the fluid from the discharge port;
Wherein the housing has a predetermined linear expansion coefficient and the rotor has a linear expansion coefficient smaller than the linear expansion coefficient of the housing.

【0007】かかる構成においては、ポンプ内部が排気
のための断熱圧縮や損失サイクル等によって高温とな
り、線膨張係数の小さいロータが所定量熱膨張すると
き、ハウジングは、放熱等によりロータ側より低温とな
るが、ロータより線膨張係数が大きいためにロータの熱
膨張に近い熱膨張を生じる。したがって、ロータとハウ
ジングの間の微小隙間は低温域から高温域にわたって所
定範囲内に保たれる。また、ハウジングの熱膨張によっ
てロータ軸間距離がわずかに拡大することと、各ロータ
の熱膨張が小さく抑えられることにより、熱膨張による
ロータ間の隙間(噛合隙間)の減少も抑えられる。さら
に、ポンプの排出口側が相当高温となるような運転状態
におけるロータ軸受部において、ロータの軸受部におけ
る熱膨張が少なく、軸穴側の熱膨張による拡径が助長さ
れることから、軸受に過大な荷重が作用することが軽減
される。したがって、ロータや軸受の焼付きを防止する
ことができるとともに、排気性能が大きく低下すること
もない。
In such a configuration, when the inside of the pump becomes high in temperature due to adiabatic compression or loss cycle for exhaust, and the rotor having a small linear expansion coefficient thermally expands by a predetermined amount, the housing is cooled to a lower temperature than the rotor side by heat radiation or the like. However, since the coefficient of linear expansion is larger than that of the rotor, thermal expansion close to that of the rotor occurs. Therefore, the minute gap between the rotor and the housing is kept within a predetermined range from a low temperature range to a high temperature range. Further, since the distance between the rotor shafts is slightly increased due to the thermal expansion of the housing and the thermal expansion of each rotor is suppressed to a small value, the reduction of the gap between the rotors (meshing gap) due to the thermal expansion is also suppressed. Further, in the rotor bearing portion in an operating state in which the discharge port side of the pump is at a considerably high temperature, the thermal expansion in the bearing portion of the rotor is small, and the diameter expansion due to the thermal expansion in the shaft hole side is promoted. The application of a heavy load is reduced. Therefore, seizure of the rotor and the bearing can be prevented, and the exhaust performance is not significantly reduced.

【0008】[0008]

【発明の実施の形態】以下、本発明の好ましい実施の形
態について添付図面を参照しつつ説明する。図1および
図2は本発明に係る容積形ポンプの一実施形態を示す図
であり、本発明をスクリュー型の真空ポンプに適用した
例を示している。まず、その構成を説明すると、図1お
よび図2において、11は、内部にロータ室12が形成
されたポンプハウジングで、このポンプハウジング11
は吸入口11aおよび排出口11bを有している(図2
参照)。21,22はこのポンプハウジング11のロー
タ室12内にそれぞれ微小隙間(例えば50μm程度)
をもって回転可能に収納された雌雄のスクリューロータ
である。スクリューロータ21,22のうち雄スクリュ
ーロータ21は雄ねじ状に、雌スクリューロータ22は
ロータ21とは逆ねじ方向の雌ねじ状に形成されてお
り、ポンプハウジング11の内部でこれらスクリューロ
ータ21,22が微小隙間(例えば50μm程度)をも
って平行に隣接配置され、後述する駆動手段によって相
互に逆方向に駆動されるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. 1 and 2 are views showing one embodiment of a positive displacement pump according to the present invention, and show an example in which the present invention is applied to a screw type vacuum pump. 1 and 2, reference numeral 11 denotes a pump housing having a rotor chamber 12 formed therein.
Has an inlet 11a and an outlet 11b (FIG. 2).
reference). Reference numerals 21 and 22 denote minute gaps (for example, about 50 μm) in the rotor chamber 12 of the pump housing 11.
And male and female screw rotors rotatably housed. Among the screw rotors 21 and 22, the male screw rotor 21 is formed in a male screw shape and the female screw rotor 22 is formed in a female screw shape in a reverse screw direction to the rotor 21, and these screw rotors 21 and 22 are formed inside the pump housing 11. They are arranged adjacent to each other in parallel with a small gap (for example, about 50 μm), and are driven in mutually opposite directions by a driving means described later.

【0009】ポンプハウジング11とロータ室12内の
ロータ21,22との間には、ロータ21,22の近接
部分で仕切られた複数の螺旋状の作動室25,26(気
体移送室)が形成されており、これら作動室25,26
はスクリューロータ21,22の各移送区間におけるリ
ード長に応じた所定の容積を有している。そして、ロー
タ21,22が回転するとき、作動室25,26は、吸
入口11aに連通している吸入側の移送区間では容積を
所定値まで増加させて吸気作用をなし、吸入口11aに
も排出口11bにも連通しない中間の移送区間では所定
容積で移送され、排出口11bに連通する排出側の移送
区間では容積を最小に減少させて大気圧程度以上の吐出
圧を生じ、これによって排出作用をなすようになってい
る。なお、スクリューロータ21,22のリード長やね
じ溝の断面積を変化させることにより、作動室25,2
6の容積が前記中間の移送区間で徐々に(多段階に)減
少するようにしてもよい。その場合には排気性能の向上
により、メカニカルブースタポンプを不要とするような
ことも可能となり、この発明の適用の効果は特に大き
い。
Between the pump housing 11 and the rotors 21 and 22 in the rotor chamber 12, there are formed a plurality of spiral working chambers 25 and 26 (gas transfer chambers) partitioned by portions close to the rotors 21 and 22. Operating chambers 25 and 26
Has a predetermined volume corresponding to the lead length in each transfer section of the screw rotors 21 and 22. When the rotors 21 and 22 rotate, the working chambers 25 and 26 increase the volume to a predetermined value in the transfer section on the suction side communicating with the suction port 11a to perform a suction action, and the suction chamber 11 In the intermediate transfer section not communicating with the discharge port 11b, the transfer is performed at a predetermined volume, and in the transfer section on the discharge side communicating with the discharge port 11b, the volume is reduced to a minimum to generate a discharge pressure of about atmospheric pressure or more. It works. By changing the lead lengths of the screw rotors 21 and 22 and the cross-sectional areas of the screw grooves, the working chambers 25 and 2 are changed.
6 may gradually decrease (in multiple stages) in the intermediate transfer section. In this case, it is possible to eliminate the need for a mechanical booster pump by improving the exhaust performance, and the effect of applying the present invention is particularly large.

【0010】また、スクリューロータ21,22はその
回転中心軸であるロータ軸31,32(回転中心軸)と
一体に形成されており、ロータ軸31,32はロータ2
1,22の軸方向両端から突出する一端部31a,32
aおよび他端部31b,32bを有している。41,4
2は、ロータ軸31,32の一端部31a,32aとポ
ンプハウジング11の軸穴部13a,14aとの間にそ
れぞれ介在する第1の軸受であり、43,44は、ロー
タ軸31,32の他端部31b,32bとポンプハウジ
ング11の軸穴部13b,14bとの間にそれぞれ介在
する第2の軸受である。これら第1および第2の軸受4
1〜44は、ロータ21,22をポンプハウジング11
に対し回転自在に支持する機能を有する。また、第1の
軸受装置41,42は、これらの軸方向中間位置を基準
にして、ポンプハウジング11に対するロータ21,2
2の軸方向変位を規制する機能を有しており、一方、第
2の軸受43,44はポンプハウジング11に対するロ
ータ21,22の軸方向変位(具体的には、第1の軸受
装置41,42によって一端部31a,32aの軸方向
変位を規制されたロータ軸31,32が熱膨張に伴って
伸長し、他端部31b,32bが変位する)を許容する
機能を有している。
Further, the screw rotors 21 and 22 are formed integrally with rotor shafts 31 and 32 (rotation center axes) which are rotation center axes thereof.
One end portions 31a and 32 protruding from both axial ends of the first and second axial directions.
a and the other end portions 31b and 32b. 41, 4
Reference numeral 2 denotes a first bearing interposed between one end portions 31a and 32a of the rotor shafts 31 and 32 and shaft hole portions 13a and 14a of the pump housing 11, respectively. These are second bearings interposed between the other end portions 31b and 32b and the shaft holes 13b and 14b of the pump housing 11, respectively. These first and second bearings 4
1 to 44 connect the rotors 21 and 22 to the pump housing 11.
It has the function of supporting it rotatably. Further, the first bearing devices 41 and 42 are arranged such that the rotors 21 and 22 with respect to the pump housing 11
The second bearings 43 and 44 have the function of restricting the axial displacement of the rotors 21 and 22 with respect to the pump housing 11 (specifically, the first bearing devices 41 and 42). The rotor shafts 31, 32 whose axial displacements of the one end portions 31a, 32a are regulated by 42 expand in accordance with thermal expansion, and the other end portions 31b, 32b are displaced.

【0011】50は、スクリューロータ21,22を駆
動する駆動手段で、雄スクリューロータ21のロータ軸
31に連結された電動機51と、ロータ軸31,32に
それぞれ固定され互いに噛合する同一歯数のタイミング
ギヤである伝動ギヤ52,53と、を含んで構成されて
いる。ところで、ポンプハウジング11は、所定の線膨
張係数を有する材料、例えばアルミニウム合金やステン
レス鋼によって形成されており、スクリューロータ2
1,22はポンプハウジング11より小さい線膨張係数
を有する材料、例えばインバー(invar)や低炭素合金
鋼等によって形成されている。ここでの線膨張係数の設
定は、スクリューロータ21,22の線膨張係数がポン
プハウジング11の線膨張係数から少なくともその20
%を減じた値になるようにしており、より好ましくは、
ポンプハウジング11の線膨張係数からその30%〜5
0%を減じた値の線膨張係数になる材料を選定する。ま
た、軸受装置41,42は、スクリューロータ21,2
2の線膨張係数以上で、ポンプハウジング11の線膨張
係数以下となる線膨張係数を有するのがよい。
Reference numeral 50 denotes a driving means for driving the screw rotors 21 and 22, and an electric motor 51 connected to the rotor shaft 31 of the male screw rotor 21 and the same number of teeth fixed to the rotor shafts 31 and 32 and meshing with each other. And transmission gears 52 and 53 which are timing gears. The pump housing 11 is formed of a material having a predetermined coefficient of linear expansion, for example, an aluminum alloy or stainless steel.
Reference numerals 1 and 22 are made of a material having a linear expansion coefficient smaller than that of the pump housing 11, for example, invar or low-carbon alloy steel. Here, the linear expansion coefficient is set so that the linear expansion coefficients of the screw rotors 21 and 22 are at least 20 times smaller than the linear expansion coefficient of the pump housing 11.
% Is subtracted, and more preferably,
From the coefficient of linear expansion of the pump housing 11, 30% to 5
A material having a linear expansion coefficient of a value reduced by 0% is selected. In addition, the bearing devices 41 and 42 include the screw rotors 21 and
It is preferable to have a coefficient of linear expansion that is not less than the coefficient of linear expansion of 2 and not more than the coefficient of linear expansion of the pump housing 11.

【0012】上述の構成においては、駆動手段50の電
動機51によって雄スクリューロータ21が駆動される
と、伝動ギヤ52,53を介して雌スクリューロータ2
2が雄スクリューロータ21と同期して逆方向に駆動さ
れ、両ロータ21,22の近接部分によって仕切られた
複数の螺旋状の作動室25,26が、吸入口11aに連
通している吸入側の移送区間では容積を所定値まで増加
させて吸気作用をなし、吸入口11aにも排出口11b
にも連通しない中間の移送区間では所定容積で又は容積
を徐々に減少させながら移送され、排出口11bに連通
する排出側の移送区間では容積を最小に減少させて排出
作用をなす。
In the above configuration, when the male screw rotor 21 is driven by the electric motor 51 of the driving means 50, the female screw rotor 2 is driven via the transmission gears 52 and 53.
2 is driven in synchronization with the male screw rotor 21 in the opposite direction, and a plurality of helical working chambers 25 and 26 partitioned by adjacent portions of both rotors 21 and 22 are connected to the suction side communicating with the suction port 11a. In the transfer section, the volume is increased to a predetermined value to perform the suction action, and the suction port 11a is also connected to the discharge port 11b.
In the intermediate transfer section which does not communicate with the discharge port 11b, the transfer is performed at a predetermined volume or while gradually decreasing the volume. In the transfer section on the discharge side communicating with the discharge port 11b, the volume is reduced to a minimum to perform the discharge operation.

【0013】この運転状態において、排出口11b側で
は作動室25,26が次々と排出口11bに連通して大
気中への排気がされるが、この排気のための断熱圧縮に
よって生じる熱や、漏れにより大気側(排出口11bに
連通した作動室25,26側)からポンプハウジング1
1内(後続の作動室)に侵入する気体が再度大気側に戻
される損失サイクル等により、排出口11b側は高温と
なる。また、運転時には大半の作動室25,26が負圧
状態となって断熱作用をなすことから、外気への放熱等
が可能なポンプハウジング11が比較的低温であるにも
かかわらず、スクリューロータ21,22側はこのポン
プハウジング11側に熱が伝達され難く高温状態に保持
される。
In this operation state, on the discharge port 11b side, the working chambers 25 and 26 are successively connected to the discharge port 11b and exhausted to the atmosphere. However, heat generated by adiabatic compression for the exhaust, The pump housing 1 from the atmosphere side (the working chambers 25 and 26 side communicating with the discharge port 11b) due to leakage.
The temperature of the outlet 11b becomes high due to a loss cycle or the like in which the gas entering the inside 1 (the subsequent working chamber) is returned to the atmosphere again. Further, during operation, most of the working chambers 25 and 26 are in a negative pressure state to perform an adiabatic operation. Therefore, even though the pump housing 11 capable of releasing heat to the outside air is relatively low in temperature, the screw rotor 21 is relatively low. , 22 are maintained in a high temperature state because heat is hardly transmitted to the pump housing 11 side.

【0014】このとき、ポンプハウジング11の排出口
11b側で、スクリューロータ21,22、ロータ軸3
1,32および第1の軸受装置41,42が、かなり高
温となり、それぞれ図2に仮想線で示すように温度上昇
に応じた熱膨張をする。一方、ポンプハウジング11
は、放熱等によってこれらほど温度が上昇しないが、ス
クリューロータ21,22およびロータ軸31,32よ
り所定割合で線膨張係数が大きくなっているので、ポン
プハウジング11の内周面はスクリューロータ21,2
2の熱膨張による外径増加に対応する程度に熱膨張し、
ポンプハウジング11とスクリューロータ21,22の
間の径方向隙間g2が所定範囲内に保たれる。
At this time, the screw rotors 21 and 22 and the rotor shaft 3 are located on the discharge port 11b side of the pump housing 11.
The temperatures of the first and second bearing devices 41 and 42 become considerably high, and each of them undergoes thermal expansion according to the temperature rise as shown by the phantom line in FIG. On the other hand, the pump housing 11
Although the temperature does not rise as much as these due to heat radiation or the like, since the linear expansion coefficient is larger than the screw rotors 21 and 22 and the rotor shafts 31 and 32 at a predetermined ratio, the inner peripheral surface of the pump housing 11 is 2
Thermal expansion to an extent corresponding to the outer diameter increase due to thermal expansion of 2,
The radial gap g2 between the pump housing 11 and the screw rotors 21, 22 is kept within a predetermined range.

【0015】また、ポンプハウジング11の熱膨張によ
ってスクリューロータ21,22の軸間距離がわずかに
拡大することと、各スクリューロータ21,22の熱膨
張が小さく抑えられることによって、熱膨張によるスク
リューロータ21,22間の隙間(噛合隙間)の変化も
小さく抑えられる。さらに、排出口11b側の第1の軸
受装置41,42によるロータ軸31,32の一端部3
1a,32aの軸受部分において、線膨張係数の小さい
ロータ軸31,32の熱膨張が抑えられ、かつ、線膨張
係数の大きいポンプハウジング11の軸穴部13a,1
4aは熱膨張による拡径が促進されることから、第1の
軸受装置41,42に過大な荷重が作用することがな
い。また、ロータ軸31,32が熱膨張によって軸方向
に延びるときには、ロータ軸31,32の他端部31
b,32bが第2の軸受43,44に対してスライド
し、第1の軸受装置41,42および第2の軸受43,
44によってロータ軸31,32がポンプハウジング1
1の軸穴部13a,14aの中心軸上に安定軸支され
る。
Further, since the axial distance between the screw rotors 21 and 22 is slightly increased due to the thermal expansion of the pump housing 11, and the thermal expansion of each of the screw rotors 21 and 22 is suppressed to a small value. A change in the gap (meshing gap) between the portions 21 and 22 can be suppressed to a small value. Further, one end 3 of the rotor shafts 31, 32 by the first bearing devices 41, 42 on the discharge port 11b side.
In the bearing portions 1a and 32a, the thermal expansion of the rotor shafts 31 and 32 having a small linear expansion coefficient is suppressed, and the shaft hole portions 13a and 1 of the pump housing 11 having a large linear expansion coefficient are provided.
Since the diameter expansion of 4a is promoted by thermal expansion, an excessive load does not act on the first bearing devices 41 and 42. When the rotor shafts 31 and 32 extend in the axial direction due to thermal expansion, the other ends 31
b, 32b slide with respect to the second bearings 43, 44, and the first bearing devices 41, 42 and the second bearings 43, 44
44 causes the rotor shafts 31 and 32 to
The first shaft holes 13a and 14a are stably supported on the central axis.

【0016】この状態において、スクリューロータ2
1,22およびロータ軸31,32は排出口11b側で
第1の軸受装置41,42によって軸方向変位を規制さ
れるから、図2に示す第1の軸受装置41,42の軸方
向中間位置からスクリューロータ21,22の端面21
a,22aまでの距離L1は、スクリューロータ21,
22およびロータ軸31,32の線膨張係数とその上昇
温度に応じて増加し、一方、同図に示す第1の軸受装置
41,42の軸方向中間位置からポンプハウジング11
の内壁面11cまでの距離L2は、ポンプハウジング1
1の線膨張係数とその上昇温度に応じて増加する。しか
し、スクリューロータ21,22およびロータ軸31,
32の熱膨張がその温度上昇の割に小さい線膨張係数に
よって抑えられ、一方、放熱等により温度上昇の少ない
ポンプハウジング11の線膨張係数が所定割合で大きく
なされているので、ポンプハウジング11の内壁面11
cとスクリューロータ21,22の端面21a,22a
は、これらの間の軸方向隙間g2を所定範囲内に保つよ
うに同方向に同程度変位することになる。
In this state, the screw rotor 2
Since the axial displacement of the rotor shafts 1 and 22 and the rotor shafts 31 and 32 is restricted by the first bearing devices 41 and 42 on the discharge port 11b side, the axial position of the first bearing devices 41 and 42 shown in FIG. From the end faces 21 of the screw rotors 21 and 22
a, L1 to the screw rotor 21,
22 and the linear expansion coefficients of the rotor shafts 31 and 32 and the temperature thereof increase. On the other hand, the pump housing 11 moves from the axially intermediate position of the first bearing devices 41 and 42 shown in FIG.
The distance L2 to the inner wall surface 11c of the pump housing 1
It increases in accordance with the linear expansion coefficient of 1 and its temperature rise. However, the screw rotors 21, 22 and the rotor shaft 31,
Since the thermal expansion of the pump housing 11 is suppressed by a small linear expansion coefficient for its temperature rise, and the linear expansion coefficient of the pump housing 11 whose temperature rise is small due to heat radiation or the like is increased at a predetermined rate. Wall 11
c and the end faces 21a, 22a of the screw rotors 21, 22
Are displaced by the same amount in the same direction so as to keep the axial gap g2 between them within a predetermined range.

【0017】さらに、本実施形態においては、スクリュ
ーロータ21,22の線膨張係数が、ポンプハウジング
11の線膨張係数から少なくともその20%を減じた値
となっているので、スクリューロータ21,22とポン
プハウジング11の温度差が部分的に数十〜百数十度以
上となる高温熱膨張時にあっても、前記微小隙間g1,
g2の変化を抑え、これらを所定範囲内に保つことがで
きる。
Further, in the present embodiment, since the linear expansion coefficients of the screw rotors 21 and 22 are values obtained by subtracting at least 20% of the linear expansion coefficient of the pump housing 11, the screw rotors 21 and 22 Even at the time of high-temperature thermal expansion in which the temperature difference of the pump housing 11 partially becomes several tens to one hundred and several tens degrees or more, the minute gap g1,
g2 can be suppressed, and these can be kept within a predetermined range.

【0018】したがって、スクリューロータや軸受の焼
付き拘束が発生するという従来の問題を解消するととも
に、排気性能が大きく低下することもない。したがっ
て、高速回転での運転が可能となり、排気性能を向上さ
せることができる。また、上記排気性能の向上により、
メカニカルブースタポンプを不要とするようなことも可
能となる。また、高温運転により、ロータ等への固形生
成物の付着が減少する。
Accordingly, the conventional problem that the seizure of the screw rotor and the bearing occurs is solved, and the exhaust performance is not greatly reduced. Therefore, operation at high speed rotation becomes possible, and exhaust performance can be improved. In addition, by improving the exhaust performance,
It is also possible to eliminate the need for a mechanical booster pump. In addition, the high-temperature operation reduces the adhesion of solid products to the rotor and the like.

【0019】なお、上述の一実施形態においてあげたポ
ンプハウジング11の材料やスクリューロータ21,2
2の材料は単なる一具体例であり、ポンプハウジング1
1の線膨張係数がスクリューロータ21,22の線膨張
係数より大くきなり、スクリューロータ21,22とハ
ウジング11の熱膨張によりこれらの間に外径接触が生
じたり逆に低温時に過大な隙間が生じたりしない範囲内
で、適宜他の材料の組み合せを選択することができる。
The material of the pump housing 11 and the screw rotors 21 and
Material 2 is merely one example and pump housing 1
1 becomes larger than the linear expansion coefficients of the screw rotors 21 and 22, and thermal expansion of the screw rotors 21 and 22 causes outer diameter contact between the screw rotors 21 and 22 and conversely, an excessive gap at low temperatures. Other combinations of materials can be appropriately selected within a range that does not occur.

【0020】また、上述の説明においては、真空ポンプ
を例に本発明の実施形態を説明したが、ロータ材料とハ
ウジング材料の組み合せを特徴とする本発明は、真空ポ
ンプに限らず、圧縮ポンプにも適用することができる。
In the above description, the embodiment of the present invention has been described by taking a vacuum pump as an example. However, the present invention, which is characterized by a combination of a rotor material and a housing material, is not limited to a vacuum pump, but is applied to a compression pump. Can also be applied.

【0021】[0021]

【実施例】実施例として、ポンプハウジング11の材料
に線膨張係数が16×10-6/℃のSUS316L(ス
テンレス鋼)を使用し、雌雄スクリューロータ21,2
2の材料に線膨張係数が11.6×10-6/℃のSCM
435(クロムモリブデン鋼)を使用して、上述の実施
形態と同一構造の容積形ポンプを作製し、更に、ポンプ
ハウジングおよびスクリューロータの材料にそれぞれ線
膨張係数が16×10-6/℃のSUS316L(ステン
レス鋼)を使用した実施例と同一サイズ、同一構造の比
較例の容積形ポンプを作製して、これらの比較試験を行
ったところ、下表のような結果が得られた。
EXAMPLE As an example, SUS316L (stainless steel) having a linear expansion coefficient of 16 × 10 −6 / ° C. was used as a material of the pump housing 11, and the male and female screw rotors 21, 21 were used.
SCM having a coefficient of linear expansion of 11.6 × 10 -6 / ° C.
Using 435 (chromium molybdenum steel), a positive displacement pump having the same structure as that of the above-described embodiment is manufactured. Further, the material of the pump housing and the screw rotor is SUS316L having a linear expansion coefficient of 16 × 10 −6 / ° C., respectively. When a positive displacement pump of the comparative example having the same size and the same structure as the example using (stainless steel) was produced, and these comparative tests were performed, the results shown in the following table were obtained.

【0022】なお、以下の実施例および比較例は、共
に、雄スクリューロータ21の外径を約160mm、雌
スクリューロータ22の外径を約120mm、スクリュ
ーロータ21,22の軸間距離を約110mmとし、ス
クリューロータ21,22の長さを240mmとしたも
のである。 この表から明らかなように、比較例では、高温時におけ
るスクリューロータ端面の外径部分の径方向隙間が減少
する一方、スクリューロータ端面の軸方向隙間が過大と
なり、さらに、スクリューロータの大きな熱膨張に伴っ
てねじの三次元形状誤差が大きくなった。そのため、排
気口近傍のスクリューロータ端面で過大な排気の逆流が
生じたり(表中の*1)、スクリューロータの外周部がハ
ウジングの内周壁面に接触して焼付きを生じたりした
(表中の*2)。これに対し、実施例のポンプでは、ロー
タ径方向の隙間g1およびロータ端面の軸方向隙間g2の
何れも許容範囲内に保たれ、スクリューロータのねじの
三次元形状誤差も小さく抑えられた。したがって、本発
明の実施例のスクリューポンプは、高温での運転時でも
ロータの焼付きを確実に防止することができ、安定した
長時間の連続運転ができた。
In each of the following examples and comparative examples, the outer diameter of the male screw rotor 21 is about 160 mm, the outer diameter of the female screw rotor 22 is about 120 mm, and the distance between the screw rotors 21 and 22 is about 110 mm. And the length of the screw rotors 21 and 22 is 240 mm. As is clear from this table, in the comparative example, while the radial gap at the outer diameter portion of the screw rotor end face at the time of high temperature decreases, the axial gap at the screw rotor end face becomes excessive, and further, the thermal expansion of the screw rotor becomes large. As a result, the three-dimensional shape error of the screw increased. As a result, excessive exhaust gas backflow occurred at the end face of the screw rotor near the exhaust port (* 1 in the table), and the outer peripheral portion of the screw rotor contacted the inner peripheral wall surface of the housing, causing seizure (see the table). of 2). On the other hand, in the pump of the embodiment, the gap g1 in the rotor radial direction and the gap g2 in the axial direction at the rotor end face were both kept within the allowable ranges, and the three-dimensional shape error of the screw of the screw rotor was suppressed to a small value. Therefore, the screw pump according to the embodiment of the present invention was able to reliably prevent the seizure of the rotor even at the time of operation at a high temperature, and was able to perform a stable long-term continuous operation.

【0023】[0023]

【発明の効果】本発明によれば、ロータの線膨張係数を
ハウジングより所定割合で小さくしているので、ポンプ
内部が排気のための断熱圧縮や損失サイクル等によって
高温となって線膨張係数の小さいロータが所定量熱膨張
するとき、放熱等によりロータ側より低温となるハウジ
ングをロータの熱膨張に近い程度に熱膨張させることが
でき、低温域から高温域まで、ロータとハウジングの間
の微小隙間の変化を所定範囲内に抑えることができ、排
気性能が大きく低下することもない。また、ロータが複
数の場合に、ハウジングの熱膨張によってロータ軸間距
離をわずかに拡大させつつ各ロータの熱膨張を小さく抑
えることができ、ロータ外周面間の隙間も所定範囲内に
保つことができる。さらに、ロータの軸受部において、
ポンプの排出口側が相当高温となるような運転状態にあ
っても、軸受部におけるロータの熱膨張を少なくすると
ともに軸穴側の熱膨張による拡径を生じさせ、軸受に過
大な荷重が作用しないようにすることができる。これら
の結果、高速回転での運転が可能となり、排気性能を向
上させることができる。また、反応ガス等による固形生
成物がロータ外周等に付着し難い温度域にまでポンプ内
部が温度上昇するような運転条件でポンプを使用するこ
とができ、ロータ表面等に付着する固形生成物を除去す
るためのメンテナンスの回数を減少させることができ
る。
According to the present invention, the linear expansion coefficient of the rotor is made smaller than that of the housing by a predetermined ratio. When a small rotor thermally expands by a predetermined amount, the housing whose temperature becomes lower than that of the rotor due to heat radiation or the like can be thermally expanded to a degree close to the thermal expansion of the rotor. The change in the gap can be suppressed within a predetermined range, and the exhaust performance does not significantly decrease. In addition, when there are a plurality of rotors, the thermal expansion of the housing can slightly reduce the distance between the rotor shafts due to the thermal expansion of the housing while suppressing the thermal expansion of each rotor, and the gap between the outer peripheral surfaces of the rotors can also be kept within a predetermined range. it can. Furthermore, in the bearing part of the rotor,
Even in an operating state where the pump outlet side is at a considerably high temperature, the thermal expansion of the rotor in the bearing portion is reduced and the diameter of the shaft is expanded due to the thermal expansion of the shaft hole side, so that no excessive load acts on the bearing. You can do so. As a result, high-speed rotation can be performed, and the exhaust performance can be improved. In addition, the pump can be used under operating conditions in which the temperature inside the pump rises to a temperature range where solid products such as reaction gas do not easily adhere to the outer periphery of the rotor or the like. The number of maintenance operations for removal can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る容積形ポンプの一実施形態を示す
その平面断面図である。
FIG. 1 is a plan sectional view showing one embodiment of a positive displacement pump according to the present invention.

【図2】一実施形態の容積形ポンプの作用説明図であ
る。
FIG. 2 is an operation explanatory view of the positive displacement pump of one embodiment.

【図3】従来例の容積形ポンプの作用説明図である。FIG. 3 is an operation explanatory view of a conventional positive displacement pump.

【符号の説明】[Explanation of symbols]

11 ポンプハウジング 11a 吸入口 11b 排出口 11c 内壁面 12 ロータ室 13a,14a 軸穴部 21,22 スクリューロータ(ロータ) 21a,22a 端面(ロータの軸方向一端面) 25,26 作動室(気体移送室) 31,32 ロータ軸 31a,32a 一端部(排出口側の端部) Reference Signs List 11 pump housing 11a suction port 11b discharge port 11c inner wall surface 12 rotor chamber 13a, 14a shaft hole 21, 22 screw rotor (rotor) 21a, 22a end face (rotor axial one end face) 25, 26 working chamber (gas transfer chamber) ) 31, 32 Rotor shaft 31a, 32a One end (end on the discharge port side)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07J 1/00 C07J 1/00 F04C 18/16 F04C 18/16 R 25/02 25/02 M ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07J 1/00 C07J 1/00 F04C 18/16 F04C 18/16 R 25/02 25/02 M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】吸入口および排出口を有し、内部にロータ
室が形成されたハウジングと、 吸入口からロータ室に圧縮性流体を吸入するとともに該
流体を排出口から排出するようロータ室内に回転可能に
設けられたロータと、を備えた容積形ポンプにおいて、 前記ハウジングが所定の線膨張係数を有するとともに、 前記ロータが該ハウジングの線膨張係数より小さい線膨
張係数を有することを特徴とする容積形ポンプ。
1. A housing having a suction port and a discharge port and having a rotor chamber formed therein, and a compressor fluid sucked into the rotor chamber from the suction port, and the compressor fluid is discharged into the rotor chamber from the discharge port. A rotatable rotor, wherein the housing has a predetermined linear expansion coefficient, and the rotor has a linear expansion coefficient smaller than the linear expansion coefficient of the housing. Positive displacement pump.
JP26760797A 1997-10-01 1997-10-01 Displacement type pump Pending JPH11106343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26760797A JPH11106343A (en) 1997-10-01 1997-10-01 Displacement type pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26760797A JPH11106343A (en) 1997-10-01 1997-10-01 Displacement type pump

Publications (1)

Publication Number Publication Date
JPH11106343A true JPH11106343A (en) 1999-04-20

Family

ID=17447079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26760797A Pending JPH11106343A (en) 1997-10-01 1997-10-01 Displacement type pump

Country Status (1)

Country Link
JP (1) JPH11106343A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074749B1 (en) 2011-08-23 2011-10-18 (주)에어플러스 Oil-free air compressor
JP2012021508A (en) * 2010-07-16 2012-02-02 Tohoku Univ Processing device
JP2012117369A (en) * 2010-11-12 2012-06-21 Tohoku Univ Processing apparatus
KR101401821B1 (en) * 2007-09-14 2014-05-29 한라비스테온공조 주식회사 Air compressor/expender
KR20200019627A (en) * 2017-06-19 2020-02-24 에드워즈 리미티드 Twin-shaft pump
CN112377408A (en) * 2020-11-12 2021-02-19 河北恒工精密装备股份有限公司 Screw rotor exhaust end face compensation method, compensation structure and screw compressor head

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101401821B1 (en) * 2007-09-14 2014-05-29 한라비스테온공조 주식회사 Air compressor/expender
JP2012021508A (en) * 2010-07-16 2012-02-02 Tohoku Univ Processing device
JP2012117369A (en) * 2010-11-12 2012-06-21 Tohoku Univ Processing apparatus
KR101074749B1 (en) 2011-08-23 2011-10-18 (주)에어플러스 Oil-free air compressor
WO2013028015A2 (en) * 2011-08-23 2013-02-28 (주)에어플러스 Oil-free air compressor
WO2013028015A3 (en) * 2011-08-23 2013-05-10 (주)에어플러스 Oil-free air compressor
KR20200019627A (en) * 2017-06-19 2020-02-24 에드워즈 리미티드 Twin-shaft pump
JP2020524242A (en) * 2017-06-19 2020-08-13 エドワーズ リミテッド Twin shaft pump
US11542946B2 (en) 2017-06-19 2023-01-03 Edwards Limited Twin-shaft pumps with thermal breaks
CN112377408A (en) * 2020-11-12 2021-02-19 河北恒工精密装备股份有限公司 Screw rotor exhaust end face compensation method, compensation structure and screw compressor head

Similar Documents

Publication Publication Date Title
JP3254457B2 (en) Method for forming rotor of oilless screw compressor and oilless screw compressor using the rotor
JP5073754B2 (en) Multistage dry pump
EP1813818A2 (en) Evacuating apparatus
JP2619468B2 (en) Oil-free screw fluid machine
US20230265849A1 (en) Low Coefficient of Expansion Rotors for Vacuum Boosters
US7744356B2 (en) Screw vacuum pump with male and female screw rotors having unequal leads
US20230366399A1 (en) Low coefficient of expansion rotors for blowers
JPH11106343A (en) Displacement type pump
JPH10184576A (en) Evacuation system
KR930010240B1 (en) Screw fluid machine
JPH0874748A (en) Dry screw fluid machine
US7637726B2 (en) Screw vacuum pump
JP2003172282A (en) Multi-stage type vacuum pump
JPH0932766A (en) Screw fluid machine and screw gear
JP3270980B2 (en) Screw compressor
JP7028880B2 (en) Pump seal
EP3555476B1 (en) Pump sealing
US20040166007A1 (en) Scroll compressor
JPH01216082A (en) Vacuum pump
WO1999042729A1 (en) Vacuum pump
JP2005256845A (en) Evacuating apparatus
JPS6130158B2 (en)
JPH0242190A (en) Screw fluid machine
JP2004293377A (en) Multi-stage dry pump
JPH11107951A (en) Postive displacement type pump

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041015

A131 Notification of reasons for refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A02 Decision of refusal

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070306

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070420