JPH11101683A - Method for measuring axle load of travel vehicle - Google Patents

Method for measuring axle load of travel vehicle

Info

Publication number
JPH11101683A
JPH11101683A JP27947597A JP27947597A JPH11101683A JP H11101683 A JPH11101683 A JP H11101683A JP 27947597 A JP27947597 A JP 27947597A JP 27947597 A JP27947597 A JP 27947597A JP H11101683 A JPH11101683 A JP H11101683A
Authority
JP
Japan
Prior art keywords
axle
vehicle
load
frequency
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27947597A
Other languages
Japanese (ja)
Other versions
JP3621816B2 (en
Inventor
Hisaharu Tottori
久治 鳥取
Kengo Fukuda
謙吾 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO KEISOKU KOGYO KK
Original Assignee
OYO KEISOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO KEISOKU KOGYO KK filed Critical OYO KEISOKU KOGYO KK
Priority to JP27947597A priority Critical patent/JP3621816B2/en
Publication of JPH11101683A publication Critical patent/JPH11101683A/en
Application granted granted Critical
Publication of JP3621816B2 publication Critical patent/JP3621816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the static load value of a traveling vehicle estimable precisely in a method for measuring the axle load of a traveling vehicle. SOLUTION: An axle load measuring apparatus 1 comprises an axle load detector 3 buried in the road face 30, a vehicle detector 4, which distinguishes vehicles 2 one by one, an operation processing part 5 to operation-process the signals from the axle load detector 3 and a vehicle detector 4, a printer 14, and an alarming displaying apparatus 15 and the fluctuating axle values of a driving vehicle 2 are measured a large number of times for every prescribed slight sampling time, and made to be fluctuating axle load value data series for every axle 40. The frequencies of the fluctuation components of the driving vehicle 2 are estimated by computing the fluctuating axle load value data series. Then, the frequency is computed to estimate the common phase. Further, the amplitude and the static axle value of fluctuating components of each axle 40 are estimated by using the frequencies and the common phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走行車両の軸重測
定方法に関する。
The present invention relates to a method for measuring the axle load of a traveling vehicle.

【0002】[0002]

【従来の技術】従来、高速道路等で使用される車両の軸
重測定装置では、走行中の車両の各軸重を順次計測して
いた。走行中の車両は上下に振動しているため、各軸重
を計測することは、静止時の軸重値に動的な変動量を加
味した値を計測していることになる。従来の軸重測定装
置は、静止時の軸重値を動的な変動量に対応して推定す
るような手段は有していなかった。
2. Description of the Related Art Conventionally, an axle load measuring device for a vehicle used on a highway or the like has sequentially measured each axle load of a running vehicle. Since the running vehicle is vibrating up and down, measuring each axle load means measuring a value in which the dynamic load is added to the axle load value at rest. The conventional axle load measuring device has no means for estimating the axle load value at rest according to the dynamic fluctuation amount.

【0003】[0003]

【発明が解決しようとする課題】ところで、軸重測定装
置の載荷板の長さは車両の走行方向に約760 mmであり、
荷重変換器(ロードセル)の間隔は660 〜670 mm程度の
ものがほとんどである。車両が料金所を通過する速度は
20km/h程度が限度であり、タイヤの接地幅を250mmと仮
定すれば、タイヤが完全に載荷板に載っている時間(計
測時間)は、0.09秒程度となる。また、計測に影響を及
ぼしている車両の路面に与える接地圧変動の周波数(変
動成分の周波数)は、3Hz付近であることが経験上分か
っている。従って、変動の波形を正弦波とすると、1周
期の3分の1程度しか計測できないことになる。そし
て、従来の軸重測定装置では、一軸重だけの計測結果か
ら軸重値を推定していたため、静止軸重値を推定するの
は不可能であった。
The length of the loading plate of the axle load measuring device is approximately 760 mm in the traveling direction of the vehicle.
In most cases, the distance between load transducers (load cells) is about 660 to 670 mm. The speed at which vehicles pass through toll gates
Assuming that the limit is about 20 km / h and the contact width of the tire is 250 mm, the time (measurement time) in which the tire is completely on the loading plate is about 0.09 seconds. Experience has shown that the frequency of the ground pressure fluctuation (frequency of the fluctuation component) applied to the road surface of the vehicle affecting the measurement is around 3 Hz. Therefore, if the waveform of the fluctuation is a sine wave, only about one third of one cycle can be measured. In the conventional axle load measuring device, the axle load value is estimated from the measurement result of only one axle load, so that it is impossible to estimate the stationary axle load value.

【0004】そこで、本発明は、上述の問題を解決し
て、走行中の車両の静止荷重値を正確に推定できる走行
車両の軸重測定方法を提供することを目的とする。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a method for measuring the axle load of a traveling vehicle, which can accurately estimate the static load value of the traveling vehicle.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに本発明に係る走行車両の軸重測定方法は、走行中の
車両の変動軸重値を所定の微小サンプリング時間毎に多
数回計測して各車軸毎の変動軸重値データ列とし、該変
動軸重値データ列を演算して走行中の上記車両の変動成
分の周波数を推定し、次に、その周波数をもとに車体の
変動成分の位相である共通位相を推定し、さらに、その
周波数と共通位相を用いて各車軸の変動成分の振幅と目
的である静止軸重値を推定する。
In order to achieve the above object, a method for measuring the axle load of a running vehicle according to the present invention is to measure a variable axle load value of a running vehicle a number of times at predetermined minute sampling times. Then, a variable axle weight value data sequence for each axle is calculated, the variable axle weight value data sequence is calculated to estimate the frequency of the fluctuating component of the running vehicle, and then the vehicle body is calculated based on the frequency. The common phase, which is the phase of the fluctuation component, is estimated, and further, using the frequency and the common phase, the amplitude of the fluctuation component of each axle and the target stationary axle weight value are estimated.

【0006】また、走行中の車両の変動軸重値を所定の
微小サンプリング時間毎に多数回計測して各車軸毎の変
動軸重値データ列とし、該変動軸重値データ列を演算し
て走行中の上記車両の変動成分の周波数を推定し、次
に、その周波数をもとに車体の変動成分の位相である共
通位相を推定し、さらに、その共通位相を演算して各車
軸の変動成分の振幅を推定し、その後、推定した結果過
大な振幅について振幅制限を行って、その後、各車軸の
変動成分の振幅を推定して、上記車両の静止軸重値を推
定する。
Further, the variable axle weight value of the running vehicle is measured many times at a predetermined minute sampling time to obtain a variable axle weight data sequence for each axle, and the variable axle weight data sequence is calculated. Estimating the frequency of the fluctuation component of the running vehicle, then estimating a common phase which is the phase of the fluctuation component of the vehicle body based on the frequency, and further calculating the common phase to calculate the fluctuation of each axle. The amplitude of the component is estimated, and thereafter, the amplitude is limited for an excessively large amplitude, and then the amplitude of the fluctuation component of each axle is estimated to estimate the stationary axle weight value of the vehicle.

【0007】また、走行中の車両の変動軸重値を所定の
微小サンプリング時間毎に多数回計測して各車軸毎の変
動軸重値データ列とし、該変動軸重値データ列を演算し
て走行中の上記車両の変動成分の周波数を推定し、次
に、その周波数を演算して各車軸毎に変動成分の位相と
振幅及び、目的である静止軸重値を推定する。
Further, the variable axle weight value of the running vehicle is measured a large number of times at a predetermined minute sampling time to obtain a variable axle weight value data sequence for each axle. The frequency of the fluctuation component of the running vehicle is estimated, and then the frequency is calculated to estimate the phase and amplitude of the fluctuation component and the target stationary axle weight value for each axle.

【0008】[0008]

【発明の実施の形態】以下、図示の実施の形態に基き本
発明を詳説する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on the illustrated embodiments.

【0009】図1に於て、1は軸重測定装置であり、こ
の軸重測定装置1は、路面30に埋設される軸重検出器3
と、車両2を1台ずつ判別する車両検知器4と、その軸
重検出器3と車両検知器4からの信号を演算処理する演
算処理部5とプリンター14と警告表示器15と、から成
る。軸重検出器3は、車両2の車輪2aを受ける載荷板
と車輪2aから受ける荷重(軸重)を各車軸40毎に検出
する図示省略のロードセルを内有する。
In FIG. 1, reference numeral 1 denotes an axle load measuring device, which is an axle load detector 3 embedded in a road surface 30.
A vehicle detector 4 for discriminating the vehicles 2 one by one, an axle load detector 3 and an arithmetic processing unit 5 for arithmetically processing signals from the vehicle detector 4, a printer 14, and a warning display 15. . The axle load detector 3 includes a load plate (not shown) that detects a load (axle load) received from the wheels 2a for each axle 40, and a load plate that receives the wheels 2a of the vehicle 2.

【0010】演算処理部5は、軸重検出器3からの信号
を受けるAD変換器6と、そのAD変換器6からの信号
と車両検知器4からの信号を受けて車両2の車軸数を検
出する車軸数検出手段7と、軸間の時間を検出する軸間
時間検出手段8と、車軸数検出手段7,軸間時間検出手
段8及びAD変換器6からの信号を受けて各車軸40毎の
離散化した荷重信号を演算処理して各車軸40毎の変動軸
重値データ列とする荷重信号前処理手段9と、荷重信号
前処理手段9にて算出された変動軸重値データ列を演算
して軸重変動の周波数を推定する周波数推定手段10と、
周波数推定手段10から送られる推定周波数と変動軸重値
データ列を演算して、車体の共通位相を推定する共通位
相推定手段11と、共通位相推定手段11から送られる推定
共通位相と推定周波数を用いて変動軸重値データ列を演
算して軸重変動の振幅と静止軸重値を推定する振幅・静
止軸重値推定手段12と、振幅・静止軸重値推定手段12か
ら送られる静止軸重値から(静止軸重値の合計等の算出
方法により)静止荷重値を算出すると共にその値が許容
重量値を越えたか否かの判定を行う後処理手段13と、か
ら成る。
The arithmetic processing unit 5 receives an A / D converter 6 for receiving a signal from the axle load detector 3 and receives a signal from the A / D converter 6 and a signal from the vehicle detector 4 to determine the number of axles of the vehicle 2. Each of the axles 40 receives signals from the axle number detection means 7, the axle time detection means 8 for detecting the time between axles, the axle number detection means 7, the axle time detection means 8, and the AD converter 6. A load signal preprocessing means 9 for calculating the discrete load signal for each axle 40 to obtain a variable axle weight data string for each axle 40; and a variable axle weight data string calculated by the load signal preprocessing means 9 Frequency estimating means 10 for calculating the frequency of the axle load fluctuation by calculating
A common phase estimating means 11 for estimating a common phase of the vehicle body by calculating an estimated frequency and a variable axle weight value data sequence sent from the frequency estimating means 10, and an estimated common phase and an estimated frequency sent from the common phase estimating means 11 The amplitude / stationary axle weight value estimating means 12 for calculating the amplitude of the axle weight fluctuation and the static axle value by calculating the variable axle value data sequence using the And a post-processing means 13 for calculating a static load value from the weight value (by a calculation method such as a sum of static axle weight values) and determining whether the value exceeds an allowable weight value.

【0011】また、演算処理部5の後処理手段13に、軸
重値や車両重量値等を印刷するプリンター14と、静止荷
重値が許容重量値を越えた場合に警告表示をする警告表
示器15と、許容重量値を越えた車両2の写真撮影を行う
写真撮影器16とを、電気的に接続する。なお、後処理手
段13と写真撮影器16に電送処理手段17を電気的に接続
し、その電送処理手段17に中央監視手段18が通信回線等
の接続線を介して接続してもよい。そのようにすれば、
集中管理が可能となる。
The post-processing means 13 of the arithmetic processing unit 5 includes a printer 14 for printing axle weight values, vehicle weight values, and the like, and a warning indicator for displaying a warning when the static load value exceeds an allowable weight value. 15 and a photographing device 16 for photographing the vehicle 2 exceeding the allowable weight value are electrically connected. The transmission processing means 17 may be electrically connected to the post-processing means 13 and the photographing device 16, and the central monitoring means 18 may be connected to the transmission processing means 17 via a connection line such as a communication line. If you do that,
Centralized management becomes possible.

【0012】ところで、軸重測定装置の載荷板の長さは
車両2の走行方向に約760 mmであり、荷重変換器(ロー
ドセル)の間隔は660 〜670 mm程度のものがほとんどで
ある。車両2が料金所を通過する速度は20km/h程度が限
度であり、タイヤの接地幅を250 mmと仮定すれば、タイ
ヤが完全に載荷板に載っている時間(計測時間)は、0.
09秒程度となる。また、計測に影響を及ぼしている車両
2の路面30に与える接地圧変動の周波数(変動成分の周
波数)は、3Hz付近であることが経験上分かっている。
従って、変動の波形を正弦波とすると、1周期の3分の
1程度しか計測できないことになる。
By the way, the length of the load plate of the axle load measuring device is about 760 mm in the traveling direction of the vehicle 2, and the interval between load transducers (load cells) is almost 660 to 670 mm. The speed at which the vehicle 2 passes through the tollgate is limited to about 20 km / h, and assuming that the contact width of the tire is 250 mm, the time during which the tire is completely on the loading plate (measurement time) is 0.
It will be about 09 seconds. Experience has shown that the frequency of the ground pressure fluctuation (frequency of the fluctuation component) applied to the road surface 30 of the vehicle 2 that affects the measurement is around 3 Hz.
Therefore, if the waveform of the fluctuation is a sine wave, only about one third of one cycle can be measured.

【0013】本発明の走行車両の軸重測定方法は、この
ような1周期に満たない変動成分を有する変動軸重デー
タ列から静止軸重値(静止時の重量値)を正確に推定す
る方法である。即ち、各車軸の軸重値の変動量は剛体で
ある車体の振動影響を受けている事を考えて、一載荷板
で僅かな時間で計測している各軸重の変化を一車両分捕
らえ、計測している一車両分の路面に与えている接地圧
の波形(周波数、位相、振幅)を推定することにより、
静止軸重値を推定するものである。
The method for measuring axle weight of a running vehicle according to the present invention is a method for accurately estimating a stationary axle weight value (weight value at rest) from a variable axle weight data string having a variation component of less than one cycle. It is. That is, considering that the variation of the axle weight value of each axle is affected by the vibration of the rigid body, the change of each axle weight measured in a short time with one loading plate is captured for one vehicle. , By estimating the waveform (frequency, phase, amplitude) of the ground pressure applied to the road surface of one vehicle being measured,
This is for estimating the stationary axle weight value.

【0014】しかして、図1のブロック図と図2のフロ
ーチャート図を参照しつつこの走行車両の軸重測定方法
を説明する。先ず、車両検知器4が車両2を検出して軸
重検出器3により走行中の車両2の軸重値の測定を開始
する。このとき、所定の微小サンプリング時間毎に多数
回計測する。そして、荷重信号前処理手段9にて、車輪
2aが軸重検出器3の載荷板に完全に載っているときの
データのみを抽出して多数の離散化した軸重値データか
ら成る変動軸重値データ列とする。また、車軸数もカウ
ントしておく。必要があればフィルタリング・平滑化等
を用いて信号雑音を除去しておく。
The method of measuring the axle load of the traveling vehicle will be described with reference to the block diagram of FIG. 1 and the flowchart of FIG. First, the vehicle detector 4 detects the vehicle 2 and the axle load detector 3 starts measuring the axle load value of the running vehicle 2. At this time, measurement is performed many times every predetermined minute sampling time. The load signal preprocessing means 9 extracts only data when the wheel 2a is completely mounted on the load plate of the axle load detector 3, and changes the variable axle load consisting of a large number of discrete axle load value data. Value data string. The number of axles is also counted. If necessary, signal noise is removed using filtering, smoothing, or the like.

【0015】次に、周波数推定手段10にて、変動成分の
周波数を推定する。これを詳しく説明すると、荷重信号
前処理手段9からの変動軸重値データ列の各データを、 ym (k) m=1,2,…,N k =0,1,2 … とする。Nは軸数、mは軸番号、kは一軸毎のサンプリ
ング数である。ym (k)は変動成分fm (k) 、静止軸重
値Sm (静的成分)の和として次のように表すことがで
きる。 ym (k) =fm (k) +Sm
Next, the frequency estimating means 10 estimates the frequency of the fluctuation component. To explain this in detail, the respective data of the variation axle load value data string from the load signal pre-processing means 9, y m (k) m = 1,2, ..., N k = 0,1,2 ... to. N is the number of axes, m is the axis number, and k is the sampling number for each axis. y m (k) can be expressed as a sum of the fluctuation component f m (k) and the stationary axle load value S m (static component) as follows. y m (k) = f m (k) + S m

【0016】ここで、fm (k) は持続的振動であると仮
定し、fm (k) を定係数差分方程式で表現し、その振動
成分を推定する。第m軸の軸重検出器出力の定係数n次
差分方程式は次の数式1のようになる。
Here, it is assumed that f m (k) is a continuous vibration, f m (k) is expressed by a constant coefficient difference equation, and its vibration component is estimated. The constant coefficient n-order difference equation of the output of the axle load detector on the m-th axis is expressed by the following equation 1.

【0017】[0017]

【数1】 (Equation 1)

【0018】静的成分Si ≠Sj ,i≠jであるので、
差分により、その影響を除くと、次の数式2のようにな
る。
Since the static components S i ≠ S j and i ≠ j,
Excluding the influence of the difference, the following equation 2 is obtained.

【0019】[0019]

【数2】 (Equation 2)

【0020】そして、次の数式3を満たすパラメータ
{a1,a2,…, an }を線形最小2乗法により当てはめ
る。
Then, parameters {a 1 , a 2 ,..., A n } satisfying the following Expression 3 are applied by the linear least square method.

【0021】[0021]

【数3】 (Equation 3)

【0022】上記当てはめにより得られたパラメータ
{a1,a2,…, an }により、各軸の変動成分fm (k)
に共通な特徴である定係数線形差分方程式は、次の数式
4のようになる。
According to the parameters {a 1 , a 2 ,..., A n } obtained by the above-mentioned fitting, the fluctuation component f m (k) of each axis is obtained.
The constant coefficient linear difference equation, which is a feature common to the above, is as shown in the following Expression 4.

【0023】[0023]

【数4】 (Equation 4)

【0024】さらに、 (1−a1 ・Z-1−a2 ・Z-2−…−ap ・Z-n) y(k)
=0 となり、この差分方程式の特性方程式は、 1−a1 ・Z-1−a2 ・Z-2−…−ap ・Z-n=0 となる。
Further, (1-a 1 · Z -1 -a 2 · Z -2 -...- ap · Z -n ) y (k)
= 0, and the characteristic equation of this difference equation is as follows: 1−a 1 · Z −1 −a 2 · Z −2 −...− ap · Z −n = 0.

【0025】上述の数式4の特性方程式の解をPi 、i
=1,2,…,nとすると、 (Z−P1 )(Z−P2 )…(Z−Pn )=0 となる。これらの解の中で、z平面の上半面に位置する
解は、 {Pi |Pi =ai +jbi ,bi >0,i∈(1,2,…,
n)} となり、この解の位相を周波数成分とみなす。即ち、サ
ンプリングの周期(微小サンプリング時間)をTとする
と、{ωi =∠Pi /T}が、車体の振動成分の周波数
であるとみなす。つまり、この{ωi =∠Pi /T}の
周波数を、上述の演算手法を用いて周波数推定手段10に
て演算・推定する。
The solution of the above-mentioned equation (4) is expressed by P i , i
= 1,2, ..., when n, the (Z-P 1) (Z -P 2) ... (Z-P n) = 0. Among these solutions, the solution located on the upper half plane of the z-plane is {P i | P i = a i + jb i , b i > 0, i } (1,2, ...,
n)}, and the phase of this solution is regarded as a frequency component. That is, assuming that the sampling cycle (small sampling time) is T, {ω i = {P i / T} is regarded as the frequency of the vibration component of the vehicle body. That is, the frequency of {ω i = {P i / T} is calculated and estimated by the frequency estimating means 10 using the above-described calculation method.

【0026】なお、3本の車軸40…を有する車両2の変
動成分の周波数の推定手順を図3と図4のグラフ図にて
簡単に説明すると、図3に示すように、車両前端の第1
軸の変動軸重値データ列を示すグラフ線19と、その次の
第2軸に対応するグラフ線20と、後端の第3軸に対応す
るグラフ線21の夫々について、前記数式1に示した定係
数差分方程式を当てはめて、図4に示すように差分・オ
フセット分をキャンセルし、周波数を推定する。なお、
図4に於て、22は第1軸の変動成分のグラフ線、23は第
2軸の変動成分のグラフ線、24は第3軸の変動成分のグ
ラフ線である。
The procedure for estimating the frequency of the fluctuation component of the vehicle 2 having three axles 40... Will be briefly described with reference to the graphs shown in FIGS. 3 and 4. As shown in FIG. 1
The graph line 19 indicating the variable axis weight value data sequence of the axis, the graph line 20 corresponding to the next second axis, and the graph line 21 corresponding to the third axis at the rear end are shown in the above-described formula (1). The constant / difference equation is applied to cancel the difference / offset and estimate the frequency as shown in FIG. In addition,
In FIG. 4, reference numeral 22 denotes a graph line of the fluctuation component of the first axis, 23 denotes a graph line of the fluctuation component of the second axis, and 24 denotes a graph line of the fluctuation component of the third axis.

【0027】次に、共通位相推定手段11にて、共通位相
を推定する。ここで、走行中の車両2の運動は、前述の
変動軸重値データ列に含まれているため、共通の時間軸
をとれば各振動成分ωi の位相ψi は各車軸40で共通の
はずである。先ず、変動軸重値データ列の平均値と差分
を計算する。各車軸40毎の振幅の大きさは、各軸重量に
比例するので振幅の大きさを合わせる。つまり、差分デ
ータ列を変動軸重値データ列の平均値S′m で除す。厳
密には、S′m ≠Sm であるが、この時点ではSm は未
知であるので、S′m ≒Sm と考えて、振幅をほぼ同じ
高さ(大きさ)にする。それを数式で表すと次の数式5
のようになる。
Next, the common phase estimation means 11 estimates the common phase. Here, motion of the vehicle 2 during traveling, because it is in a fluctuation axle load value data string above, taking a common time axis of each vibration component omega i phase [psi i is common to each axle 40 Should be. First, an average value and a difference of the variable axle weight data sequence are calculated. Since the magnitude of the amplitude for each axle 40 is proportional to the weight of each axle, the magnitude of the amplitude is adjusted. In other words, to dividing the difference data string as mean S 'm of variation axle load value data string. Strictly speaking, S ′ m ≠ S m , but at this point, S m is unknown. Therefore, considering S ′ m ≒ S m , the amplitudes are set to substantially the same height (magnitude). When it is expressed by a mathematical formula, the following mathematical formula 5 is obtained.
become that way.

【0028】[0028]

【数5】 (Equation 5)

【0029】上記数式5のy m d (k) の回帰式を次の数
式6とする。
[0029] The regression equation of the equation 5 y m d (k) and the following formula 6.

【0030】[0030]

【数6】 (Equation 6)

【0031】上記数式6に於て、Smin =0となるよう
に拘束式を加えることにより回帰式の当てはめ精度の向
上を図る。即ち、 Vmin =Smin という条件を付加する。ただし、Vmin は十分小さい値
であり、0としても差し支えない。そして、数式6の正
規方程式を構成し、その正規方程式にて{Ai ,Bi
を導く。そして位相ψi は、 ψi = tan-1(Bi /Ai ) となる。
In equation (6), the accuracy of fitting the regression equation is improved by adding a constraint equation so that S min = 0. That is, a condition of V min = S min is added. However, V min is a sufficiently small value, and may be set to 0. Then, the normal equation of Expression 6 is constructed, and {A i , B i }
Lead. Then, the phase ψ i becomes ψ i = tan -1 (B i / A i ).

【0032】以上がピッチングのないバウンシングのみ
の共通位相推定方法であるが、走行中の車両2にはピッ
チングが現れる。これを考慮するため、前記数式6にお
ける車両検知器4の出力の推定式をバウンシングの位相
とピッチングの位相を考えて、数式6の代わりにピッチ
ングを考慮した回帰式にて位相ψi を推定する。その回
帰式は次の数式7となる。
The above is the description of the common phase estimation method using only bouncing without pitching. Pitching appears in the running vehicle 2. In order to take this into consideration, the phase ψ i is estimated by a regression equation that considers pitching instead of Equation 6, considering the bouncing phase and the pitching phase in the equation for estimating the output of the vehicle detector 4 in Equation 6 above. . The regression equation is as follows:

【0033】[0033]

【数7】 (Equation 7)

【0034】この数式7から正規方程式(記載省略)を
構成し、その正規方程式にて{Ai,Bi }と、次の数
式8を導く。そしてピッチングを考慮した共通位相ψi
を推定する。即ち、この共通位相ψi を、上述の計算方
法に基づいて共通位相推定手段11にて演算・推定する。
A normal equation (not shown) is constructed from Equation 7, and {A i , B i } and Equation 8 are derived from the normal equation. And the common phase ψ i taking pitching into account
Is estimated. That is, the common phase ψ i is calculated and estimated by the common phase estimating means 11 based on the above calculation method.

【0035】[0035]

【数8】 (Equation 8)

【0036】なお、3本の車軸40…を有する車両2の変
動成分の共通位相推定手順を図4と図5のグラフ図にて
簡単に説明すると、図4に示すように変動軸重値データ
列の差分・オフセット分をキャンセルし、次に、図5に
示すように、静的成分(変動軸重値データ列の平均値)
にて規制化して振幅の高さをほぼ同一にすることによ
り、共通位相(各軸に共通する位相)を推定する。な
お、図5に於て、25は第1軸に対応するグラフ線、26は
第2軸に対応するグラフ線、27は第3軸に対応するグラ
フ線である。
The procedure for estimating the common phase of the fluctuation component of the vehicle 2 having three axles 40... Will be briefly described with reference to the graphs shown in FIGS. 4 and 5. As shown in FIG. The difference / offset of the column is canceled, and then, as shown in FIG. 5, the static component (the average value of the variable axle weight data column)
The common phase (phase common to each axis) is estimated by making the heights of the amplitudes substantially the same by restricting in (2). In FIG. 5, 25 is a graph line corresponding to the first axis, 26 is a graph line corresponding to the second axis, and 27 is a graph line corresponding to the third axis.

【0037】次に、振幅・静止軸重値推定手段12にて、
各軸の変動成分の振幅を推定する。ここまでに、周波数
と共通位相が推定されており、(ωi ,ψi ),i =1,
2,…,pは既知であるから、次の数式9に示した式(15)
について線形最小2乗法で当てはめを行う。
Next, in the amplitude / stationary axle weight value estimating means 12,
The amplitude of the fluctuation component of each axis is estimated. Up to this point, the frequency and the common phase have been estimated, and (ω i , ψ i ), i = 1,
Since 2,..., P are known, the following equation (15)
Is applied by the linear least squares method.

【0038】[0038]

【数9】 (Equation 9)

【0039】具体的には上記数式9より正規方程式(記
載省略)を構成し、その正規方程式にて振幅と各軸重の
静的成分を推定する。つまり、周波数推定手段10から送
られる周波数と共通位相のデータを振幅・静止軸重値推
定手段12にて、数式9について線形最小2乗法を適用す
る。
Specifically, a normal equation (not shown) is constructed from the above equation 9, and the amplitude and the static component of each axle weight are estimated by the normal equation. In other words, the data of the frequency and the common phase sent from the frequency estimating means 10 are applied to the amplitude / stationary axle weight value estimating means 12 by using the linear least squares method with respect to Expression 9.

【0040】なお、3本の車軸40…を有する車両2の変
動成分の共通位相推定手順を図6のグラフ図にて簡単に
説明すると、破線にて示すグラフ線28は周波数推定手段
10にて推定した周波数ωと共通位相推定手段11にて推定
した共通位相ψを有するサインカーブであり、その共通
位相ψに合わせて、第1軸(グラフ線19)、第2軸(グ
ラフ線20)と、第3軸(グラフ線21)の夫々について振
幅と軸重の静的成分を車軸毎に推定する。
The procedure for estimating the common phase of the fluctuation component of the vehicle 2 having three axles 40... Will be briefly described with reference to the graph of FIG.
10 is a sine curve having the frequency ω estimated at 10 and the common phase ψ estimated by the common phase estimating means 11, and the first axis (graph line 19) and the second axis (graph line 20) and the static components of the amplitude and the axle load for each of the third axis (graph line 21) are estimated for each axle.

【0041】その後、後処理手段13にて、静止荷重値を
算出する。つまり、静止軸重値Smが得られているの
で、静止荷重値Wは、次の数式10のようになる。
Thereafter, the post-processing means 13 calculates a static load value. That is, since the stationary axle load value S m is obtained, static load value W is given by the following equation 10.

【0042】[0042]

【数10】 [Equation 10]

【0043】また、後処理手段13は、軸重値または荷重
値を後段の装置に出力する。
The post-processing means 13 outputs the axle load value or the load value to a subsequent device.

【0044】上述のように、この走行車両の軸重測定方
法によれば、走行中の車両2の静止時の重量(静止荷重
値)を高精度に推定することができる。従って、高速道
路の料金所等における車重の超過の判定を精度よく行う
ことができる。また、軸重を検出するための載荷板やロ
ードセル等の部品(軸重検出器3)として、従来から使
用されていたものをそのまま利用できるという利点があ
る。
As described above, according to the method for measuring the axle load of a running vehicle, the weight of the running vehicle 2 at rest (static load value) can be estimated with high accuracy. Therefore, it is possible to accurately determine the excess of the vehicle weight at a tollgate or the like on an expressway. Further, there is an advantage that a conventionally used component (axle load detector 3) such as a load plate or a load cell for detecting an axle load can be used as it is.

【0045】なお、図1〜図6にて説明した軸重測定方
法では、軸重値を精度良く測定することができない場合
がある。
The axle load measurement method described with reference to FIGS. 1 to 6 may not be able to accurately measure the axle load value.

【0046】これに対応するため、一旦、数式9で表さ
れる各車軸40の変動成分の振幅を推定した後、過大な振
幅について振幅制限を行って、その後、各車軸40の変動
成分の振幅を推定して、車両2の静止軸重値を推定す
る。
In order to cope with this, once the amplitude of the fluctuation component of each axle 40 represented by Expression 9 is estimated, the amplitude is limited for an excessive amplitude, and then the amplitude of the fluctuation component of each axle 40 is determined. And the stationary axle weight value of the vehicle 2 is estimated.

【0047】例えば、第3軸の振幅が過大であった場
合、最大振幅をとるべき第2軸の振幅を基準として、静
的成分の代用として、平均値法で得られた平均値S′m
を使用して、制限式 A3 =A2 ・S′3 /S′2 を正規方程式に追加して振幅の制限を行った後、再度振
幅の推定を行って、静止軸重値を推定する。
For example, when the amplitude of the third axis is excessive, the average value S ′ m obtained by the average value method is used as a substitute for the static component on the basis of the amplitude of the second axis that should take the maximum amplitude.
Is used to add the restriction formula A 3 = A 2 · S ′ 3 / S ′ 2 to the normal equation to limit the amplitude, and then estimate the amplitude again to estimate the stationary axle weight value. .

【0048】また、ピッチングが顕著なときは、数式9
の合成の前段階の形である次の数式11において、 A3 =A2 ・S′3 /S′23 =B2 ・S′2 /S′3 を正規方程式に追加し、同様の再推定を行えばよい。た
だし、数式11におけるAi はバウンシングの振幅,Bi
はピッチングの振幅である。
When pitching is remarkable, equation 9
In the following equation 11 which is a form of the previous stage of the synthesis of the following equation, A 3 = A 2 .S ' 3 / S' 2 B 3 = B 2 .S ' 2 / S' 3 is added to the normal equation, and Re-estimation may be performed. Where A i is the bouncing amplitude and B i
Is the pitching amplitude.

【0049】[0049]

【数11】 [Equation 11]

【0050】また、予期せぬ車両の挙動により、振幅制
限を行っても、静止軸重値が信頼できないことがあるた
め、静止軸重値の推定にあたって、変動軸重値データ列
の平均値S′m をそのまま代用するのも安全策として好
ましい。
Further, even if the amplitude is limited due to unexpected behavior of the vehicle, the stationary axle weight value may not be reliable. Therefore, in estimating the stationary axle value, the average value S of the variable axle value data sequence is used. It is also preferable to substitute ' m as it is as a safety measure.

【0051】具体的には、振幅の推定と共に得られる静
止軸重値について (静止軸重値−平均値)/平均値≧R となった場合に、推定静止軸重値として平均値を採用す
ればよい。ここで、Rは定数であり、例えば、R=0.25
とするのが好ましいが、それ以外の数値としても良い場
合がある。
More specifically, if the stationary axle weight obtained along with the estimation of the amplitude satisfies (static axle weight-average value) / average value ≧ R, the average value is adopted as the estimated axle weight value. I just need. Here, R is a constant, for example, R = 0.25
Although it is preferable to set it as a numerical value, a numerical value other than that may be good in some cases.

【0052】次に、本発明に係る走行車両の軸重測定方
法の他の実施の形態について説明する。この場合、図7
のフローチャート図に示すように、先ず、変動軸重値デ
ータ列を作成し、その後、変動成分の周波数を推定し、
次に、その周波数を演算して各車軸40毎に変動成分の位
相と振幅及び静止軸重値を推定する。
Next, another embodiment of the method for measuring the axle load of a traveling vehicle according to the present invention will be described. In this case, FIG.
As shown in the flowchart of the first, first create a variable axle weight data string, then estimate the frequency of the variable component,
Next, the frequency is calculated to estimate the phase and amplitude of the fluctuation component and the stationary axle weight value for each axle 40.

【0053】この軸重測定方法に於て、変動軸重値デー
タ列の作成と変動成分の周波数の推定は、図1〜図4に
て説明した方法と同様の方法にて行う。しかして、各車
軸40毎の変動成分の位相と振幅の推定方法を説明する
と、既に、変動成分がp個の周波数成分をもつことが分
かっていると仮定し、軸重計の出力の推定値y′m (k)
をp個の正弦波で次の数式12として表現する。
In this axle load measuring method, the creation of the fluctuating axle load value data sequence and the estimation of the frequency of the fluctuating component are performed in the same manner as the method described with reference to FIGS. The method of estimating the phase and amplitude of the fluctuation component for each axle 40 will now be described. Assuming that it is already known that the fluctuation component has p frequency components, the estimated value of the output of the axlemeter is assumed. y ′ m (k)
Is expressed as the following Expression 12 by p sine waves.

【0054】[0054]

【数12】 (Equation 12)

【0055】これを最小2乗法を用いて、次の数式13の
値となるように、パラメータ{Ai,Bi ,Sm },i
=1,2,…,pを推定する。Sm は第m軸の静的成分
(静止軸重値)である。即ち、当てはめにより各軸毎に
変動成分の位相と振幅及び静止軸重値を同時に推定す
る。
Using the least-squares method, the parameters {A i , B i , S m }, i
= 1, 2,..., P. S m is a static component (static axle weight value) of the m-th axis. That is, the phase and amplitude of the fluctuation component and the stationary axle weight value are simultaneously estimated for each axis by fitting.

【0056】[0056]

【数13】 (Equation 13)

【0057】この測定方法によれば、走行車両のピッチ
ングやバウンシングの関係を考慮する必要が無く、演算
を簡素化できる。
According to this measuring method, there is no need to consider the relationship between pitching and bouncing of the traveling vehicle, and the calculation can be simplified.

【0058】なお、本発明によれば、車軸の本数が3本
の場合以外にも、適用可能であり、2本,4本,5本は
勿論のこと、6本以上の整数本であっても適用できる。
According to the present invention, the present invention can be applied to cases other than the case where the number of axles is three. The number of axles is not limited to two, four and five, but is also an integer of six or more. Can also be applied.

【0059】[0059]

【発明の効果】本発明は上述の構成により、次のような
著大な効果を奏する。
The present invention has the following remarkable effects by the above-mentioned structure.

【0060】請求項1記載の走行車両の軸重測定方法に
よれば、走行中の車両2の静止時の重量(静止荷重値)
を高精度に推定することができる。従って、高速道路の
料金所等に於て、車重の超過等の判定を精度よく行うこ
とができる。また、軸重を検出するための載荷板やロー
ドセル等の部品として、従来から使用されていたものを
そのまま利用できるという利点がある。また、ピッチン
グやバウンシングの関係を考慮した静止荷重値を推定で
きる。
According to the method for measuring the axle load of a traveling vehicle according to the first aspect, the weight of the traveling vehicle 2 at rest (static load value).
Can be estimated with high accuracy. Therefore, it is possible to accurately determine whether the vehicle weight is excessive or the like at a tollgate on an expressway. Also, there is an advantage that a conventionally used component such as a load plate or a load cell for detecting the axle load can be used as it is. Further, the static load value in consideration of the relationship between pitching and bouncing can be estimated.

【0061】請求項2記載の走行車両の軸重測定方法に
よれば、走行中の車両2の静止荷重値を一層高精度に推
定することができる。従って、車重の超過等の判定を一
層精度よく行うことができる。
According to the method for measuring the axle load of a traveling vehicle, the static load value of the traveling vehicle 2 can be estimated with higher accuracy. Therefore, it is possible to more accurately determine whether the vehicle weight is excessive or the like.

【0062】請求項3記載の走行車両の軸重測定方法に
よれば、走行中の車両2の静止時の重量(静止荷重値)
を高精度に推定することができる。従って、高速道路の
料金所等に於て、車重の超過等の判定を精度よく行うこ
とができる。また、軸重を検出するための載荷板やロー
ドセル等の部品として、従来から使用されていたものを
そのまま利用できるという利点がある。また、ピッチン
グやバウンシングの関係を考慮する必要が無く、演算を
簡素化できる。
According to the method for measuring the axle load of a traveling vehicle according to the third aspect, the weight of the traveling vehicle 2 at rest (static load value).
Can be estimated with high accuracy. Therefore, it is possible to accurately determine whether the vehicle weight is excessive or the like at a tollgate on an expressway. Also, there is an advantage that a conventionally used component such as a load plate or a load cell for detecting the axle load can be used as it is. Further, there is no need to consider the relationship between pitching and bouncing, and the calculation can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】軸重測定装置とそれに接続される機器を説明す
るブロック図である。
FIG. 1 is a block diagram illustrating an axle load measuring device and devices connected thereto.

【図2】本発明の走行車両の軸重測定方法の実施の一形
態のフローチャート図である。
FIG. 2 is a flowchart of an embodiment of a method for measuring axle load of a traveling vehicle according to the present invention.

【図3】3軸の車両の変動軸重値データ列を説明するグ
ラフ図である。
FIG. 3 is a graph illustrating a variable axle weight data string of a three-axis vehicle.

【図4】周波数の推定方法を説明するグラフ図である。FIG. 4 is a graph illustrating a frequency estimating method.

【図5】共通位相の推定方法を説明するグラフ図であ
る。
FIG. 5 is a graph illustrating a method for estimating a common phase.

【図6】振幅の推定方法を説明するグラフ図である。FIG. 6 is a graph illustrating an amplitude estimation method.

【図7】本発明の走行車両の軸重測定方法の他の実施の
形態のフローチャート図である。
FIG. 7 is a flowchart of another embodiment of the method for measuring the axle load of a traveling vehicle according to the present invention.

【符号の説明】[Explanation of symbols]

2 車両 40 車軸 2 vehicles 40 axles

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 走行中の車両2の変動軸重値を所定の微
小サンプリング時間毎に多数回計測して各車軸40毎の変
動軸重値データ列とし、該変動軸重値データ列を演算し
て走行中の上記車両2の変動成分の周波数を推定し、次
に、その周波数をもとに車体の変動成分の位相である共
通位相を推定し、さらに、その周波数と共通位相を用い
て各車軸40の変動成分の振幅と静止軸重値を推定するこ
とを特徴とする走行車両の軸重測定方法。
1. A variable axle weight value of a running vehicle 2 is measured a large number of times at a predetermined minute sampling time to obtain a variable axle weight data sequence for each axle 40, and the variable axle weight data sequence is calculated. To estimate the frequency of the fluctuation component of the vehicle 2 traveling, and then estimate the common phase which is the phase of the fluctuation component of the vehicle body based on the frequency, and further use the frequency and the common phase to estimate the common phase. A method for measuring the axle load of a traveling vehicle, comprising estimating an amplitude of a fluctuation component of each axle 40 and a stationary axle load value.
【請求項2】 走行中の車両2の変動軸重値を所定の微
小サンプリング時間毎に多数回計測して各車軸40毎の変
動軸重値データ列とし、該変動軸重値データ列を演算し
て走行中の上記車両2の変動成分の周波数を推定し、次
に、その周波数をもとに車体の変動成分の位相である共
通位相を推定し、さらに、その共通位相を演算して各車
軸40の変動成分の振幅を推定し、その後、過大な振幅に
ついて振幅制限を行って、その後、各車軸40の変動成分
の振幅を推定して、上記車両2の静止軸重値を推定する
ことを特徴とする走行車両の軸重測定方法。
2. A fluctuating axle weight value of a running vehicle 2 is measured a large number of times at a predetermined minute sampling time to obtain a fluctuating axle weight data string for each axle 40, and the fluctuating axle weight data string is calculated. To estimate the frequency of the fluctuation component of the vehicle 2 running, then estimate the common phase which is the phase of the fluctuation component of the vehicle body based on the frequency, and further calculate the common phase to calculate the common phase. Estimating the amplitude of the fluctuation component of the axle 40, thereafter performing amplitude limitation on the excessive amplitude, and then estimating the amplitude of the fluctuation component of each axle 40 to estimate the stationary axle weight value of the vehicle 2 A method for measuring the axle load of a traveling vehicle, comprising:
【請求項3】 走行中の車両2の変動軸重値を所定の微
小サンプリング時間毎に多数回計測して各車軸40毎の変
動軸重値データ列とし、該変動軸重値データ列を演算し
て走行中の上記車両2の変動成分の周波数を推定し、次
に、その周波数を演算して各車軸40毎に変動成分の位相
と振幅及び静止軸重値を推定することを特徴とする走行
車両の軸重測定方法。
3. A variable axle weight data sequence for each axle 40 is calculated by measuring a variable axle weight value of the running vehicle 2 many times at predetermined minute sampling times, and the variable axle weight data sequence is calculated. And estimating the frequency of the fluctuating component of the running vehicle 2 and then calculating the frequency to estimate the phase and amplitude of the fluctuating component and the stationary axle weight value for each axle 40. A method for measuring the axle load of a running vehicle.
JP27947597A 1997-09-26 1997-09-26 Axle weight measurement method for traveling vehicles Expired - Fee Related JP3621816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27947597A JP3621816B2 (en) 1997-09-26 1997-09-26 Axle weight measurement method for traveling vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27947597A JP3621816B2 (en) 1997-09-26 1997-09-26 Axle weight measurement method for traveling vehicles

Publications (2)

Publication Number Publication Date
JPH11101683A true JPH11101683A (en) 1999-04-13
JP3621816B2 JP3621816B2 (en) 2005-02-16

Family

ID=17611578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27947597A Expired - Fee Related JP3621816B2 (en) 1997-09-26 1997-09-26 Axle weight measurement method for traveling vehicles

Country Status (1)

Country Link
JP (1) JP3621816B2 (en)

Also Published As

Publication number Publication date
JP3621816B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
US10378159B2 (en) Detection of short term irregularities in a road surface
ES2342256T3 (en) PRESSURE ESTIMATION OF TIRE.
EP2012106B1 (en) Deflection calculating method at tire wheeling time, data storing method at tire wheeling time, and grounding length calculating method at tire wheeling time
US6668637B2 (en) Tire air pressure estimating apparatus
US9513192B2 (en) Method and device for estimating a profile depth of a tire
US8296080B2 (en) Method for determining at least one parameter representative of at least one interaction along a longitudinal direction between a tyre for vehicle and the ground
CN107000503A (en) It is determined that characterizing the System and method for of at least one tyre contact area parameter of the size of the tyre contact area on the tire of wheel
CN108515984A (en) A kind of wheel hurt detection method and device
US8108103B2 (en) Nonlinear frequency dependent filtering for vehicle ride/stability control
US6618954B2 (en) Longitudinal profile measuring apparatus
US20150308926A1 (en) Vibration analysis method and vibration analysis device of vehicle
CN109489787B (en) Vehicle vertical load and road surface gradient estimation system and estimation method thereof
JPH11101683A (en) Method for measuring axle load of travel vehicle
CN109311481A (en) Method for determining road condition
JPH11232586A (en) Wheel interval calculating device
JPH10185665A (en) Axle load measuring device
JP3686184B2 (en) Vehicle wheel load measuring device
CN107907076B (en) Road surface power spectrum measuring method
US5309373A (en) Apparatus and method for wind-corrected measurement of steering pull on a vehicle
JP5241556B2 (en) Road surface condition estimation device
JPH10311752A (en) Vehicle weight metering device
JP2710785B2 (en) Method and apparatus for measuring stationary weight of running vehicle
JPS5828533B2 (en) Axle load measuring device for running vehicles
JP2712537B2 (en) Road surface measurement method
JP5191855B2 (en) Wheel / axle weight measurement system

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040331

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040420

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810

A521 Written amendment

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041119

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091126

LAPS Cancellation because of no payment of annual fees