JPH11101729A - Apparatus for measuring reaction speed of hydrogen-storing alloy - Google Patents

Apparatus for measuring reaction speed of hydrogen-storing alloy

Info

Publication number
JPH11101729A
JPH11101729A JP9264683A JP26468397A JPH11101729A JP H11101729 A JPH11101729 A JP H11101729A JP 9264683 A JP9264683 A JP 9264683A JP 26468397 A JP26468397 A JP 26468397A JP H11101729 A JPH11101729 A JP H11101729A
Authority
JP
Japan
Prior art keywords
pressure
hydrogen
accumulator
buffer tank
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9264683A
Other languages
Japanese (ja)
Inventor
Satoshi Kuranaka
聡 倉中
Koji Gamo
孝治 蒲生
Yoshio Morita
芳雄 盛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9264683A priority Critical patent/JPH11101729A/en
Publication of JPH11101729A publication Critical patent/JPH11101729A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the influence of a pressure change consequent to a temperature change and enable highly accurate measurement by respectively providing a part of a measuring system with an accumulator of a large capacity and a buffer tank with a temperature stabilization means. SOLUTION: A testing apparatus is arranged inside a thermostat 3. A sample container 1 of high-conductivity metal having a filter 2 of small pressure loss built therein, a large-capacity accumulator 4, a highly accurate pressure gauge 5, a relief valve 6, a buffer tank 8 and a highly accurate differential pressure gauge 9 are connected via an opening valve 7 of good response and small flow resistance. The accumulator 4 and buffer tank 8 are incorporated in a heat insulation chamber 10. In this constitution, an initial pressure is measured by the pressure gauge 5, and a change of a hydrogen pressure while a reaction speed is measured is obtained by recording a differential pressure of the buffer tank 8 and accumulator 4 by the differential pressure gauge 9. At this time, in order to prevent an internal pressure of the buffer tank 8 and accumulator 4 from being changed because of a temperature change, the buffer tank 8 and accumulator 4 are thermally insulated in the heat insulation chamber 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金の特
性評価の1つである反応速度を測定するための水素吸蔵
合金の反応速度測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a reaction rate of a hydrogen storage alloy for measuring a reaction rate, which is one of the characteristics evaluation of the hydrogen storage alloy.

【0002】[0002]

【従来の技術】水素吸蔵合金の反応速度を測定する方法
は、日本工業規格により規定されている(JIS H7
202 水素吸蔵合金の水素化速度試験方法)。このJ
ISH7202に規定された試験装置の基本構成を図3
に示す。試験装置は、温度制御性能の良い恒温槽33内
に配置されるとともに、圧損の小さいフィルタ22が内
蔵された熱伝導率の高い金属製の試料容器21と、十分
大きい容積の蓄圧器24及び高精度の圧力計25と、リ
リーフバルブ26を応答性が良く流れ抵抗の少ない開閉
バルブ27を介して接続して成るジーベルツ装置であ
る。反応速度の測定は、ジーベルツ(容量)法により圧
力計25で水素圧力の時間変化を記録することで行う。
2. Description of the Related Art A method for measuring the reaction rate of a hydrogen storage alloy is specified by Japanese Industrial Standards (JIS H7).
202 Hydrogen storage alloy hydrogenation rate test method). This J
Fig. 3 shows the basic configuration of the test equipment specified in ISH7202.
Shown in The test apparatus is placed in a thermostat 33 having good temperature control performance, and has a metal sample container 21 having a high thermal conductivity and a built-in filter 22 having a small pressure loss; This is a Siebeltz apparatus in which an accurate pressure gauge 25 and a relief valve 26 are connected via an opening / closing valve 27 having good responsiveness and low flow resistance. The reaction rate is measured by recording the time change of the hydrogen pressure with the pressure gauge 25 by the Siebert's (capacity) method.

【0003】上記反応速度の測定はジーベルツ(容量)
法であるため、初圧と終圧に一定の差が生じ、初期と終
端では条件が変化する。そこで、この変化量をさらに小
さくするため、さらに蓄圧器を大容量にし、小さくした
変化量を正確に測定するための差圧計を備えた反応速度
測定装置も提案されている。
[0003] The above reaction rate is measured by Sibeltz (volume).
Because of this method, there is a certain difference between the initial pressure and the final pressure, and the conditions change between the initial and final pressures. Therefore, in order to further reduce the amount of change, a reaction rate measuring device including a differential pressure gauge for increasing the capacity of the pressure accumulator and accurately measuring the reduced amount of change has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の大容量
の蓄圧器と差圧計を備えた反応速度測定装置では、水素
圧力の変化量が小さくなったため、蓄圧器等の温度によ
る水素圧力の変化による影響が相対的に大きくなるとい
う問題がある。その対策として、一般的には温度センサ
による測定を行い、温度補正をする方法が考えられる
が、高精度の温度センサが必要であり、また温度分布を
正確に測定するのは難しいため、実用上はうまく機能し
ていない。また、バッファタンクが初期の圧力から変化
すると、差圧計で測定した水素の差圧と絶対圧の関係が
崩れてしまい、差圧計の精度が生かせないという問題が
あった。
However, in a conventional reaction rate measuring device having a large-capacity accumulator and a differential pressure gauge, the change in the hydrogen pressure due to the temperature of the accumulator and the like is small because the change in the hydrogen pressure is small. There is a problem that the influence of the influence is relatively large. As a countermeasure, a method of performing temperature correction by performing measurement with a temperature sensor is generally considered, but a high-precision temperature sensor is required, and it is difficult to measure the temperature distribution accurately. Is not working well. Further, when the buffer tank changes from the initial pressure, the relationship between the differential pressure of hydrogen measured by the differential pressure gauge and the absolute pressure is broken, and there is a problem that the accuracy of the differential pressure gauge cannot be utilized.

【0005】さらに、大容量の蓄圧器を使用しているた
め、測定する際に多量の水素を使用し、その水素を無駄
に排気しなければならないという問題があった。
Further, since a large-capacity accumulator is used, there is a problem that a large amount of hydrogen is used for measurement and the hydrogen must be exhausted wastefully.

【0006】本発明は、上記従来の問題点に鑑み、温度
変化による圧力変化の影響を小さくして高精度に測定で
き、また排出する水素を回収することができる水素吸蔵
合金の反応速度測定装置を提供することを目的としてい
る。
The present invention has been made in view of the above-mentioned conventional problems, and is intended to reduce the influence of a pressure change due to a temperature change so as to be able to measure with high accuracy and to recover the discharged hydrogen. It is intended to provide.

【0007】[0007]

【課題を解決するための手段】本発明の水素吸蔵合金の
反応速度測定装置は、恒温槽内に配置された試料容器、
蓄圧器、バッファタンク及び差圧計を開閉バルブを介し
て接続して成り、測定初期の水素圧力をバッファタンク
に導入して測定中の水素圧力との差圧を差圧計で測定す
るようにした水素吸蔵合金の反応速度測定装置におい
て、測定系の少なくとも一部、特に容量の大きい蓄圧器
とバッファタンクに温度安定化手段を備えたものであ
り、測定中の圧力変化を小さくするために蓄圧器を大容
量にしても温度変化による圧力変化の影響を小さくでき
て高精度の測定を実現できる。
According to the present invention, there is provided an apparatus for measuring a reaction rate of a hydrogen storage alloy, comprising: a sample container disposed in a thermostat;
Hydrogen that is formed by connecting an accumulator, a buffer tank, and a differential pressure gauge via an open / close valve, and introduces the initial hydrogen pressure into the buffer tank to measure the differential pressure from the hydrogen pressure being measured by the differential pressure gauge. In an apparatus for measuring the reaction rate of an occlusion alloy, at least a part of a measurement system, particularly, a large-capacity accumulator and a buffer tank are provided with temperature stabilizing means. Even with a large capacity, the effect of pressure changes due to temperature changes can be reduced, and high-accuracy measurement can be realized.

【0008】また、排出水素回収用水素貯蔵タンク、好
適には水素吸蔵合金を内蔵した容器から成る排出水素回
収用の水素貯蔵タンク容器を備えたものであり、排出す
る水素を回収することができ、かつ水素吸蔵合金を内蔵
した容器を用いるとコンパクトな構成で大量の水素を回
収することができる。
[0008] Further, a hydrogen storage tank for recovering discharged hydrogen, preferably a hydrogen storage tank container for recovering discharged hydrogen, which is preferably a container containing a hydrogen storage alloy, is provided, and the discharged hydrogen can be recovered. When a container containing a hydrogen storage alloy is used, a large amount of hydrogen can be recovered with a compact configuration.

【0009】[0009]

【発明の実施の形態】以下、本発明の水素吸蔵合金の反
応速度測定装置の実施形態について、図1、図2を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the apparatus for measuring the reaction rate of a hydrogen storage alloy according to the present invention will be described below with reference to FIGS.

【0010】(第1の実施形態)図1において、試験装
置は、恒温槽3内に配置され、圧損の小さいフィルタ2
を内蔵した熱伝導率の高い金属製の試料容器1と、大容
量の蓄圧器4と、高精度の圧力計5と、リリーフバルブ
6、及びバッファタンク8と高精度の差圧計9が、応答
性がよく流れ抵抗の少ない開閉バルブ7を介して接続さ
れたジーベルツ装置である。そして、蓄圧器4とバッフ
ァタンク8は保温チャンバー10の中に内蔵されてい
る。
(First Embodiment) In FIG. 1, a test apparatus is disposed in a thermostat 3 and has a filter 2 having a small pressure loss.
, A high-conductivity metal sample container 1 having a high thermal conductivity, a large-capacity pressure accumulator 4, a high-precision pressure gauge 5, a relief valve 6, a buffer tank 8, and a high-precision differential pressure gauge 9 This is a Siebeltz device connected via an open / close valve 7 having good flow resistance and low flow resistance. Further, the pressure accumulator 4 and the buffer tank 8 are built in the heat retaining chamber 10.

【0011】反応速度を測定する際の初期圧の設定時に
は圧力計5にて測定し、その初期圧をバッファタンク8
に導入しておき、反応速度の測定中の水素圧力の変化は
差圧計9にてバッファタンク8と蓄圧器4との差圧を記
録することにより行う。
At the time of setting the initial pressure for measuring the reaction rate, the initial pressure is measured by the pressure gauge 5 and the initial pressure is measured.
The change in the hydrogen pressure during the measurement of the reaction rate is performed by recording the differential pressure between the buffer tank 8 and the accumulator 4 with the differential pressure gauge 9.

【0012】この際、バッファタンク8及び蓄圧器4が
室温等の温度の変化により内部の圧力が変わるのを防ぐ
ため保温チャンバー10で保温している。このため、バ
ッフアタンク8の圧力は一定に保たれるとともに、蓄圧
器4の水素圧力変化は試料容器1内の水素吸蔵合金(図
示せず)と反応した水素によるものだけとなり、精度の
良い測定ができる。
At this time, the temperature of the buffer tank 8 and the pressure accumulator 4 is maintained in the heat retaining chamber 10 in order to prevent the internal pressure from changing due to a change in temperature such as room temperature. For this reason, the pressure in the buffer tank 8 is kept constant, and the change in the hydrogen pressure in the accumulator 4 is only due to the hydrogen that has reacted with the hydrogen storage alloy (not shown) in the sample container 1. it can.

【0013】なお、本実施形態では、温度安定手段とし
て保温チャンバー10を使用したが、断熱材とヒーター
によるものや、恒温槽によるものなど、その他の温度安
定手段でもよい。また、蓄圧器4とバッファタンク8の
みを保温チャンバー10で一定の温度にしたが、このよ
うな温度安定手段はさらにその他の測定系配管部の一部
またはさらに全部に配設してもよい。
In this embodiment, the temperature maintaining means 10 is used as the temperature stabilizing means. However, other temperature stabilizing means such as a heat insulating material and a heater, or a thermostat may be used. Further, only the accumulator 4 and the buffer tank 8 are kept at a constant temperature in the heat retaining chamber 10, but such a temperature stabilizing means may be provided in a part or all of other measurement system piping.

【0014】(第2の実施形態)図2において、図1を
参照して説明したものと同一の構成要素については同一
参照符号を付して説明を省略する。本実施形態では真空
ポンプに接続する前の配管部に、平衡水素圧の低い水素
吸蔵合金12を内蔵した水素貯蔵タンク11が三方コッ
ク13を介して接続されている。
(Second Embodiment) In FIG. 2, the same components as those described with reference to FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. In this embodiment, a hydrogen storage tank 11 containing a hydrogen storage alloy 12 having a low equilibrium hydrogen pressure is connected via a three-way cock 13 to a pipe section before being connected to a vacuum pump.

【0015】水素反応速度測定後、脱水素反応を測定す
る場合は、所定の圧力(多くの場合は大気圧)にするた
めには蓄圧器4及びバッファタンク8内の水素を系外に
放出しなければならない。また、試料を活性化する時
等、蓄圧器4及びバッファタンク8や装置の配管系内の
水素を放出する必要がある。この放出水素量は、蓄圧器
4が大容量であるため膨大な量となる。
When the dehydrogenation reaction is measured after measuring the hydrogen reaction rate, the hydrogen in the accumulator 4 and the buffer tank 8 is discharged out of the system in order to obtain a predetermined pressure (often atmospheric pressure). There must be. Further, when activating the sample, it is necessary to release hydrogen in the pressure accumulator 4, the buffer tank 8, and the piping system of the apparatus. The amount of released hydrogen is enormous because the pressure accumulator 4 has a large capacity.

【0016】そこで、本実施形態では三方コック13を
操作し、平衡水素圧の低い水素吸蔵合金12を内蔵した
水素貯蔵タンク11に放出水素を貯蔵する。
Therefore, in this embodiment, the three-way cock 13 is operated to store the released hydrogen in the hydrogen storage tank 11 containing the hydrogen storage alloy 12 having a low equilibrium hydrogen pressure.

【0017】この貯蔵した水素は、水素貯蔵タンク11
をヒーターや温水等で温めて水素吸蔵合金の平衡水素圧
を上げ、水素化反応速度測定時に蓄圧器4などの配管系
内に戻してもよいし、別に配管を設置して水素バーナー
や燃料電池等その他の用途に利用してもよい。
The stored hydrogen is supplied to a hydrogen storage tank 11
May be heated with a heater or hot water to raise the equilibrium hydrogen pressure of the hydrogen storage alloy and returned to the piping system such as the pressure accumulator 4 when measuring the hydrogenation reaction rate, or a separate pipe may be installed to install a hydrogen burner or fuel cell. It may be used for other purposes.

【0018】なお、本実施形態では排出水素回収用の水
素貯蔵タンク11として水素吸蔵合金12を内蔵した容
器を使用したが、その他の水素吸着材を使用したもの
や、大容量のボンベを利用した水素貯蔵タンクでもよ
い。
In the present embodiment, a vessel containing a hydrogen storage alloy 12 is used as the hydrogen storage tank 11 for recovering the discharged hydrogen, but another vessel using a hydrogen absorbing material or a large capacity cylinder is used. A hydrogen storage tank may be used.

【0019】[0019]

【発明の効果】本発明の水素吸蔵合金の反応速度測定装
置によれば、以上の説明から明らかなように、恒温槽内
に配置された試料容器、蓄圧器、バッファタンク及び差
圧計を開閉バルブを介して接続して成り、測定初期の水
素圧力をバッファタンクに導入して測定中の水素圧力と
の差圧を差圧計で測定するようにした水素吸蔵合金の反
応速度測定装置において、測定系の少なくとも一部、特
に容量の大きい蓄圧器とバッファタンクに温度安定化手
段を備えているので、測定中の圧力変化を小さくするた
めに蓄圧器を大容量にしても温度変化による圧力変化の
影響を小さくできて高精度の測定を実現できる。
According to the apparatus for measuring the reaction rate of a hydrogen storage alloy according to the present invention, as is apparent from the above description, the sample container, the accumulator, the buffer tank and the differential pressure gauge arranged in the thermostatic chamber are opened and closed. In the reaction rate measuring device of the hydrogen storage alloy, the hydrogen pressure in the initial stage of the measurement is introduced into the buffer tank, and the differential pressure from the hydrogen pressure during the measurement is measured by the differential pressure gauge. Temperature stabilizing means in at least a part of the pressure accumulator and the buffer tank, especially the large capacity, so that even if the accumulator has a large capacity in order to reduce the pressure change during the measurement, the effect of the pressure change due to the temperature change Can be reduced and highly accurate measurement can be realized.

【0020】また、排出水素回収用水素貯蔵タンク、好
適には水素吸蔵合金を内蔵した容器から成る排出水素回
収用水素貯蔵タンク容器を備えているので、排出する水
素を回収することができ、かつ水素吸蔵合金を内蔵した
容器を用いるとコンパクトな構成で大量の水素を回収す
ることができる。
Further, since a hydrogen storage tank for recovering discharged hydrogen, preferably a hydrogen storage tank container for recovering discharged hydrogen comprising a container containing a hydrogen storage alloy is provided, the discharged hydrogen can be recovered, and When a container containing a hydrogen storage alloy is used, a large amount of hydrogen can be recovered with a compact configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素吸蔵合金の反応速度測定装置にお
ける第1の実施形態の構成図である。
FIG. 1 is a configuration diagram of a first embodiment of a reaction rate measuring device for a hydrogen storage alloy according to the present invention.

【図2】本発明の水素吸蔵合金の反応速度測定装置にお
ける第2の実施形態の構成図である。
FIG. 2 is a configuration diagram of a second embodiment of the hydrogen storage alloy reaction rate measuring device of the present invention.

【図3】従来例の水素吸蔵合金の反応速度測定装置の構
成図である。
FIG. 3 is a configuration diagram of a conventional hydrogen storage alloy reaction rate measuring device.

【符号の説明】[Explanation of symbols]

1 試料容器 3 恒温槽 4 蓄圧器 7 開閉バルブ 8 バッファタンク 9 差圧計 10 保温チャンバー(温度安定化手段) 11 水素貯蔵タンク 12 水素吸蔵合金 DESCRIPTION OF SYMBOLS 1 Sample container 3 Thermostat 4 Pressure accumulator 7 Open / close valve 8 Buffer tank 9 Differential pressure gauge 10 Heat insulation chamber (temperature stabilization means) 11 Hydrogen storage tank 12 Hydrogen storage alloy

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 恒温槽内に配置された試料容器、蓄圧
器、バッファタンク及び差圧計を開閉バルブを介して接
続して成り、測定初期の水素圧力をバッファタンクに導
入して測定中の水素圧力との差圧を差圧計で測定するよ
うにした水素吸蔵合金の反応速度測定装置において、測
定系の少なくとも一部に温度安定化手段を備えたことを
特徴とする水素吸蔵合金の反応速度測定装置。
1. A system comprising a sample container, an accumulator, a buffer tank and a differential pressure gauge arranged in a thermostat, connected via an opening / closing valve to introduce a hydrogen pressure at an initial stage of the measurement into the buffer tank and measure the hydrogen pressure during the measurement. A reaction rate measuring device for a hydrogen storage alloy, wherein a temperature stabilizing means is provided in at least a part of a measuring system in a reaction rate measuring device for a hydrogen storage alloy, wherein a pressure difference from a pressure is measured by a differential pressure gauge. apparatus.
【請求項2】 蓄圧器とバッファタンクに温度安定化手
段を設けたことを特徴とする請求項1記載の水素吸蔵合
金の反応速度測定装置。
2. The hydrogen storage alloy reaction rate measuring device according to claim 1, wherein a temperature stabilizing means is provided in the pressure accumulator and the buffer tank.
【請求項3】 恒温槽内に配置された試料容器、蓄圧
器、バッファタンク及び差圧計を開閉バルブを介して接
続して成り、測定初期の水素圧力をバッファタンクに導
入して測定中の水素圧力との差圧を差圧計で測定するよ
うにした水素吸蔵合金の反応速度測定装置において、排
出水素回収用の水素貯蔵タンクを備えたことを特徴とす
る水素吸蔵合金の反応速度測定装置。
3. A method of connecting a sample container, an accumulator, a buffer tank, and a differential pressure gauge arranged in a thermostat via an opening / closing valve to introduce a hydrogen pressure at an initial stage of the measurement into the buffer tank to measure the hydrogen during the measurement. What is claimed is: 1. A hydrogen storage alloy reaction rate measuring apparatus, comprising: a hydrogen storage tank for recovering discharged hydrogen, wherein the hydrogen storage alloy reaction rate measuring apparatus is configured to measure a pressure difference from a pressure with a differential pressure gauge.
【請求項4】 排出水素回収用水素貯蔵タンク水素吸蔵
合金を内蔵した容器であることを特徴とする請求項3記
載の水素吸蔵合金の反応速度測定装置。
4. The hydrogen storage alloy reaction rate measuring device according to claim 3, wherein the hydrogen storage tank is a vessel containing a hydrogen storage alloy for recovering discharged hydrogen.
JP9264683A 1997-09-29 1997-09-29 Apparatus for measuring reaction speed of hydrogen-storing alloy Pending JPH11101729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9264683A JPH11101729A (en) 1997-09-29 1997-09-29 Apparatus for measuring reaction speed of hydrogen-storing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9264683A JPH11101729A (en) 1997-09-29 1997-09-29 Apparatus for measuring reaction speed of hydrogen-storing alloy

Publications (1)

Publication Number Publication Date
JPH11101729A true JPH11101729A (en) 1999-04-13

Family

ID=17406756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9264683A Pending JPH11101729A (en) 1997-09-29 1997-09-29 Apparatus for measuring reaction speed of hydrogen-storing alloy

Country Status (1)

Country Link
JP (1) JPH11101729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371711C (en) * 2005-04-27 2008-02-27 中国科学院金属研究所 Method for accurate testing performance of pressure concentration-temperature of hydrogen storage material
CN103234860A (en) * 2013-04-28 2013-08-07 扬州大学 Carbon dioxide adsorption isotherm precision testing method
KR101319451B1 (en) * 2010-12-01 2013-10-17 (주)오선텍 Method of determining the relations of hydrogen-absorbing alloys

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371711C (en) * 2005-04-27 2008-02-27 中国科学院金属研究所 Method for accurate testing performance of pressure concentration-temperature of hydrogen storage material
KR101319451B1 (en) * 2010-12-01 2013-10-17 (주)오선텍 Method of determining the relations of hydrogen-absorbing alloys
CN103234860A (en) * 2013-04-28 2013-08-07 扬州大学 Carbon dioxide adsorption isotherm precision testing method

Similar Documents

Publication Publication Date Title
JP5314387B2 (en) Leak detection system and leak detection method for sealed container
JP2005506495A (en) Hydrogen storage medium fuel gauge
Randzio et al. An isothermal scanning calorimeter controlled by linear pressure variations from 0.1 to 400 MPa. Calibration and comparison with the piezothermal technique
Yamamuro et al. Construction of an adiabatic high-pressure calorimeter using helium gas for pressurization
JPH06207913A (en) Calorimeter for measuring time/temperature of thermosetting synthetic resin
CZ285062B6 (en) Calorimetric measuring apparatus
Rutherford et al. Thermal diffusion in methane-n-butane mixtures in the critical region
JPH11101729A (en) Apparatus for measuring reaction speed of hydrogen-storing alloy
JP5626701B2 (en) Process gas chromatograph
KR200332134Y1 (en) Pressure concentration temper equipment for measuring of gas adsorption and desorption
US11402311B2 (en) Pycnometer with acclimation chamber
US11169014B2 (en) Bidirectional pycnometer
Charnley et al. The direct measurement of the isothermal Joule-Thomson coefficient for gases
Carter et al. Calibration and sample-measurement techniques for flow heat-capacity calorimeters
JP2010266282A (en) Device and method for leakage test
CN210834724U (en) Sample reaction tank for in-situ XRD (X-ray diffraction) test
JP3709985B2 (en) Differential pressure measuring device
JP3837526B2 (en) Characteristic evaluation apparatus and characteristic evaluation method for hydrogen absorbing material
CN206960396U (en) A kind of means for correcting of dew point hygrometer
RU2665779C1 (en) Device for determination of thermal stability of substances
CN117268991B (en) Hydrogen density measuring device and method
CN213875333U (en) Liquid saturated vapor pressure measuring device
SU1013817A1 (en) Solidified gas isothermal compressability determination method
CN117110364A (en) Hydrogen specific heat measurement device and method
JP2002022592A (en) Method for generating drift correction factor for leak test method for calculating drift correction value in leak test and leak test apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010