JPH11102702A - Manufacture of carbon for lithium ion secondary battery negative electrode - Google Patents

Manufacture of carbon for lithium ion secondary battery negative electrode

Info

Publication number
JPH11102702A
JPH11102702A JP9263292A JP26329297A JPH11102702A JP H11102702 A JPH11102702 A JP H11102702A JP 9263292 A JP9263292 A JP 9263292A JP 26329297 A JP26329297 A JP 26329297A JP H11102702 A JPH11102702 A JP H11102702A
Authority
JP
Japan
Prior art keywords
pulverization
particle size
peripheral speed
pulverizing
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9263292A
Other languages
Japanese (ja)
Inventor
Keiichiro Okamura
佳一郎 岡村
Tetsuji Takemura
哲治 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petoca Ltd
Original Assignee
Petoca Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petoca Ltd filed Critical Petoca Ltd
Priority to JP9263292A priority Critical patent/JPH11102702A/en
Publication of JPH11102702A publication Critical patent/JPH11102702A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and stably manufacture a carbon material of a prescribed grain size by pulverizing the carbide in the two-stage pulverizing process, i.e., a rough-pulverizing process and the fine pulverizing process, and achieving graphitization after the grain size has been adjusted. SOLUTION: Mesophase carbon fiber is preferable for the carbide because the capacity of the secondary battery is easily increased, and the mat-like carbon fiber is adopted from the relation between the spinning and the handling property. Because pulverization is achieved in the rough-pulverizing process and the fine-pulverizing state, the grain size can be adjusted easily, and the load on a pulverizing machine is reduced. A high-speed rotary mill is optimum for each pulverizing machine used for rough pulverization and fine pulverization. The grain size of the stuff to be pulverized is adjusted by mainly controlling the peripheral speed (number of revolutions) of a rotor and the air volume. Rough pulverization is achieved at the peripheral speed of 80-140 m/sec, while fine pulverization is achieved at a peripheral speed of 105-150 m/sec in an efficient manner, and preferably the difference in the peripheral speed between the rough pulverization and fine pulverization is preferably 5-30 m/sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池用負極材料に適した炭素材の製造方法に関し、更
に詳しくは、生産効率に優れ、かつ、品質安定性に優れ
たリチウムイオン二次電池負極材料用炭素材の粒度調整
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon material suitable for a negative electrode material for a lithium ion secondary battery, and more particularly to a lithium ion secondary battery having excellent production efficiency and excellent quality stability. The present invention relates to a method for adjusting the particle size of a carbon material for a battery negative electrode material.

【0002】[0002]

【従来の技術】近年、電子機器は小型化・軽量化・高性
能化を目指して急速な技術発展を遂げ、それによりセル
ラー、PHS、カムコーダー、パソコンに代表される携
帯用電子機器の普及が一段と進んだ。これらの新しい機
器の発展に伴い、新たな二次電池として登場したのがニ
ッケル水素電池やリチウムイオン二次電池である。特
に、リチウムイオン二次電池は、高エネルギー密度及び
高起電力である他、非水電解液を用いるため作動温度範
囲が広く、長期保存に優れ、さらに軽量小型である等の
多くの利点を有している。従って、このようなリチウム
イオン二次電池は、携帯用電子機器電源をはじめとし
て、電気自動車、電力貯蔵用などの高性能電池としての
実用化が期待されている。リチウムイオン二次電池の性
能と安全性の向上は、負極に金属リチウムに代わって炭
素系材料を用いることによって実現した。すなわち、炭
素系材料を負極に用いた場合、リチウムイオンが炭素構
造中に取り込まれるためリチウムデンドライトは形成さ
れず、安全性が飛躍的に高められる。このようなリチウ
ムイオン二次電池負極材用として、例えばピッチ系のミ
ルド黒鉛繊維を使用することが、特開平5−32596
7号、6−36802号、7−90725号等各公報に
提案されている。この負極に用いられる炭素系材料は、
通常、適度な粒径に粉砕され使用されており、例えば、
特開昭63−102166号、特開昭63−12124
8号、特開平5−325967号、特開平6−1687
25号各公報等に、電池用として好ましい粒径範囲(お
おむね0.1〜200μm、黒鉛系として、好ましくは平
均粒径が5〜30μm程度)が開示されているが、いか
なる機器を使用し、いかなる条件で製造することが好ま
しいのかについては、上記公報には特に開示されていな
い。
2. Description of the Related Art In recent years, electronic devices have undergone rapid technological development with the aim of miniaturization, weight reduction, and high performance. As a result, portable electronic devices such as cellular phones, PHSs, camcorders, and personal computers have become more widespread. Advanced. With the development of these new devices, nickel-metal hydride batteries and lithium-ion secondary batteries have emerged as new secondary batteries. In particular, a lithium ion secondary battery has many advantages such as a high energy density and a high electromotive force, a wide operating temperature range due to the use of a non-aqueous electrolyte, excellent long-term storage, and light weight and small size. doing. Therefore, such a lithium ion secondary battery is expected to be put to practical use as a high-performance battery for a power source of a portable electronic device, an electric vehicle, a power storage device, and the like. The performance and safety of the lithium ion secondary battery were improved by using a carbon-based material instead of lithium metal for the negative electrode. That is, when the carbon-based material is used for the negative electrode, lithium dendrites are not formed because lithium ions are incorporated into the carbon structure, and safety is dramatically improved. For such a negative electrode material for a lithium ion secondary battery, for example, use of pitch-based milled graphite fiber is disclosed in Japanese Patent Application Laid-Open No. 5-32596.
No. 7, 6-36802, and 7-90725. The carbon-based material used for this negative electrode is
Usually, it is used after being crushed to an appropriate particle size.
JP-A-63-102166, JP-A-63-12124
8, JP-A-5-325967, JP-A-6-1687
No. 25 each publication discloses a preferred particle size range for batteries (approximately 0.1 to 200 μm, as a graphite system, preferably an average particle size of about 5 to 30 μm). The above publication does not specifically disclose under what conditions the production is preferable.

【0003】[0003]

【発明が解決しようとする課題】通常、炭素系材料を汎
用の粉砕機を使用し、電池の負極材として要求される粒
径に粉砕しようとすると、得られる炭素材の粒度分布が
広くなる傾向がみられる。このため、粉砕後に篩い、分
級等による粒度の調整が必要となり、製品の収率の低下
の原因となる。特に、炭素材として、炭素繊維のように
球状から大きくかけ離れた形状のものを粉砕する場合、
この傾向が顕著にみられる。また、運転条件によって
は、粉砕機の摩耗がみられ、長時間の安定な運転が粉砕
量の低下を伴うことなしには困難となり、更に、異物の
混入等による製品品質への影響もみられる。本発明は上
記のような情況下でなし遂げられたものである。すなわ
ち、本発明は、所定の粒度の炭素材を効率良く、安定し
て製造することができ、さらに、粉砕機の摩耗が少ない
ことから、生産性に優れ、安定した品質のリチウムイオ
ン二次電池負極材用炭素材の製造方法を提供することを
目的とする。
Normally, when a carbon-based material is crushed to a particle size required as a negative electrode material of a battery by using a general-purpose crusher, the particle size distribution of the obtained carbon material tends to be wide. Is seen. For this reason, it is necessary to adjust the particle size by sieving, classification and the like after pulverization, which causes a reduction in product yield. In particular, when crushing a carbon material, such as carbon fiber, which is greatly separated from a sphere,
This tendency is remarkable. Further, depending on the operating conditions, wear of the crusher is observed, and it becomes difficult to perform stable operation for a long time without a decrease in the amount of crushing, and further, the influence on the quality of the product due to the inclusion of foreign matter is also observed. The present invention has been accomplished under the circumstances described above. That is, the present invention is capable of efficiently and stably producing a carbon material having a predetermined particle size, and further, since the abrasion of the pulverizer is small, the lithium ion secondary battery having excellent productivity and stable quality is provided. An object of the present invention is to provide a method for producing a carbon material for a negative electrode material.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題に
鑑みて鋭意研究した結果、粉砕工程を二段階、つまり第
1段で粗粉砕を、第2段で微粉砕を行い、かつ、その運
転条件を制御することで上記目的に適う粉砕ができるこ
とを見出し本発明を完成するに至った。すなわち、本発
明は、 炭化物を、粗粉砕を行う第1の粉砕工程と微粉砕を
行う第2の粉砕工程とからなる2段の粉砕工程により粉
砕し、粒径を調整した後黒鉛化することを特徴とするリ
チウムイオン二次電池負極材用炭素材の製造方法、 第1の粉砕工程と第2の粉砕工程に使用する粉砕機
が、高速回転ミルであることを特徴とする上記記載の
製造方法、 第1の粉砕工程を、周速80〜140m/秒の粉砕
条件で行うことを特徴とする上記またはに記載の製
造方法、 第2の粉砕工程を、周速90〜150m/秒の粉砕
条件で行うことを特徴とする上記〜のいずれかに記
載の製造方法、 第2の粉砕工程に使用する粉砕機の周速が、第1の
粉砕工程に用いる粉砕機の周速より5〜30m/秒大き
いことを特徴とする上記〜のいずれかに記載の製造
方法、 炭化物が、500℃以上1300℃以下の温度で炭
化されたメソフェーズピッチ系炭素繊維であることを特
徴とする上記〜のいずれかに記載の製造方法、 炭化物がマット状であり、かつ第1段の粉砕工程の
前に破砕工程を設けることを特徴とする上記〜のい
ずれかに記載の製造方法、及び 第2の粉砕工程により得られるミルド炭素繊維が8
〜50μmの平均粒径を有し、かつ、粒径5μm以下の
ものが5%以下であり、粒径100μm以上のものが4
%以下であることを特徴とする上記〜のいずれかに
記載の製造方法、を提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above-mentioned problems, and have found that the pulverization process is performed in two stages, that is, coarse pulverization is performed in the first stage, fine pulverization is performed in the second stage, and It has been found that pulverization suitable for the above-mentioned purpose can be performed by controlling the operating conditions, and the present invention has been completed. That is, the present invention provides a method of pulverizing a carbide by a two-stage pulverization step including a first pulverization step of coarse pulverization and a second pulverization step of fine pulverization, adjusting the particle size, and then graphitizing. A method for producing a carbon material for a negative electrode material of a lithium ion secondary battery, wherein the crusher used in the first crushing step and the second crushing step is a high-speed rotary mill. The method according to the above or the above, wherein the first pulverizing step is performed under the pulverizing conditions of a peripheral speed of 80 to 140 m / sec. The second pulverizing step is performed at a peripheral speed of 90 to 150 m / sec. The method according to any one of the above, wherein the peripheral speed of the pulverizer used in the second pulverization step is 5 to 30 m higher than the peripheral speed of the pulverizer used in the first pulverization step. / Small second / second. The method according to any one of the above-mentioned items, wherein the carbide is a mesophase pitch-based carbon fiber carbonized at a temperature of 500 ° C. or more and 1300 ° C. or less. The method according to any one of the above items, wherein a crushing step is provided before the step of crushing, and the milled carbon fiber obtained by the second crushing step is 8
5% or less having a mean particle size of 50 μm or less and a particle size of 5 μm or less, and 4% or less having a mean particle size of 100 μm or more.
% Or less, the production method according to any one of the above-described items.

【0005】[0005]

【発明の実施の形態】以下に本発明を更に詳細に説明す
る。本発明の製造方法において用いられる炭化物は、黒
鉛構造の発達していない炭素系材料であって、後の熱処
理によって黒鉛化されるものであれば特に限定されるも
のではない。このような炭化物としては、比較的低温で
熱処理された有機物、ピッチ類、コークス、PAN系炭
素繊維、ピッチ系炭素繊維等が挙げられるが、特にメソ
フェーズピッチ系炭素繊維が二次電池の容量が大きくな
りやすい点から好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The carbide used in the production method of the present invention is not particularly limited as long as it is a carbon-based material having no developed graphite structure and can be graphitized by a subsequent heat treatment. Examples of such carbides include organic materials, pitches, coke, PAN-based carbon fibers, and pitch-based carbon fibers that have been heat-treated at a relatively low temperature. In particular, mesophase pitch-based carbon fibers have a large secondary battery capacity. It is preferable because it is easily formed.

【0006】メソフェーズピッチ系炭素繊維は、メソフ
ェーズピッチを、常法によって紡糸、不融化及び炭化し
得られる。この時の形態としては、後述する紡糸方法と
その後の取扱性との関連から、マット状炭素繊維の形態
とすることが好ましい。また、炭素繊維は、二次電池負
極材用として適度な粒径に粉砕(繊維の場合、特にミル
ド化という)し使用することが好ましい。この際、リチ
ウムイオンの出入りを容易にするためには、繊維長を短
くすること、すなわち容積(重量)当たりの繊維表面積
を出来るだけ大きくすることが好ましい。さらに、繊維
形態を保持したまま表面積を大きくするようミルド化す
ることが、電池の性能を向上させるうえで好ましい。
[0006] Mesophase pitch-based carbon fibers can be obtained by spinning, infusibilizing, and carbonizing mesophase pitch by a conventional method. The form at this time is preferably in the form of a mat-like carbon fiber from the viewpoint of the spinning method described later and the ease of handling thereafter. Further, it is preferable that the carbon fiber is pulverized to an appropriate particle size for the negative electrode material of the secondary battery (in the case of a fiber, particularly, milled) and used. At this time, in order to facilitate the entrance and exit of lithium ions, it is preferable to shorten the fiber length, that is, to increase the fiber surface area per volume (weight) as much as possible. Further, it is preferable to perform milling so as to increase the surface area while maintaining the fiber form, in order to improve the performance of the battery.

【0007】しかしながら、繊維をいたずらに微粉化す
ると、黒鉛化後に活性な黒鉛層の露出が必要以上に増加
し電解液と反応しやすくなるために、容量及び充放電効
率の低下等のデメリットが発生するので、適度な粒度分
布及び平均粒径とすることが要求される。また、粒径の
大きなものは、負極材の塗布ムラや、短絡の原因となり
やすく、充填密度も上げにくいことから微小粒径のもの
と同様にその量を極力低下させることが好ましい。この
ため、本発明においては、上記炭化物は平均粒径が8〜
50μm、好ましくは10〜30μmであり、かつ粒径
5μm以下のものが5%以下、好ましくは3%以下、更
に好ましくは2.5%以下であり、粒径100μm以上の
ものが4%以下、好ましくは3%以下、更に好ましくは
2.5%以下であるように粉砕し粒度調整することが好ま
しい。なお、本発明においては上記平均粒径等の値は、
レーザ回折式粒度分布測定装置によって測定することが
できる。また、以下本発明においては、粉砕(ミルド
化)後の炭素繊維をミルド炭素繊維と称し、さらに黒鉛
化したものをミルド黒鉛繊維と称す。
However, if the fibers are unnecessarily pulverized, the exposure of the active graphite layer after graphitization increases more than necessary and easily reacts with the electrolytic solution, so that disadvantages such as a decrease in capacity and charge / discharge efficiency occur. Therefore, an appropriate particle size distribution and an average particle size are required. Also, particles having a large particle diameter tend to cause uneven coating of the negative electrode material and short-circuit, and it is difficult to increase the packing density. Therefore, it is preferable to reduce the amount as much as possible with particles having a small particle diameter. Therefore, in the present invention, the carbide has an average particle size of 8 to
50 μm, preferably 10 to 30 μm, and 5% or less having a particle size of 5 μm or less, preferably 3% or less, more preferably 2.5% or less, and 4% or less having a particle size of 100 μm or more; Preferably not more than 3%, more preferably
It is preferable to grind and adjust the particle size so as to be 2.5% or less. In the present invention, the value such as the average particle size is
It can be measured by a laser diffraction type particle size distribution analyzer. Hereinafter, in the present invention, the carbon fibers after pulverization (milling) are referred to as milled carbon fibers, and those further graphitized are referred to as milled graphite fibers.

【0008】本発明においては、粒度調整のための粉砕
を2段階で行い、すなわち、第1段目の工程で粗粉砕
を、また第2段目の工程で微粉砕を行い粒度調整するこ
とにより、適度な粒度分布が得られる。すなわち、粒度
調整工程における粉砕を2段階で行うことにより、従来
の1段の粉砕に比べて容易に粒度調整が可能となり、所
定の粒度のミルド炭素繊維を安定して製造することがで
きる。また、粉砕を2段で行うことにより、粉砕機への
負荷を軽減することができ、これにより粉砕機の摩耗を
低減することができ、長時間の運転が可能になり、更に
品質の向上に対しての効果も期待できる。
In the present invention, the pulverization for adjusting the particle size is performed in two stages, that is, coarse pulverization is performed in the first step, and fine pulverization is performed in the second step to adjust the particle size. And an appropriate particle size distribution can be obtained. That is, by performing the pulverization in the particle size adjusting step in two stages, the particle size can be easily adjusted as compared with the conventional one-stage pulverization, and milled carbon fibers having a predetermined particle size can be stably manufactured. In addition, by performing the pulverization in two stages, the load on the pulverizer can be reduced, thereby reducing the wear of the pulverizer, enabling long-term operation, and further improving the quality. We can expect effect for.

【0009】本発明における第1の粉砕工程と第2の粉
砕工程は、いずれも、汎用のジョークラッシャー、ハン
マークラッシャー、ボールミル、擂潰機、ローラーミ
ル、ジェットミル、高速回転ミル等の装置を用いて行う
ことができるが、粉砕物と、粉砕後の粒度の関係を種々
検討した結果、ブレードを取り付けたローターを高速に
回転させる高速回転ミルの使用が最も好適である。この
場合、ローターの回転数、風量、ブレードの角度、ロー
ターの周辺に取り付けられたフィルターの目の大きさ等
を適宜調整することにより、第1段の粉砕及び第2段の
粉砕の各々において炭化物の粒度をコントロールするこ
とが可能である。また、炭化物の硬度が高くなるにつ
れ、粉砕機の磨耗が著しく増加するため、炭化物の硬度
によっては、粉砕部などの材質を磨耗しにくいものにす
る必要があり、例えば、内部ライニング等の処理や衝突
部分に磨耗しにくい窒化処理金属を使用することやチタ
ンなどの高硬度金属の被膜による補強を行うことなどが
効果的である。
In the first and second pulverizing steps of the present invention, a general-purpose jaw crusher, hammer crusher, ball mill, crusher, roller mill, jet mill, high-speed rotary mill, etc. are used. However, as a result of various studies on the relationship between the pulverized material and the particle size after pulverization, it is most preferable to use a high-speed rotating mill that rotates a rotor equipped with a blade at high speed. In this case, by appropriately adjusting the number of rotations of the rotor, the air volume, the angle of the blade, the size of the mesh of the filter attached to the periphery of the rotor, and the like, the carbide in each of the first stage pulverization and the second stage pulverization is adjusted. Can be controlled. In addition, as the hardness of the carbide increases, the wear of the crusher significantly increases.Therefore, depending on the hardness of the carbide, it is necessary to make the material such as the crushing portion hard to wear. It is effective to use a nitrided metal that is not easily worn in the collision portion, or to provide reinforcement by a coating of a hard metal such as titanium.

【0010】本発明における2段階の粉砕は、上記の粉
砕機を、粉砕物の性状、粉砕後に要求される粒度に合わ
せ適宜選択し組み合わせて行うことができ、また、その
運転条件も適宜選択することができるが、工程管理、保
守性も加味し、同一様式仕様の粉砕機、特に炭化物の粉
砕に適した高速回転ミルの使用が好ましい。高速回転ミ
ルは、ローター(回転刃)とステーター(固定刃)を備
えており、両者のクリアランス(間隙)は1〜5mm、
更に、2〜4mmのものが粉砕物の粒度分布と粉砕効率
の点で本発明の方法に好ましく使用することができる。
このような高速回転ミルにおいて、粉砕物の粒度の調整
は、主して、ローターの周速(回転数に比例)と風量を
制御することで容易に行うことができる。
The two-stage pulverization in the present invention can be carried out by appropriately selecting and combining the above-mentioned pulverizers in accordance with the properties of the pulverized material and the particle size required after the pulverization, and the operating conditions thereof are also appropriately selected. However, in consideration of process control and maintainability, it is preferable to use a pulverizer having the same mode specifications, particularly a high-speed rotating mill suitable for pulverizing carbides. The high-speed rotating mill has a rotor (rotary blade) and a stator (fixed blade), and the clearance (gap) between them is 1 to 5 mm.
Further, those having a size of 2 to 4 mm can be preferably used in the method of the present invention in view of the particle size distribution of the pulverized material and the pulverization efficiency.
In such a high-speed rotating mill, the particle size of the pulverized material can be easily adjusted mainly by controlling the peripheral speed (proportional to the number of rotations) and the air volume of the rotor.

【0011】第1段粉砕、第2段粉砕ともに高速回転ミ
ルを使用し、前述の粒度範囲に粉砕する場合の、それぞ
れの好ましい周速、風量の運転条件を以下に記す。第1
の粉砕工程は粗粉砕が目的であり、また、2段目の粉砕
で微粉分を多く生じさせないためには、適度な粒度まで
の粉砕が要求される。従って、本発明においては、平均
粒径が25〜60μmで、90%累積径が90〜130
μmで、5μm以下の粒径のものを極力生じさせないよ
うな粉砕条件を設定することが好ましい。このため、1
段目の粉砕は周速80〜140m/秒、好ましくは10
0〜130m/秒の条件で行うことが効率的である。通
常、高速回転ミルにおいては周速が速いほど、粉砕効率
が良くなる一方機器の磨耗が激しくなる。このため、上
記周速が80m/秒未満の場合は、粉砕効率が低下し好
ましくなく、また、140m/秒より大きい場合は、機
器の磨耗が極端に増加することおよび微粉が増加するの
で好ましくない。また、風量はブロワー入口で、粉砕さ
れる炭化物1kg当たり0.15〜0.4m 3 /分であるこ
とが好ましい。この値が上記範囲外であると粉砕物と機
器の衝突で状態が不良となり、粉砕効率が低下(長時間
化)することがある。
[0011] Both the first stage pulverization and the second stage pulverization
When grinding using the above-mentioned particle size range,
The operation conditions of the preferable peripheral speed and air flow are described below. First
The purpose of the pulverization process is to perform coarse pulverization.
In order not to generate much fine powder in
Grinding is required. Therefore, in the present invention, the average
Particle size is 25-60 μm, 90% cumulative diameter is 90-130
μm and a particle size of 5μm or less
It is preferable to set such grinding conditions. Therefore, 1
The pulverization of the stage is performed at a peripheral speed of 80 to 140 m / sec, preferably 10 to 140 m / sec.
It is efficient to carry out under the condition of 0 to 130 m / sec. Through
In a high-speed rotary mill, the higher the peripheral speed, the higher the grinding efficiency.
However, the wear of the equipment becomes severe. Because of this,
When the peripheral speed is less than 80 m / sec, the pulverization efficiency is reduced and the
If it is not good and it is more than 140m / sec,
The wear of the vessel is extremely increased and the fines
Is not preferred. In addition, the air volume is
0.15 ~ 0.4m / kg of carbide Three/ Min
Is preferred. If this value is out of the above range, pulverized material and machine
Condition becomes poor due to the collision of the vessel
).

【0012】2段目の粉砕は、1段目の粉砕で粗粉砕さ
れたものを要求される最終粒度まで粉砕することを目的
として行われる。第2段目の粉砕は機器の磨耗が粉砕物
の小粒化(低重量化)で緩和されるためか、周速を1段
目より幾分速くすることが可能である。このため、第2
段目の粉砕は周速105〜150m/秒、好ましくは1
05〜140m/秒の条件で行うことが効率的である。
また、風量も粉砕物の粒径が1段目より小さくなること
から、ブロワー入口で第1段目の場合より幾分少ない範
囲でよく、第1段目と同様の理由により粉砕される炭化
物1kg当たり0.12〜0.35m3 /分であることが好
ましい。さらに、第1段目と第2段目の各々の粉砕機の
周速差については、上記各粉砕機の運転範囲において第
2段目の粉砕機の周速を、第1段目の粉砕機より5〜3
0m/秒、更に8〜25m/秒速くすることが好まし
い。周速の差が上記範囲外であると粉砕物の粒度分布が
広くなる傾向がみられ、製品収率の低下を生じやすく、
また粉砕機の一方に粉砕負荷が片寄りやすく、高負荷側
の機器の磨耗が著しくなり、ひいては運転効率を低下さ
せるので好ましくない。
The second-stage pulverization is performed for the purpose of pulverizing the coarsely pulverized product in the first-stage pulverization to a required final particle size. The peripheral speed can be made somewhat higher than in the first stage because the abrasion of the equipment in the second stage is alleviated by reducing the size of the pulverized material (reducing the weight). Therefore, the second
The pulverization of the stage is performed at a peripheral speed of 105 to 150 m / sec, preferably 1 to 150 m / sec.
It is efficient to perform it under the condition of 05 to 140 m / sec.
In addition, since the air volume is smaller than that of the first stage at the blower inlet since the particle size of the pulverized material is smaller than that of the first stage, 1 kg of the carbide pulverized for the same reason as the first stage may be used. It is preferably from 0.12 to 0.35 m 3 / min. Furthermore, regarding the peripheral speed difference between the first stage and the second stage crusher, the peripheral speed of the second stage crusher in the operation range of each of the crushers is set to the first stage crusher. More 5-3
It is preferable to increase the speed by 0 m / sec, and further by 8 to 25 m / sec. If the difference in peripheral speed is outside the above range, the particle size distribution of the pulverized material tends to be widened, and the product yield tends to decrease,
Further, the crushing load tends to be biased to one side of the crusher, and the equipment on the high load side becomes significantly worn, which lowers the operation efficiency, which is not preferable.

【0013】本発明においては、炭化物としてマット状
の炭素繊維を粉砕する場合には、上記2段の粉砕工程に
先立って、破砕機を設けることが好ましい。すなわち、
マット状の炭素繊維をいきなり粉砕機に投入することは
粉砕効率上及び装置の保守上好ましくないため、上記破
砕機でマット状形態の炭素繊維を適切な大きさに破砕し
た後粉砕機に投入することが好ましい。このような破砕
機としては、ナイフ状カッター,ロール状カッター等が
好ましく用いられる。本発明においては、上記第1の工
程において粉砕された炭化物は、例えばスクリューフィ
ーダーにより第2の工程に移送される。このようなスク
リューフィーダーとしては、従来知られているものをい
ずれも使用することができる。本発明の製造方法におい
ては、粉砕工程を二段に分け、各工程をそれぞれ上記の
ような条件で行うことにより、前述のような所定の粒度
のミルド炭素繊維を安定して得ることができるものであ
る。
In the present invention, when crushing the mat-like carbon fiber as a carbide, it is preferable to provide a crusher prior to the two-stage crushing step. That is,
Since it is not preferable from the viewpoint of crushing efficiency and maintenance of the apparatus that the mat-shaped carbon fiber is immediately put into the crusher, the mat-shaped carbon fiber is crushed into an appropriate size by the crusher and then put into the crusher. Is preferred. As such a crusher, a knife-shaped cutter, a roll-shaped cutter or the like is preferably used. In the present invention, the carbide pulverized in the first step is transferred to the second step by, for example, a screw feeder. As such a screw feeder, any of conventionally known screw feeders can be used. In the production method of the present invention, the pulverizing step is divided into two steps, and each step is performed under the above-described conditions, whereby milled carbon fibers having a predetermined particle size as described above can be stably obtained. It is.

【0014】以下に、ピッチ系ミルド炭素繊維の製造に
関するその他の主要な工程等について概要を説明する。 <原料ピッチ>出発原料ピッチは、樹脂系、石油系、石
炭系、触媒などを用いた合成系の各ピッチのいずれも使
用でき限定されるものではないが、特に易黒鉛化性ピッ
チ、好ましくはメソフェーズピッチでメソフェーズ含有
量が100%のものを使用する。原料ピッチの軟化点も
特に限定されるものではないが、紡糸温度との関係から
軟化点が低くて、且つ不融化反応速度の速いものが製造
コスト及び安定性の面から有利である。従って、原料ピ
ッチの軟化点は一般に230℃以上350℃以下であ
る。
The outline of other main steps related to the production of pitch-based milled carbon fiber will be described below. <Raw material pitch> The starting material pitch may be any of resin-based, petroleum-based, coal-based, and synthetic pitches using a catalyst and the like, but is not limited thereto. A mesophase pitch having a mesophase content of 100% is used. The softening point of the raw material pitch is not particularly limited, but a material having a low softening point and a high infusibilization reaction rate in relation to the spinning temperature is advantageous from the viewpoint of production cost and stability. Therefore, the softening point of the raw material pitch is generally 230 ° C. or more and 350 ° C. or less.

【0015】<紡糸>原料ピッチを溶融紡糸する方法は
特に限定されるものではなく、メルトスピニング、メル
トブロー、遠心紡糸等種々の方法を使用することが出来
るが、紡糸時の生産性や得られる繊維の品質の観点から
メルトブロー法が好ましい。さらに、電池の性能を向上
させるには、ミルド黒鉛繊維の黒鉛層面が繊維軸表面に
開口するように配列させることが望ましく、メソフェー
ズピッチを用いたメルトブロー紡糸法が、数十ポイズ以
下という低粘度で紡糸でき、且つ高速冷却することによ
り黒鉛層面を繊維軸表面に開口させることができ特に好
ましい。この時の紡糸孔の大きさは、0.1mmΦ以上0.
5mmΦ以下、好ましくは0.15mmΦ以上0.3mmΦ
以下である。また、紡糸速度は毎分500m以上、好ま
しくは毎分1500m以上である。紡糸温度は使用する
原料ピッチにより幾分変更されるが、原料ピッチの軟化
点以上でピッチが変質しない温度であればよく、300
℃以上420℃以下、好ましくは300℃以上400℃
以下である。
<Spinning> The method of melt-spinning the raw material pitch is not particularly limited, and various methods such as melt spinning, melt blowing and centrifugal spinning can be used. The melt blow method is preferred from the viewpoint of the quality of the resin. Furthermore, in order to improve the performance of the battery, it is desirable to arrange the graphite layer surface of the milled graphite fiber so as to open to the fiber axis surface, and the melt blow spinning method using mesophase pitch has a low viscosity of several tens poise or less. Spinning can be performed, and the graphite layer surface can be opened to the fiber shaft surface by high-speed cooling, which is particularly preferable. The size of the spinning hole at this time is 0.1 mmΦ or more and 0.1 mmΦ.
5 mmΦ or less, preferably 0.15 mmΦ or more and 0.3 mmΦ
It is as follows. The spinning speed is 500 m / min or more, preferably 1500 m / min or more. The spinning temperature is somewhat changed depending on the raw material pitch used, but may be any temperature as long as the pitch is not changed above the softening point of the raw material pitch.
℃ to 420 ° C, preferably 300 ° C to 400 ° C
It is as follows.

【0016】<不融化>不融化方法は特に制限されない
が、常法により二酸化窒素や酸素等の酸化性ガス雰囲気
中で加熱処理する方法や、硝酸やクロム酸等の酸化性水
溶液中で処理する方法、さらには、光やγ線等による重
合処理方法が可能である。より簡便な不融化方法として
は、空気中、200〜350℃で一定時間加熱処理する
方法があり、その際の平均昇温速度は3℃/分以上、好
ましくは5℃/分以上である。 <炭化>不融化繊維は、常法により酸化性ガスの非存在
下、例えば不活性ガス中で加熱処理(炭化)することに
より炭素繊維とすることができる。この時の昇温速度や
保持時間は特に限定されるものでないが、炭化温度は、
500℃以上1300℃以下、更に600℃以上900
℃以下の温度で行うことが好ましい。炭化温度が500
℃未満では、繊維形状が保持されないほど微粉化されや
すく好ましくない。また、炭化温度が1300℃を超え
ると、粉砕時の機器の磨耗が激しくなり、また黒鉛化後
の電池容量が低下する傾向がみられ好ましくない。特
に、機器の磨耗の面からは炭化温度を900℃以下にす
ることが、内部ライニング等の保守費の低減が計れ好ま
しい。
<Infusibilization> Although the infusibilization method is not particularly limited, a method of performing heat treatment in an oxidizing gas atmosphere such as nitrogen dioxide or oxygen by a conventional method, or a method of treating in an oxidizing aqueous solution such as nitric acid or chromic acid is used. A method, and further, a polymerization treatment method using light, γ-ray, or the like is possible. As a simpler infusibilization method, there is a method of performing heat treatment in air at 200 to 350 ° C. for a certain period of time, and the average rate of temperature rise is 3 ° C./min or more, preferably 5 ° C./min or more. <Carburizing> The infusibilized fiber can be converted into a carbon fiber by performing a heat treatment (carbonization) in the absence of an oxidizing gas, for example, in an inert gas by a conventional method. The heating rate and the holding time at this time are not particularly limited, but the carbonization temperature is
500 ° C or higher and 1300 ° C or lower, further 600 ° C or higher and 900
It is preferable to carry out at a temperature of not more than ° C. 500 carbonization temperature
If the temperature is lower than 0 ° C., it is not preferable because the powder is easily pulverized so that the fiber shape is not maintained. On the other hand, if the carbonization temperature exceeds 1300 ° C., the abrasion of the equipment during pulverization becomes severe, and the battery capacity after graphitization tends to decrease, which is not preferable. In particular, from the viewpoint of equipment wear, it is preferable to set the carbonization temperature to 900 ° C. or less because maintenance costs such as internal lining can be reduced.

【0017】<黒鉛化>本発明の方法において得られた
ミルド炭素繊維は、次いで、例えば回分式の黒鉛化炉で
高温焼成されミルド黒鉛繊維となる。黒鉛化処理は、通
常2000℃以上の温度で実施されるが、電池の容量を
高容量化させるためには、より黒鉛化を進めることを要
する。このため、2400℃以上、好ましくは2500
℃以上の温度で黒鉛化したものを使用することが好適で
ある。通常、黒鉛化処理を効率よく行うには、容積当り
の充填量を高くすることが好ましい。従って、ミルド化
処理した後に黒鉛化処理することがコストを低減させる
上でも有利である。黒鉛化温度は高い方が容量等の点で
好ましいが、生産コストが黒鉛化温度の上昇とともに急
激に高くなり、また3000℃を超える黒鉛化温度で
は、黒鉛化を行う炉材の耐久性の観点で商業的に安定生
産することが困難となるため、黒鉛化温度はその目的に
合わせ適宜選択する必要がある。
<Graphization> The milled carbon fiber obtained by the method of the present invention is then fired at a high temperature in, for example, a batch type graphitization furnace to become milled graphite fiber. Graphitization is usually carried out at a temperature of 2000 ° C. or higher, but in order to increase the capacity of the battery, it is necessary to further graphitize. For this reason, it is 2400 ° C. or more, preferably 2500
It is preferable to use those which have been graphitized at a temperature of at least ℃. Usually, in order to efficiently perform the graphitization treatment, it is preferable to increase the filling amount per volume. Therefore, graphitization after milling is also advantageous in reducing costs. A higher graphitization temperature is preferable in terms of capacity and the like, but the production cost increases sharply with an increase in the graphitization temperature, and at a graphitization temperature exceeding 3000 ° C., the durability of the furnace material for graphitization increases. Therefore, it is necessary to appropriately select the graphitization temperature according to the purpose.

【0018】上記のように粉砕され粒度調整された後黒
鉛化された本発明の炭素材は、通常の手法によりリチウ
ムイオン二次電池の負極とすることが出来る。すなわ
ち、上記炭素材にポリフッ化ビニリデンやポリテトラフ
ルオロエチレンスチレン等のバインダーを添加し、有機
溶媒あるいは水溶媒を用いスラリー状とし、厚さ10〜
50μmの銅、ニッケル等からなる金属箔上の片面また
は両面に塗布し、これを圧延、乾燥し、100μm程度
のシート状物とする方法が広く用いられている。その
後、所定の幅・長さにスリットし、正極及びセパレータ
ーと共に巻取り製缶する方法が一般的である。
The carbon material of the present invention, which has been pulverized and adjusted in particle size and then graphitized as described above, can be used as a negative electrode of a lithium ion secondary battery by a usual method. That is, a binder such as polyvinylidene fluoride or polytetrafluoroethylene styrene is added to the carbon material, a slurry is formed using an organic solvent or a water solvent, and the thickness is 10 to 10.
A method is widely used in which a coating is applied to one or both surfaces of a metal foil made of 50 μm copper, nickel, or the like, which is rolled and dried to form a sheet having a thickness of about 100 μm. After that, a method of slitting to a predetermined width and length and winding and forming the can together with the positive electrode and the separator is general.

【0019】[0019]

【実施例】以下に、本発明を実施例により更に具体的に
説明するが、本発明はこれらの例によってなんら限定さ
れるものではない。 実施例1 軟化点280℃の光学的異方性の石油系メソフェーズピ
ッチを原料とし、幅3mmのスリットの中に直径0.2m
mφの紡糸孔を一列に1500個有する口金を用い、ス
リットから加熱空気を噴出させて、溶融ピッチを牽引し
て、平均繊維径13μmのピッチ繊維を、捕集部分が2
0メッシュのステンレス製金網で出来たベルトの背面か
ら吸引しつつベルト上に捕集した。この捕集マット状ピ
ッチ繊維を空気中、室温から300℃までの平均昇温速
度6℃/分で昇温して不融化処理をした。このようにし
て得られたメソフェーズピッチ不融化繊維をさらに窒素
雰囲気下650℃で炭化処理しマット状炭素繊維を得
た。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 An optically anisotropic petroleum-based mesophase pitch having a softening point of 280 ° C. was used as a raw material, and 0.2 m in a slit having a width of 3 mm.
Using a spinneret having 1,500 mφ spinning holes in a line, heated air is blown out of the slits to pull the molten pitch, so that pitch fibers having an average fiber diameter of 13 μm are collected at a collecting portion of 2 μm.
It was collected on the belt while sucking it from the back of a belt made of a 0 mesh stainless steel wire mesh. The temperature of the collected matting pitch fibers was raised in the air at an average rate of 6 ° C./min from room temperature to 300 ° C. to perform infusibility treatment. The thus obtained mesophase pitch infusible fiber was further carbonized at 650 ° C. under a nitrogen atmosphere to obtain a mat-like carbon fiber.

【0020】得られたマット状炭素繊維を、70kg/
時のフィード量で、破砕機で破砕した後、1段目の粉砕
機(高速回転ミル;ローター径500mm)で周速12
3m/秒(4700rpm)、風量0.19m3 /分・k
gの条件下粉砕を行い、平均粒径32.5μm、累積径1
0%、50%、90%が、それぞれ13.2μm、27.9
μm、112.6μmの一次粉砕ミルド炭素繊維を得た。
また、一次粉砕ミルド炭素繊維中には、5μm以下のも
のはほとんど存在せず、100μm以上のものは11.9
%存在した。次いで、該一次粉砕ミルド炭素繊維を、2
段目の粉砕機(高速回転ミル;ローター径500mm)
で、周速134m/秒(5100rpm)、風量0.17
3 /分・kgの条件下で粉砕し、平均粒径22.4μ
m、累積径10%、50%、90%が、それぞれ12.1
μm、19.6μm、53.9μmのミルド炭素繊維を得
た。該ミルド炭素繊維中には、5μm以下のものは0.4
%存在し、100μm以上のものは1.9%存在したが、
いずれも許容範囲内であり、全量黒鉛化用として使用可
能であった。また、粉砕機の刃等の磨耗も少なく、長時
間の運転が可能であった。
The obtained mat-like carbon fiber was weighed at 70 kg /
After crushing with the crusher at the feed rate at the time, the peripheral speed is 12 with the first-stage crusher (high-speed rotating mill; rotor diameter 500 mm).
3m / s (4700rpm), air flow rate 0.19m 3 / min · k
g, and the average particle size was 32.5 μm and the cumulative particle size was 1
0%, 50%, and 90% correspond to 13.2 μm and 27.9, respectively.
μm and 112.6 μm of primary pulverized milled carbon fibers were obtained.
Also, in the primary milled milled carbon fiber, those having a size of 5 μm or less hardly exist, and those having a size of 100 μm or more are 11.9.
%Were present. Next, the primary ground milled carbon fiber is
Stage crusher (high-speed rotating mill; rotor diameter 500 mm)
With a peripheral speed of 134 m / sec (5100 rpm) and air volume of 0.17
pulverized under the condition of m 3 /min.kg, average particle size 22.4μ
m, cumulative diameter 10%, 50%, 90% are each 12.1.
μm, 19.6 μm, and 53.9 μm milled carbon fibers were obtained. Among the milled carbon fibers, those having a diameter of 5 μm or less are 0.4.
%, And 1.9% existed at 100 μm or more.
All were within the allowable range, and all of them could be used for graphitization. In addition, the blades of the pulverizer were less worn, and long-time operation was possible.

【0021】さらに、該ミルド炭素繊維をアルゴン雰囲
気下3000℃で黒鉛化しミルド黒鉛繊維を得、以下の
ように電池性能を確認した。該ミルド黒鉛繊維の充放電
容量特性を、正極及び参照電極に金属リチウムを用い、
エチレンカーボネート(EC)/ジメチルカーボネート
(DMC)を体積比で1/1に調整した混合炭酸エステ
ル溶媒に、電解質として過塩素酸リチウム(LiClO
4 )を1モルの濃度で溶解させた電解液中で測定した。
充放電容量特性の測定は、100mA/gの定電流充放
電下で行い、測定電位範囲は対参照電極(0〜1.5V/
Li/Li+ )で、10回繰返し測定とした。初回の放
電容量312mAh/g、充放電効率94%、2回目の
放電容量310mAh/g、充放電効率99.8%といず
れも高い値を示した。また2回目以降10回目までにお
いてもいずれも放電容量310mAh/g、充放電効率
100%と安定した値を示した。
Further, the milled carbon fiber was graphitized at 3000 ° C. in an argon atmosphere to obtain a milled graphite fiber, and the battery performance was confirmed as follows. The charge and discharge capacity characteristics of the milled graphite fiber, using metallic lithium for the positive electrode and the reference electrode,
Lithium perchlorate (LiClO) was used as an electrolyte in a mixed carbonate solvent in which ethylene carbonate (EC) / dimethyl carbonate (DMC) was adjusted to a volume ratio of 1/1.
4 ) was measured in an electrolytic solution having a concentration of 1 mol.
The measurement of the charge / discharge capacity characteristic was performed under a constant current charge / discharge of 100 mA / g, and the measured potential range was set to the reference electrode (0 to 1.5 V /
(Li / Li +) was repeated 10 times. The first discharge capacity was 312 mAh / g, the charge / discharge efficiency was 94%, the second discharge capacity was 310 mAh / g, and the charge / discharge efficiency was 99.8%, all of which were high values. In addition, from the second time to the tenth time, the discharge capacity was 310 mAh / g and the charge / discharge efficiency was 100%.

【0022】比較例1 実施例1で得られた炭素繊維マットを、実施例1と同様
に70kg/時のフィード量で、破砕機で破砕した後、
実施例1で用いた粉砕機(高速回転ミル;ローター径5
00mm)で、実施例1と同程度の平均粒径となるよう
周速を早めた条件〔周速141m/秒(5400rp
m)、風量0.17m3 /分・kg〕下1段で粉砕を行
い、平均粒径22.0μm、累積径10%、50%、90
%が、それぞれ10.8μm、19.2μm、72.1μmの
ミルド炭素繊維を得た。該ミルド炭素繊維には、5μm
以下のものが2.9%存在し、100μm以上のものが5.
3%存在した。2段粉砕と比較し粒度分布が広がり、こ
のため、実施例1と同程度の粒度分布を得るために篩い
分けが必要となり、収率が94%に低下した。また、粉
砕機の刃等の磨耗も2段粉砕よりも大きいものであっ
た。
Comparative Example 1 The carbon fiber mat obtained in Example 1 was crushed by a crusher at a feed rate of 70 kg / hour in the same manner as in Example 1,
The crusher (high-speed rotating mill; rotor diameter 5) used in Example 1
00 mm) and the peripheral speed was increased so that the average particle diameter was about the same as in Example 1 [141 m / sec (5400 rpm
m), air volume 0.17 m 3 / min · kg], pulverization in one stage, average particle size 22.0 μm, cumulative diameter 10%, 50%, 90
% Obtained 10.8 μm, 19.2 μm, and 72.1 μm, respectively. 5 μm in the milled carbon fiber
The following are present in 2.9%, and those with 100 μm or more are in 5.
There was 3%. Compared with the two-stage pulverization, the particle size distribution was broadened. For this reason, sieving was required to obtain the same particle size distribution as in Example 1, and the yield was reduced to 94%. In addition, the abrasion of the blades of the pulverizer was larger than in the two-stage pulverization.

【0023】実施例2及び3 実施例1において、1段目の粉砕機で粉砕して得られた
1次粉砕ミルド炭素繊維を使用し、2段目の粉砕条件を
第1表に示すように変更した以外は実施例1と同様にし
て2段粉砕を行った。得られた結果を第1表に示す。
Examples 2 and 3 In Example 1, primary ground milled carbon fibers obtained by pulverization with a first stage pulverizer were used, and the second stage pulverization conditions were as shown in Table 1. The two-stage pulverization was performed in the same manner as in Example 1 except for the change. Table 1 shows the obtained results.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】以上詳細に述べたように、本発明によ
り、所定の粒度の炭素材を効率良く、安定して製造する
ことができ、さらに、粉砕機の摩耗が少ないことから、
生産性に優れ、安定した品質のリチウムイオン二次電池
負極材用炭素材の製造方法を提供することができる。
As described in detail above, according to the present invention, a carbon material having a predetermined particle size can be produced efficiently and stably, and further, since the abrasion of the crusher is small,
A method for producing a carbon material for a negative electrode material of a lithium ion secondary battery having excellent productivity and stable quality can be provided.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年10月7日[Submission date] October 7, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】2段目の粉砕は、1段目の粉砕で粗粉砕さ
れたものを要求される最終粒度まで粉砕することを目的
として行われる。第2段目の粉砕は機器の磨耗が粉砕物
の小粒化(低重量化)で緩和されるためか、周速を1段
目より幾分速くすることが可能である。このため、第2
段目の粉砕は周速90〜150m/秒、好ましくは10
5〜140m/秒の条件で行うことが効率的である。ま
た、風量も粉砕物の粒径が1段目より小さくなることか
ら、ブロワー入口で第1段目の場合より幾分少ない範囲
でよく、第1段目と同様の理由により粉砕される炭化物
1kg当たり0.12〜0.35m3 /分であることが好ま
しい。さらに、第1段目と第2段目の各々の粉砕機の周
速差については、上記各粉砕機の運転範囲において第2
段目の粉砕機の周速を、第1段目の粉砕機より5〜30
m/秒、更に8〜25m/秒速くすることが好ましい。
周速の差が上記範囲外であると粉砕物の粒度分布が広く
なる傾向がみられ、製品収率の低下を生じやすく、また
粉砕機の一方に粉砕負荷が片寄りやすく、高負荷側の機
器の磨耗が著しくなり、ひいては運転効率を低下させる
ので好ましくない。
The second-stage pulverization is performed for the purpose of pulverizing the coarsely pulverized product in the first-stage pulverization to a required final particle size. The peripheral speed can be made somewhat higher than in the first stage because the abrasion of the equipment in the second stage is alleviated by reducing the size of the pulverized material (reducing the weight). Therefore, the second
The pulverization of the stage is performed at a peripheral speed of 90 to 150 m / sec, preferably 10 to 150 m / sec.
It is efficient to carry out under the condition of 5 to 140 m / sec. In addition, since the air volume is smaller than that of the first stage at the blower inlet since the particle size of the pulverized material is smaller than that of the first stage, 1 kg of the carbide pulverized for the same reason as the first stage may be used. It is preferably from 0.12 to 0.35 m 3 / min. Further, the difference in peripheral speed between the first stage and the second stage of the crusher is the second range in the operation range of each of the crushers.
The peripheral speed of the first-stage crusher is 5 to 30 times that of the first-stage crusher.
m / sec, preferably 8 to 25 m / sec.
If the difference in peripheral speed is outside the above range, the particle size distribution of the pulverized material tends to be widened, the product yield tends to decrease, and the pulverization load tends to be biased to one of the pulverizers, and the high load side It is not preferable because wear of the equipment becomes remarkable, and operation efficiency is lowered.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 炭化物を、粗粉砕を行う第1の粉砕工程
と微粉砕を行う第2の粉砕工程とからなる2段の粉砕工
程により粉砕し、粒径を調整した後黒鉛化することを特
徴とするリチウムイオン二次電池負極材用炭素材の製造
方法。
1. A method of pulverizing a carbide by a two-stage pulverization step including a first pulverization step of performing a coarse pulverization and a second pulverization step of performing a fine pulverization, adjusting the particle size, and then graphitizing. A method for producing a carbon material for a negative electrode material of a lithium ion secondary battery.
【請求項2】 第1の粉砕工程と第2の粉砕工程に使用
する粉砕機が、高速回転ミルであることを特徴とする請
求項1記載の製造方法。
2. The method according to claim 1, wherein the crusher used in the first crushing step and the second crushing step is a high-speed rotary mill.
【請求項3】 第1の粉砕工程を、周速80〜140m
/秒の粉砕条件で行うことを特徴とする請求項1又は2
に記載の製造方法。
3. The method according to claim 1, wherein the first grinding step is performed at a peripheral speed of 80 to 140 m.
3. The method according to claim 1, wherein the pulverization is performed under a pulverization condition of / sec.
The production method described in 1.
【請求項4】 第2の粉砕工程を、周速90〜150m
/秒の粉砕条件で行うことを特徴とする請求項1〜3の
いずれかに記載の製造方法。
4. The method according to claim 1, wherein the second grinding step is performed at a peripheral speed of 90 to 150 m.
The production method according to any one of claims 1 to 3, wherein the pulverization is performed under a grinding condition of / sec.
【請求項5】 第2の粉砕工程に使用する粉砕機の周速
が、第1の粉砕工程に用いる粉砕機の周速より5〜30
m/秒大きいことを特徴とする請求項1〜4のいずれか
に記載の製造方法。
5. The peripheral speed of the crusher used in the second crushing step is 5 to 30 times lower than the peripheral speed of the crusher used in the first crushing step.
The method according to claim 1, wherein m / sec is larger.
【請求項6】 炭化物が、500℃以上1300℃以下
の温度で炭化されたメソフェーズピッチ系炭素繊維であ
ることを特徴とする請求項1〜5のいずれかに記載の製
造方法。
6. The production method according to claim 1, wherein the carbide is mesophase pitch-based carbon fiber carbonized at a temperature of 500 ° C. or more and 1300 ° C. or less.
【請求項7】 炭化物がマット状であり、かつ第1の粉
砕工程の前に破砕工程を設けることを特徴とする請求項
1〜6のいずれかに記載の製造方法。
7. The method according to claim 1, wherein the carbide is in a mat form, and a crushing step is provided before the first crushing step.
【請求項8】 第2の粉砕工程により得られるミルド炭
素繊維が、8〜50μmの平均粒径を有し、かつ、粒径
5μm以下のものが5%以下であり、粒径100μm以
上のものが4%以下であることを特徴とする請求項1〜
7のいずれかに記載の製造方法。
8. The milled carbon fiber obtained by the second pulverizing step has an average particle size of 8 to 50 μm, and a particle size of 5 μm or less is 5% or less, and a particle size of 100 μm or more. Is not more than 4%.
8. The production method according to any one of items 7.
JP9263292A 1997-09-29 1997-09-29 Manufacture of carbon for lithium ion secondary battery negative electrode Pending JPH11102702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9263292A JPH11102702A (en) 1997-09-29 1997-09-29 Manufacture of carbon for lithium ion secondary battery negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9263292A JPH11102702A (en) 1997-09-29 1997-09-29 Manufacture of carbon for lithium ion secondary battery negative electrode

Publications (1)

Publication Number Publication Date
JPH11102702A true JPH11102702A (en) 1999-04-13

Family

ID=17387455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9263292A Pending JPH11102702A (en) 1997-09-29 1997-09-29 Manufacture of carbon for lithium ion secondary battery negative electrode

Country Status (1)

Country Link
JP (1) JPH11102702A (en)

Similar Documents

Publication Publication Date Title
EP1906472B1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
CN1124229C (en) Graphite powder suitable for negative electrode material of lithium ion secondary cell
JP5413645B2 (en) Method for producing negative electrode material for lithium secondary battery
JP5407196B2 (en) Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
CN111225888A (en) Method for preparing negative active material and lithium secondary battery comprising same
US10170757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
JP2008305722A (en) Negative electrode for lithium ion secondary battery material and its manufacturing method
JP6030995B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JPH09147860A (en) Negative electrode material for lithium ion secondary battery
JP2018088403A (en) Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery
KR20190054045A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP2001023638A (en) Manufacture of graphite powder for lithium ion secondary battery negative electrode
JPH0785862A (en) Negative electrode for secondary battery
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
KR20210156830A (en) Anode material for lithium secondary batteries, method for preparing the same, and lithium secondary battery comprising the same
JPH08100329A (en) Production of milled graphite fiber
KR102591996B1 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
KR20020070842A (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
KR100301351B1 (en) Graphite material for negative electrode of lithium-ion secondary battery and manufacturing method thereof
JPH10289718A (en) Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode
JPH11102702A (en) Manufacture of carbon for lithium ion secondary battery negative electrode
CN114516634B (en) Preparation method of artificial graphite
JP2002100359A (en) Graphite material for negative electrode of lithium secondary battery, and its manufacturing method
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
JP2002146635A (en) Highly graphiteized carbon material, method for producing the same, and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522