JP3621816B2 - Axle weight measurement method for traveling vehicles - Google Patents

Axle weight measurement method for traveling vehicles Download PDF

Info

Publication number
JP3621816B2
JP3621816B2 JP27947597A JP27947597A JP3621816B2 JP 3621816 B2 JP3621816 B2 JP 3621816B2 JP 27947597 A JP27947597 A JP 27947597A JP 27947597 A JP27947597 A JP 27947597A JP 3621816 B2 JP3621816 B2 JP 3621816B2
Authority
JP
Japan
Prior art keywords
axle
vehicle
estimated
fluctuation component
weight value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27947597A
Other languages
Japanese (ja)
Other versions
JPH11101683A (en
Inventor
久治 鳥取
謙吾 福田
浩治 吉田
敏郎 小野
Original Assignee
応用計測工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 応用計測工業株式会社 filed Critical 応用計測工業株式会社
Priority to JP27947597A priority Critical patent/JP3621816B2/en
Publication of JPH11101683A publication Critical patent/JPH11101683A/en
Application granted granted Critical
Publication of JP3621816B2 publication Critical patent/JP3621816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、走行車両の軸重測定方法に関する。
【0002】
【従来の技術】
従来、高速道路等で使用される車両の軸重測定装置では、走行中の車両の各軸重を順次計測していた。走行中の車両は上下に振動しているため、各軸重を計測することは、静止時の軸重値に動的な変動量を加味した値を計測していることになる。従来の軸重測定装置は、静止時の軸重値を動的な変動量に対応して推定するような手段は有していなかった。
【0003】
【発明が解決しようとする課題】
ところで、軸重測定装置の載荷板の長さは車両の走行方向に約760 mmであり、荷重変換器(ロードセル)の間隔は660 〜670 mm程度のものがほとんどである。車両が料金所を通過する速度は20km/h程度が限度であり、タイヤの接地幅を250 mmと仮定すれば、タイヤが完全に載荷板に載っている時間(計測時間)は、0.09秒程度となる。また、計測に影響を及ぼしている車両の路面に与える接地圧変動の周波数(変動成分の周波数)は、3Hz付近であることが経験上分かっている。従って、変動の波形を正弦波とすると、1周期の3分の1程度しか計測できないことになる。そして、従来の軸重測定装置では、一軸重だけの計測結果から軸重値を推定していたため、静止軸重値を推定するのは不可能であった。
【0004】
そこで、本発明は、上述の問題を解決して、走行中の車両の静止荷重値を正確に推定できる走行車両の軸重測定方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上述の目的を達成するために本発明に係る走行車両の軸重測定方法は、走行中の車両の変動軸重値を単数の軸重検出器により所定の微小サンプリング時間毎に多数回計測して各車軸毎の変動軸重値データ列とし、各車軸の変動成分を、持続的振動であると仮定して共通なパラメータを有する定係数差分方程式にて表現し、上記変動軸重値データ列について上記定係数差分方程式を当てはめて走行中の上記車両の変動成分の周波数を推定し、次に、その周波数をもとに車体の変動成分の位相である共通位相を推定し、さらに、その周波数と共通位相を用いて各車軸の変動成分の振幅と目的である静止軸重値を推定する。
【0006】
また、走行中の車両の変動軸重値を単数の軸重検出器により所定の微小サンプリング時間毎に多数回計測して各車軸毎の変動軸重値データ列とし、各車軸の変動成分を、持続的振動であると仮定して共通なパラメータを有する定係数差分方程式にて表現し、上記変動軸重値データ列について上記定係数差分方程式を当てはめて走行中の上記車両の変動成分の周波数を推定し、次に、その周波数をもとに車体の変動成分の位相である共通位相を推定し、さらに、その共通位相を演算して各車軸の変動成分の振幅を推定し、その後、推定した結果過大な振幅について振幅制限を行って、その後、各車軸の変動成分の振幅を推定して、上記車両の静止軸重値を推定する。
【0007】
また、走行中の車両の変動軸重値を単数の軸重検出器により所定の微小サンプリング時間毎に多数回計測して各車軸毎の変動軸重値データ列とし、各車軸の変動成分を、持続的振動であると仮定して共通なパラメータを有する定係数差分方程式にて表現し、上記変動軸重値データ列について上記定係数差分方程式を当てはめて走行中の上記車両の変動成分の周波数を推定し、次に、その周波数を用いて各車軸毎に変動成分の位相と振幅及び、目的である静止軸重値を推定する。
【0008】
【発明の実施の形態】
以下、図示の実施の形態に基き本発明を詳説する。
【0009】
図1に於て、1は軸重測定装置であり、この軸重測定装置1は、路面30に埋設される軸重検出器3と、車両2を1台ずつ判別する車両検知器4と、その軸重検出器3と車両検知器4からの信号を演算処理する演算処理部5とプリンター14と警告表示器15と、から成る。軸重検出器3は、車両2の車輪2aを受ける載荷板と車輪2aから受ける荷重(軸重)を各車軸40毎に検出する図示省略のロードセルを内有する。
【0010】
演算処理部5は、軸重検出器3からの信号を受けるAD変換器6と、そのAD変換器6からの信号と車両検知器4からの信号を受けて車両2の車軸数を検出する車軸数検出手段7と、軸間の時間を検出する軸間時間検出手段8と、車軸数検出手段7,軸間時間検出手段8及びAD変換器6からの信号を受けて各車軸40毎の離散化した荷重信号を演算処理して各車軸40毎の変動軸重値データ列とする荷重信号前処理手段9と、荷重信号前処理手段9にて算出された変動軸重値データ列を演算して軸重変動の周波数を推定する周波数推定手段10と、周波数推定手段10から送られる推定周波数と変動軸重値データ列を演算して、車体の共通位相を推定する共通位相推定手段11と、共通位相推定手段11から送られる推定共通位相と推定周波数を用いて変動軸重値データ列を演算して軸重変動の振幅と静止軸重値を推定する振幅・静止軸重値推定手段12と、振幅・静止軸重値推定手段12から送られる静止軸重値から(静止軸重値の合計等の算出方法により)静止荷重値を算出すると共にその値が許容重量値を越えたか否かの判定を行う後処理手段13と、から成る。
【0011】
また、演算処理部5の後処理手段13に、軸重値や車両重量値等を印刷するプリンター14と、静止荷重値が許容重量値を越えた場合に警告表示をする警告表示器15と、許容重量値を越えた車両2の写真撮影を行う写真撮影器16とを、電気的に接続する。なお、後処理手段13と写真撮影器16に電送処理手段17を電気的に接続し、その電送処理手段17に中央監視手段18が通信回線等の接続線を介して接続してもよい。そのようにすれば、集中管理が可能となる。
【0012】
ところで、軸重測定装置の載荷板の長さは車両2の走行方向に約760 mmであり、荷重変換器(ロードセル)の間隔は660 〜670 mm程度のものがほとんどである。車両2が料金所を通過する速度は20km/h程度が限度であり、タイヤの接地幅を250 mmと仮定すれば、タイヤが完全に載荷板に載っている時間(計測時間)は、0.09秒程度となる。また、計測に影響を及ぼしている車両2の路面30に与える接地圧変動の周波数(変動成分の周波数)は、3Hz付近であることが経験上分かっている。従って、変動の波形を正弦波とすると、1周期の3分の1程度しか計測できないことになる。
【0013】
本発明の走行車両の軸重測定方法は、このような1周期に満たない変動成分を有する変動軸重データ列から静止軸重値(静止時の重量値)を正確に推定する方法である。即ち、各車軸の軸重値の変動量は剛体である車体の振動影響を受けている事を考えて、一載荷板で僅かな時間で計測している各軸重の変化を一車両分捕らえ、計測している一車両分の路面に与えている接地圧の波形(周波数、位相、振幅)を推定することにより、静止軸重値を推定するものである。
【0014】
しかして、図1のブロック図と図2のフローチャート図を参照しつつこの走行車両の軸重測定方法を説明する。先ず、車両検知器4が車両2を検出して軸重検出器3により走行中の車両2の軸重値の測定を開始する。このとき、所定の微小サンプリング時間毎に多数回計測する。そして、荷重信号前処理手段9にて、車輪2aが軸重検出器3の載荷板に完全に載っているときのデータのみを抽出して多数の離散化した軸重値データから成る変動軸重値データ列とする。また、車軸数もカウントしておく。必要があればフィルタリング・平滑化等を用いて信号雑音を除去しておく。
【0015】
次に、周波数推定手段10にて、変動成分の周波数を推定する。これを詳しく説明すると、荷重信号前処理手段9からの変動軸重値データ列の各データを、
(k) m=1,2,…,N k =0,1,2 …
とする。Nは軸数、mは軸番号、kは一軸毎のサンプリング数である。y(k) は変動成分f(k) 、静止軸重値S(静的成分)の和として次のように表すことができる。
(k) =f(k) +S
【0016】
ここで、f(k) は持続的振動であると仮定し、f(k) を定係数差分方程式で表現し、その振動成分を推定する。第m軸の軸重検出器出力の定係数n次差分方程式は次の数式1のようになる。
【0017】
【数1】

Figure 0003621816
【0018】
静的成分S≠S,i≠jであるので、差分により、その影響を除くと、次の数式2のようになる。
【0019】
【数2】
Figure 0003621816
【0020】
そして、次の数式3を満たすパラメータ{a,a,…, a}を線形最小2乗法により当てはめる。
【0021】
【数3】
Figure 0003621816
【0022】
上記当てはめにより得られたパラメータ{a,a,…, a}により、各軸の変動成分f(k) に共通な特徴である定係数線形差分方程式は、次の数式4のようになる。
【0023】
【数4】
Figure 0003621816
【0024】
さらに、
(1−a ・Z−1−a ・Z−2−…−a・Z−n) y(k) =0
となり、この差分方程式の特性方程式は、
1−a ・Z−1−a ・Z−2−…−a・Z−n=0
となる。
【0025】
上述の数式4の特性方程式の解をP、i =1,2,…,nとすると、
(Z−P )(Z−P )…(Z−P)=0
となる。これらの解の中で、z平面の上半面に位置する解は、
{P|P=a+jb,b>0,i∈(1,2,…,n)}
となり、この解の位相を周波数成分とみなす。即ち、サンプリングの周期(微小サンプリング時間)をTとすると、{ω=∠P/T}が、車体の振動成分の周波数であるとみなす。つまり、この{ω=∠P/T}の周波数を、上述の演算手法を用いて周波数推定手段10にて演算・推定する。
【0026】
なお、3本の車軸40…を有する車両2の変動成分の周波数の推定手順を図3と図4のグラフ図にて簡単に説明すると、図3に示すように、車両前端の第1軸の変動軸重値データ列を示すグラフ線19と、その次の第2軸に対応するグラフ線20と、後端の第3軸に対応するグラフ線21の夫々について、前記数式1に示した定係数差分方程式を当てはめて、図4に示すように差分・オフセット分をキャンセルし、周波数を推定する。なお、図4に於て、22は第1軸の変動成分のグラフ線、23は第2軸の変動成分のグラフ線、24は第3軸の変動成分のグラフ線である。
【0027】
次に、共通位相推定手段11にて、共通位相を推定する。ここで、走行中の車両2の運動は、前述の変動軸重値データ列に含まれているため、共通の時間軸をとれば各振動成分ωの位相ψは各車軸40で共通のはずである。先ず、変動軸重値データ列の平均値と差分を計算する。各車軸40毎の振幅の大きさは、各軸重量に比例するので振幅の大きさを合わせる。つまり、差分データ列を変動軸重値データ列の平均値S′で除す。厳密には、S′≠Sであるが、この時点ではSは未知であるので、S′≒Sと考えて、振幅をほぼ同じ高さ(大きさ)にする。それを数式で表すと次の数式5のようになる。
【0028】
【数5】
Figure 0003621816
【0029】
上記数式5のy (k) の回帰式を次の数式6とする。
【0030】
【数6】
Figure 0003621816
【0031】
上記数式6に於て、Smin =0となるように拘束式を加えることにより回帰式の当てはめ精度の向上を図る。即ち、
min =Smin
という条件を付加する。ただし、Vmin は十分小さい値であり、0としても差し支えない。そして、数式6の正規方程式を構成し、その正規方程式にて{A,B}を導く。そして位相ψは、
ψ= tan−1(B/A
となる。
【0032】
以上がピッチングのないバウンシングのみの共通位相推定方法であるが、走行中の車両2にはピッチングが現れる。これを考慮するため、前記数式6における車両検知器4の出力の推定式をバウンシングの位相とピッチングの位相を考えて、数式6の代わりにピッチングを考慮した回帰式にて位相ψを推定する。その回帰式は次の数式7となる。
【0033】
【数7】
Figure 0003621816
【0034】
この数式7から正規方程式(記載省略)を構成し、その正規方程式にて{A,B}と、次の数式8を導く。そしてピッチングを考慮した共通位相ψを推定する。即ち、この共通位相ψを、上述の計算方法に基づいて共通位相推定手段11にて演算・推定する。
【0035】
【数8】
Figure 0003621816
【0036】
なお、3本の車軸40…を有する車両2の変動成分の共通位相推定手順を図4と図5のグラフ図にて簡単に説明すると、図4に示すように変動軸重値データ列の差分・オフセット分をキャンセルし、次に、図5に示すように、静的成分(変動軸重値データ列の平均値)にて規制化して振幅の高さをほぼ同一にすることにより、共通位相(各軸に共通する位相)を推定する。なお、図5に於て、25は第1軸に対応するグラフ線、26は第2軸に対応するグラフ線、27は第3軸に対応するグラフ線である。
【0037】
次に、振幅・静止軸重値推定手段12にて、各軸の変動成分の振幅を推定する。ここまでに、周波数と共通位相が推定されており、(ω,ψ),i =1,2,…,pは既知であるから、次の数式9に示した式(15)について線形最小2乗法で当てはめを行う。
【0038】
【数9】
Figure 0003621816
【0039】
具体的には上記数式9より正規方程式(記載省略)を構成し、その正規方程式にて振幅と各軸重の静的成分を推定する。つまり、周波数推定手段10から送られる周波数と共通位相のデータを振幅・静止軸重値推定手段12にて、数式9について線形最小2乗法を適用する。
【0040】
なお、3本の車軸40…を有する車両2の変動成分の共通位相推定手順を図6のグラフ図にて簡単に説明すると、破線にて示すグラフ線28は周波数推定手段10にて推定した周波数ωと共通位相推定手段11にて推定した共通位相ψを有するサインカーブであり、その共通位相ψに合わせて、第1軸(グラフ線19)、第2軸(グラフ線20)と、第3軸(グラフ線21)の夫々について振幅と軸重の静的成分を車軸毎に推定する。
【0041】
その後、後処理手段13にて、静止荷重値を算出する。つまり、静止軸重値Sが得られているので、静止荷重値Wは、次の数式10のようになる。
【0042】
【数10】
Figure 0003621816
【0043】
また、後処理手段13は、軸重値または荷重値を後段の装置に出力する。
【0044】
上述のように、この走行車両の軸重測定方法によれば、走行中の車両2の静止時の重量(静止荷重値)を高精度に推定することができる。従って、高速道路の料金所等における車重の超過の判定を精度よく行うことができる。また、軸重を検出するための載荷板やロードセル等の部品(軸重検出器3)として、従来から使用されていたものをそのまま利用できるという利点がある。
【0045】
なお、図1〜図6にて説明した軸重測定方法では、軸重値を精度良く測定することができない場合がある。
【0046】
これに対応するため、一旦、数式9で表される各車軸40の変動成分の振幅を推定した後、過大な振幅について振幅制限を行って、その後、各車軸40の変動成分の振幅を推定して、車両2の静止軸重値を推定する。
【0047】
例えば、第3軸の振幅が過大であった場合、最大振幅をとるべき第2軸の振幅を基準として、静的成分の代用として、平均値法で得られた平均値S′を使用して、制限式
=A ・S′ /S′
を正規方程式に追加して振幅の制限を行った後、再度振幅の推定を行って、静止軸重値を推定する。
【0048】
また、ピッチングが顕著なときは、数式9の合成の前段階の形である次の数式11において、
=A ・S′ /S′
=B ・S′ /S′
を正規方程式に追加し、同様の再推定を行えばよい。ただし、数式11におけるAはバウンシングの振幅,Bはピッチングの振幅である。
【0049】
【数11】
Figure 0003621816
【0050】
また、予期せぬ車両の挙動により、振幅制限を行っても、静止軸重値が信頼できないことがあるため、静止軸重値の推定にあたって、変動軸重値データ列の平均値S′をそのまま代用するのも安全策として好ましい。
【0051】
具体的には、振幅の推定と共に得られる静止軸重値について
(静止軸重値−平均値)/平均値≧R
となった場合に、推定静止軸重値として平均値を採用すればよい。ここで、Rは定数であり、例えば、R=0.25とするのが好ましいが、それ以外の数値としても良い場合がある。
【0052】
次に、本発明に係る走行車両の軸重測定方法の他の実施の形態について説明する。この場合、図7のフローチャート図に示すように、先ず、変動軸重値データ列を作成し、その後、変動成分の周波数を推定し、次に、その周波数を演算して各車軸40毎に変動成分の位相と振幅及び静止軸重値を推定する。
【0053】
この軸重測定方法に於て、変動軸重値データ列の作成と変動成分の周波数の推定は、図1〜図4にて説明した方法と同様の方法にて行う。しかして、各車軸40毎の変動成分の位相と振幅の推定方法を説明すると、既に、変動成分がp個の周波数成分をもつことが分かっていると仮定し、軸重計の出力の推定値y′(k) をp個の正弦波で次の数式12として表現する。
【0054】
【数12】
Figure 0003621816
【0055】
これを最小2乗法を用いて、次の数式13の値となるように、パラメータ{A,B,S},i=1,2,…,pを推定する。Sは第m軸の静的成分(静止軸重値)である。即ち、当てはめにより各軸毎に変動成分の位相と振幅及び静止軸重値を同時に推定する。
【0056】
【数13】
Figure 0003621816
【0057】
この測定方法によれば、走行車両のピッチングやバウンシングの関係を考慮する必要が無く、演算を簡素化できる。
【0058】
なお、本発明によれば、車軸の本数が3本の場合以外にも、適用可能であり、2本,4本,5本は勿論のこと、6本以上の整数本であっても適用できる。
【0059】
【発明の効果】
本発明は上述の構成により、次のような著大な効果を奏する。
【0060】
請求項1記載の走行車両の軸重測定方法によれば、走行中の車両2の静止時の重量(静止荷重値)を高精度に推定することができる。従って、高速道路の料金所等に於て、車重の超過等の判定を精度よく行うことができる。また、軸重を検出するための載荷板やロードセル等の部品として、従来から使用されていたものをそのまま利用できるという利点がある。また、ピッチングやバウンシングの関係を考慮した静止荷重値を推定できる。
【0061】
請求項2記載の走行車両の軸重測定方法によれば、走行中の車両2の静止荷重値を一層高精度に推定することができる。従って、車重の超過等の判定を一層精度よく行うことができる。
【0062】
請求項3記載の走行車両の軸重測定方法によれば、走行中の車両2の静止時の重量(静止荷重値)を高精度に推定することができる。従って、高速道路の料金所等に於て、車重の超過等の判定を精度よく行うことができる。また、軸重を検出するための載荷板やロードセル等の部品として、従来から使用されていたものをそのまま利用できるという利点がある。また、ピッチングやバウンシングの関係を考慮する必要が無く、演算を簡素化できる。
【図面の簡単な説明】
【図1】軸重測定装置とそれに接続される機器を説明するブロック図である。
【図2】本発明の走行車両の軸重測定方法の実施の一形態のフローチャート図である。
【図3】3軸の車両の変動軸重値データ列を説明するグラフ図である。
【図4】周波数の推定方法を説明するグラフ図である。
【図5】共通位相の推定方法を説明するグラフ図である。
【図6】振幅の推定方法を説明するグラフ図である。
【図7】本発明の走行車両の軸重測定方法の他の実施の形態のフローチャート図である。
【符号の説明】
2 車両
40 車軸[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring axle load of a traveling vehicle.
[0002]
[Prior art]
Conventionally, in a vehicle axle load measuring device used on an expressway or the like, each axle load of a running vehicle has been sequentially measured. Since the traveling vehicle vibrates up and down, measuring each axle weight means measuring a value obtained by adding a dynamic fluctuation amount to the axle weight value at rest. The conventional axle load measuring device has no means for estimating the axle load value at rest in correspondence with the dynamic fluctuation amount.
[0003]
[Problems to be solved by the invention]
By the way, the length of the loading plate of the axle load measuring device is about 760 mm in the traveling direction of the vehicle, and the distance between the load transducers (load cells) is mostly about 660 to 670 mm. Assuming that the speed at which the vehicle passes through the toll gate is about 20 km / h and the ground contact width of the tire is 250 mm, the time for which the tire is completely on the loading plate (measurement time) is 0.09. It will be about seconds. Further, it has been found from experience that the frequency of ground pressure fluctuation (frequency of fluctuation component) given to the road surface of the vehicle affecting measurement is around 3 Hz. Therefore, if the fluctuation waveform is a sine wave, only about one third of one cycle can be measured. In the conventional axle load measuring device, since the axle load value is estimated from the measurement result of only one axle weight, it is impossible to estimate the stationary axle load value.
[0004]
Therefore, an object of the present invention is to provide a method for measuring the axle load of a traveling vehicle, which can solve the above-described problems and can accurately estimate the static load value of the traveling vehicle.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the axle load measuring method for a traveling vehicle according to the present invention measures a variable axle weight value of a running vehicle many times at a predetermined minute sampling time by a single axle weight detector. A variable axle weight value data string for each axle, and the fluctuation component of each axle is expressed by a constant coefficient difference equation having common parameters on the assumption that it is a continuous vibration. Applying the above constant coefficient difference equation to estimate the frequency of the fluctuation component of the vehicle while traveling, then estimating the common phase that is the phase of the fluctuation component of the vehicle body based on the frequency, The common phase is used to estimate the amplitude of the fluctuation component of each axle and the target stationary axle weight value.
[0006]
In addition, a variable axle weight value of a running vehicle is measured many times at a predetermined minute sampling time by a single axle weight detector to obtain a variable axle weight value data string for each axle, and the fluctuation component of each axle is assuming a continuous vibration represented by a constant coefficient difference equation having a common parameter for the variation axle load value data string frequency fluctuation component of the traveling vehicle by applying the constant coefficient difference equation Next, the common phase, which is the phase of the fluctuation component of the vehicle body, is estimated based on the frequency, and the amplitude of the fluctuation component of each axle is estimated by calculating the common phase, and then estimated. As a result, the amplitude is limited for the excessive amplitude, and then the amplitude of the fluctuation component of each axle is estimated to estimate the stationary axle weight value of the vehicle.
[0007]
In addition, a variable axle weight value of a running vehicle is measured many times at a predetermined minute sampling time by a single axle weight detector to obtain a variable axle weight value data string for each axle, and the fluctuation component of each axle is assuming a continuous vibration represented by a constant coefficient difference equation having a common parameter for the variation axle load value data string frequency fluctuation component of the traveling vehicle by applying the constant coefficient difference equation Then, using the frequency, the phase and amplitude of the fluctuation component and the target stationary axle weight value are estimated for each axle.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below based on the illustrated embodiment.
[0009]
In FIG. 1, reference numeral 1 denotes an axle load measuring device. The axle load measuring device 1 includes an axle load detector 3 embedded in a road surface 30, a vehicle detector 4 for discriminating one vehicle 2 at a time, It comprises an arithmetic processing unit 5 that performs arithmetic processing on signals from the axle load detector 3 and the vehicle detector 4, a printer 14, and a warning indicator 15. The axle load detector 3 includes a load plate (not shown) that detects the load (axle weight) received from the wheels 2a and the wheels 2a of the vehicle 2 for each axle 40.
[0010]
The arithmetic processing unit 5 includes an AD converter 6 that receives a signal from the axle load detector 3, and an axle that receives the signal from the AD converter 6 and the signal from the vehicle detector 4 to detect the number of axles of the vehicle 2. The number detection means 7, the inter-axis time detection means 8 for detecting the time between the axes, the number-of-axes detection means 7, the inter-axis time detection means 8, and the signals from the AD converter 6 are received for each axle 40. The load signal pre-processing means 9 which computes the converted load signal to obtain the variable axle weight value data string for each axle 40, and the variable axle weight value data string calculated by the load signal pre-processing means 9 is calculated. A frequency estimation means 10 for estimating the frequency of the axle load fluctuation, a common phase estimation means 11 for calculating the estimated frequency and the fluctuation axle weight value data string sent from the frequency estimation means 10 to estimate the common phase of the vehicle body, Estimated common phase and estimated frequency sent from the common phase estimation means 11 The variable / shaft weight value data string is calculated by using the number and the amplitude / static shaft weight value estimating means 12 for estimating the amplitude and the static shaft weight value of the shaft weight fluctuation and the amplitude / static shaft weight value estimating means 12 are sent. Post-processing means 13 for calculating a static load value from the static axle weight value (by a calculation method such as a sum of static axle weight values) and determining whether or not the value exceeds an allowable weight value.
[0011]
Further, the post-processing means 13 of the arithmetic processing unit 5 has a printer 14 for printing a shaft weight value, a vehicle weight value, etc., a warning indicator 15 for displaying a warning when the static load value exceeds the allowable weight value, A photographer 16 for taking a photograph of the vehicle 2 exceeding the allowable weight value is electrically connected. Alternatively, the transmission processing means 17 may be electrically connected to the post-processing means 13 and the photographer 16, and the central monitoring means 18 may be connected to the transmission processing means 17 via a connection line such as a communication line. By doing so, centralized management becomes possible.
[0012]
By the way, the length of the loading plate of the axle load measuring device is about 760 mm in the traveling direction of the vehicle 2, and the distance between the load converters (load cells) is about 660 to 670 mm in most cases. The speed at which the vehicle 2 passes through the toll gate is limited to about 20 km / h, and assuming that the ground contact width of the tire is 250 mm, the time (measurement time) that the tire is completely on the loading plate is 0. It will be about 09 seconds. Further, it has been found from experience that the frequency of the ground pressure fluctuation (frequency of the fluctuation component) applied to the road surface 30 of the vehicle 2 affecting the measurement is around 3 Hz. Therefore, if the fluctuation waveform is a sine wave, only about one third of one cycle can be measured.
[0013]
The axial weight measuring method for a traveling vehicle according to the present invention is a method for accurately estimating a static axial weight value (a stationary weight value) from such a variable axial weight data string having a fluctuation component that is less than one cycle. In other words, considering that the amount of change in the axle load value of each axle is affected by the vibration of the rigid body, the change in axle load measured in a short time on a single loading plate is captured for one vehicle. The stationary shaft weight value is estimated by estimating the waveform (frequency, phase, amplitude) of the contact pressure applied to the road surface for one vehicle being measured.
[0014]
Thus, the axle load measuring method of this traveling vehicle will be described with reference to the block diagram of FIG. 1 and the flowchart of FIG. First, the vehicle detector 4 detects the vehicle 2 and the axle load detector 3 starts measuring the axle load value of the running vehicle 2. At this time, measurement is performed many times for each predetermined minute sampling time. Then, the load signal preprocessing means 9 extracts only the data when the wheel 2a is completely placed on the loading plate of the axle weight detector 3, and the variable axle weight consisting of a large number of discretized axle weight value data. Value data string. Also, count the number of axles. If necessary, signal noise is removed using filtering / smoothing.
[0015]
Next, the frequency estimation means 10 estimates the frequency of the fluctuation component. Explaining this in detail, each data of the variable axial weight value data string from the load signal preprocessing means 9 is
y m (k) m = 1, 2,..., N k = 0, 1, 2.
And N is the number of axes, m is the axis number, and k is the number of samples per axis. y m (k) can be expressed as the sum of the fluctuation component f m (k) and the static axis weight value S m (static component) as follows.
y m (k) = f m (k) + S m
[0016]
Here, assuming that f m (k) is a continuous vibration, f m (k) is expressed by a constant coefficient difference equation, and its vibration component is estimated. The constant coefficient nth-order difference equation of the m-th axis weight detector output is as shown in the following equation 1.
[0017]
[Expression 1]
Figure 0003621816
[0018]
Since the static components S i ≠ S j and i ≠ j, if the influence is excluded due to the difference, the following Expression 2 is obtained.
[0019]
[Expression 2]
Figure 0003621816
[0020]
Then, parameters {a 1 , a 2 ,..., An } satisfying the following mathematical formula 3 are applied by the linear least square method.
[0021]
[Equation 3]
Figure 0003621816
[0022]
Based on the parameters {a 1 , a 2 ,..., An } obtained by the above fitting, a constant coefficient linear difference equation that is a common feature to the fluctuation component f m (k) of each axis is expressed as become.
[0023]
[Expression 4]
Figure 0003621816
[0024]
further,
(1-a 1 · Z −1 −a 2 · Z −2 −... −a p · Z −n ) y (k) = 0
The characteristic equation of this difference equation is
1-a 1 · Z −1 −a 2 · Z −2 −... −a p · Z −n = 0
It becomes.
[0025]
If the solution of the characteristic equation of Equation 4 above is P i , i = 1, 2,..., N,
(ZP 1 ) (ZP 2 )... (ZP n ) = 0
It becomes. Among these solutions, the solution located on the upper half of the z plane is
{P i | P i = a i + jb i , b i > 0, iε (1, 2,..., N)}
Thus, the phase of this solution is regarded as a frequency component. That is, if the sampling period (minute sampling time) is T, {ω i = ∠P i / T} is regarded as the frequency of the vibration component of the vehicle body. That is, the frequency estimation means 10 calculates and estimates the frequency of {ω i = 演算 P i / T} using the above-described calculation method.
[0026]
The procedure for estimating the frequency of the fluctuation component of the vehicle 2 having the three axles 40 will be briefly described with reference to the graphs of FIGS. 3 and 4. As shown in FIG. The graph line 19 indicating the variable axis weight value data string, the graph line 20 corresponding to the second axis next thereto, and the graph line 21 corresponding to the third axis at the rear end are each represented by the above-described formula 1. A coefficient difference equation is applied to cancel the difference / offset and estimate the frequency as shown in FIG. In FIG. 4, 22 is a graph line of the fluctuation component of the first axis, 23 is a graph line of the fluctuation component of the second axis, and 24 is a graph line of the fluctuation component of the third axis.
[0027]
Next, the common phase estimation means 11 estimates the common phase. Here, motion of the vehicle 2 during traveling, because it is in a fluctuation axle load value data string above, taking a common time axis of each vibration component omega i phase [psi i is common to each axle 40 It should be. First, the average value and the difference of the variable axis weight value data string are calculated. Since the amplitude of each axle 40 is proportional to the weight of each axle, the amplitude is matched. That is, the difference data string is divided by the average value S ′ m of the variable axis weight value data string. Strictly speaking, S ′ m ≠ S m , but since S m is unknown at this point, it is considered that S ′ m ≈S m and the amplitudes are set to substantially the same height (size). This can be expressed by the following mathematical formula 5.
[0028]
[Equation 5]
Figure 0003621816
[0029]
The regression equation of y m d (k) in the above equation 5 is defined as the following equation 6.
[0030]
[Formula 6]
Figure 0003621816
[0031]
In the above equation 6, a constraint equation is added so that S min = 0, thereby improving the accuracy of fitting the regression equation. That is,
V min = S min
Add the condition. However, V min is a sufficiently small value and may be 0. Then, a normal equation of Equation 6 is constructed, and {A i , B i } is derived from the normal equation. And the phase ψ i is
ψ i = tan −1 (B i / A i )
It becomes.
[0032]
The above is the common phase estimation method only for bouncing without pitching, but pitching appears in the traveling vehicle 2. In order to take this into consideration, considering the bouncing phase and the pitching phase as the estimation formula for the output of the vehicle detector 4 in the equation 6, the phase ψ i is estimated by a regression equation that considers pitching instead of the equation 6. . The regression equation is the following Equation 7.
[0033]
[Expression 7]
Figure 0003621816
[0034]
A normal equation (not shown) is constructed from this equation 7, and {A i , B i } and the following equation 8 are derived from the normal equation. Then, the common phase ψ i considering the pitching is estimated. That is, the common phase ψ i is calculated and estimated by the common phase estimation means 11 based on the above calculation method.
[0035]
[Equation 8]
Figure 0003621816
[0036]
The common phase estimation procedure of the fluctuation component of the vehicle 2 having the three axles 40 will be briefly described with reference to the graphs of FIGS. 4 and 5. As shown in FIG. -By canceling the offset and then regulating with the static component (average value of the variable axis weight value data string) and making the amplitude heights approximately the same as shown in FIG. (Phase common to each axis) is estimated. In FIG. 5, 25 is a graph line corresponding to the first axis, 26 is a graph line corresponding to the second axis, and 27 is a graph line corresponding to the third axis.
[0037]
Next, the amplitude / stationary axis weight value estimation means 12 estimates the amplitude of the fluctuation component of each axis. Since the frequency and the common phase have been estimated so far, and (ω i , ψ i ), i = 1, 2,..., P are known, linearity is obtained with respect to equation (15) shown in the following equation 9. Fit using the least squares method.
[0038]
[Equation 9]
Figure 0003621816
[0039]
Specifically, a normal equation (not shown) is constructed from Equation 9 above, and the amplitude and the static component of each axial load are estimated using the normal equation. That is, the frequency and common phase data sent from the frequency estimation means 10 are applied to the equation 9 by the linear least square method using the amplitude / static axis weight value estimation means 12.
[0040]
The common phase estimation procedure of the fluctuation component of the vehicle 2 having the three axles 40... Is simply described with reference to the graph of FIG. 6. The graph line 28 shown by the broken line indicates the frequency estimated by the frequency estimation means 10. ω and a sine curve having a common phase ψ estimated by the common phase estimation means 11, and in accordance with the common phase ψ, a first axis (graph line 19), a second axis (graph line 20), and a third For each axis (graph line 21), the static components of amplitude and axle load are estimated for each axle.
[0041]
Thereafter, the post-processing means 13 calculates a static load value. That is, since the static shaft weight value Sm is obtained, the static load value W is expressed by the following Expression 10.
[0042]
[Expression 10]
Figure 0003621816
[0043]
Further, the post-processing means 13 outputs the axle load value or the load value to the subsequent apparatus.
[0044]
As described above, according to the axle load measuring method of the traveling vehicle, the stationary weight (static load value) of the traveling vehicle 2 can be estimated with high accuracy. Accordingly, it is possible to accurately determine whether the vehicle weight is exceeded at a tollgate on an expressway. Further, there is an advantage that conventionally used components (axial load detector 3) such as a loading plate and a load cell for detecting the axial load can be used as they are.
[0045]
1 to 6 may not be able to measure the axial load value with high accuracy.
[0046]
To cope with this, once the amplitude of the fluctuation component of each axle 40 represented by Expression 9 is estimated, the amplitude of the excessive amplitude is limited, and then the amplitude of the fluctuation component of each axle 40 is estimated. Thus, the stationary axle weight value of the vehicle 2 is estimated.
[0047]
For example, when the amplitude of the third axis is excessive, the average value S ′ m obtained by the average value method is used as a substitute for the static component with reference to the amplitude of the second axis that should take the maximum amplitude. Thus, the limiting expression A 3 = A 2 · S ′ 3 / S ′ 2
Is added to the normal equation to limit the amplitude, and then the amplitude is estimated again to estimate the static axis weight value.
[0048]
Further, when pitching is remarkable, in the following formula 11 which is the form of the previous stage of the synthesis of formula 9,
A 3 = A 2 · S ′ 3 / S ′ 2
B 3 = B 2 · S ′ 2 / S ′ 3
Can be added to the normal equation and re-estimated in the same way. In Equation 11, A i is the bouncing amplitude, and B i is the pitching amplitude.
[0049]
[Expression 11]
Figure 0003621816
[0050]
In addition, even if the amplitude is limited due to unexpected vehicle behavior, the stationary axle weight value may not be reliable. Therefore, when estimating the stationary axle weight value, the average value S ′ m of the variable axle weight value data string is calculated. It is also preferable as a safety measure to substitute as it is.
[0051]
Specifically, the static axle weight value obtained together with the amplitude estimation (static axle weight value−average value) / average value ≧ R
In this case, an average value may be adopted as the estimated stationary shaft weight value. Here, R is a constant. For example, R = 0.25 is preferable, but other numerical values may be used.
[0052]
Next, another embodiment of the axle load measuring method for a traveling vehicle according to the present invention will be described. In this case, as shown in the flowchart of FIG. 7, first, a variable axis weight value data string is created, then the frequency of the variable component is estimated, and then the frequency is calculated to vary for each axle 40. Estimate the phase and amplitude of components and the static axis weight value.
[0053]
In this axial load measuring method, the generation of the variable axial load value data string and the estimation of the frequency of the variable component are performed by the same method as described with reference to FIGS. Thus, the estimation method of the phase and amplitude of the fluctuation component for each axle 40 will be explained. It is assumed that the fluctuation component already has p frequency components, and the estimated value of the output of the axle load meter y ′ m (k) is expressed by the following Equation 12 with p sine waves.
[0054]
[Expression 12]
Figure 0003621816
[0055]
Using the least square method, parameters {A i , B i , S m }, i = 1, 2,..., P are estimated so as to be the values of the following formula 13. S m is a static component (static axis weight value) of the m-th axis. That is, the phase and amplitude of the fluctuation component and the stationary axis weight value are simultaneously estimated for each axis by fitting.
[0056]
[Formula 13]
Figure 0003621816
[0057]
According to this measurement method, it is not necessary to consider the relationship between pitching and bouncing of the traveling vehicle, and the calculation can be simplified.
[0058]
In addition, according to this invention, it is applicable besides the case where the number of axles is three, and it can be applied not only to 2, 4, and 5, but also to an integer of 6 or more. .
[0059]
【The invention's effect】
The present invention has the following remarkable effects by the above-described configuration.
[0060]
According to the axle load measuring method of the traveling vehicle according to the first aspect, the stationary weight (static load value) of the traveling vehicle 2 can be estimated with high accuracy. Accordingly, it is possible to accurately determine whether the vehicle weight has been exceeded or the like at a tollgate on an expressway. Moreover, there is an advantage that what has been used conventionally can be used as it is as a component such as a loading plate or a load cell for detecting the axial weight. In addition, a static load value can be estimated in consideration of the relationship between pitching and bouncing.
[0061]
According to the axle load measuring method of the traveling vehicle according to the second aspect, the stationary load value of the traveling vehicle 2 can be estimated with higher accuracy. Therefore, it is possible to determine the vehicle weight excess or the like more accurately.
[0062]
According to the axle load measuring method of the traveling vehicle according to claim 3, the stationary weight (static load value) of the traveling vehicle 2 can be estimated with high accuracy. Accordingly, it is possible to accurately determine whether the vehicle weight has been exceeded or the like at a tollgate on an expressway. In addition, there is an advantage that components conventionally used as components such as a loading plate and a load cell for detecting the axial weight can be used as they are. Further, it is not necessary to consider the relationship between pitching and bouncing, and the calculation can be simplified.
[Brief description of the drawings]
FIG. 1 is a block diagram for explaining a shaft weight measuring device and devices connected thereto.
FIG. 2 is a flowchart of one embodiment of the method for measuring axle load of a traveling vehicle according to the present invention.
FIG. 3 is a graph illustrating a variable axial weight value data string of a three-axis vehicle.
FIG. 4 is a graph illustrating a frequency estimation method.
FIG. 5 is a graph illustrating a common phase estimation method.
FIG. 6 is a graph illustrating an amplitude estimation method.
FIG. 7 is a flowchart of another embodiment of the method for measuring axle load of a traveling vehicle according to the present invention.
[Explanation of symbols]
2 Vehicle 40 axle

Claims (3)

走行中の車両(2)の変動軸重値を単数の軸重検出器(3)により所定の微小サンプリング時間毎に多数回計測して各車軸(40)毎の変動軸重値データ列とし、各車軸( 40 )の変動成分を、持続的振動であると仮定して共通なパラメータを有する定係数差分方程式にて表現し、上記変動軸重値データ列について上記定係数差分方程式を当てはめて走行中の上記車両(2)の変動成分の周波数を推定し、次に、その周波数をもとに車体の変動成分の位相である共通位相を推定し、さらに、その周波数と共通位相を用いて各車軸(40)の変動成分の振幅と静止軸重値を推定することを特徴とする走行車両の軸重測定方法。The variable axle weight value of the traveling vehicle (2) is measured a number of times at a predetermined minute sampling time by a single axle weight detector (3) to form a variable axle weight value data string for each axle (40), the fluctuation component of each axle (40), expressed at a constant coefficient difference equation having a common parameter assumed to be sustained oscillations for the fluctuation axle load value data string by applying the constant coefficient difference equation travel The frequency of the fluctuation component of the vehicle (2) in the vehicle is estimated, and then the common phase that is the phase of the fluctuation component of the vehicle body is estimated based on the frequency. A method for measuring the axle load of a traveling vehicle, comprising estimating an amplitude of a fluctuation component of the axle (40) and a stationary axle weight value. 走行中の車両(2)の変動軸重値を単数の軸重検出器(3)により所定の微小サンプリング時間毎に多数回計測して各車軸(40)毎の変動軸重値データ列とし、各車軸( 40 )の変動成分を、持続的振動であると仮定して共通なパラメータを有する定係数差分方程式にて表現し、上記変動軸重値データ列について上記定係数差分方程式を当てはめて走行中の上記車両(2)の変動成分の周波数を推定し、次に、その周波数をもとに車体の変動成分の位相である共通位相を推定し、さらに、その共通位相を演算して各車軸(40)の変動成分の振幅を推定し、その後、過大な振幅について振幅制限を行って、その後、各車軸(40)の変動成分の振幅を推定して、上記車両(2)の静止軸重値を推定することを特徴とする走行車両の軸重測定方法。The variable axle weight value of the traveling vehicle (2) is measured a number of times at a predetermined minute sampling time by a single axle weight detector (3) to form a variable axle weight value data string for each axle (40), the fluctuation component of each axle (40), expressed at a constant coefficient difference equation having a common parameter assumed to be sustained oscillations for the fluctuation axle load value data string by applying the constant coefficient difference equation travel The frequency of the fluctuation component of the vehicle (2) in the vehicle is estimated, then the common phase that is the phase of the fluctuation component of the vehicle body is estimated based on the frequency, and the common phase is calculated to calculate each axle. The amplitude of the fluctuation component of (40) is estimated, and then the amplitude is limited with respect to the excessive amplitude. Then, the amplitude of the fluctuation component of each axle (40) is estimated, and the stationary axle weight of the vehicle (2) is estimated. A method for measuring the axle load of a traveling vehicle, wherein the value is estimated. 走行中の車両(2)の変動軸重値を単数の軸重検出器(3)により所定の微小サンプリング時間毎に多数回計測して各車軸(40)毎の変動軸重値データ列とし、各車軸( 40 )の変動成分を、持続的振動であると仮定して共通なパラメータを有する定係数差分方程式にて表現し、上記変動軸重値データ列について上記定係数差分方程式を当てはめて走行中の上記車両(2)の変動成分の周波数を推定し、次に、その周波数を用いて各車軸(40)毎に変動成分の位相と振幅及び静止軸重値を推定することを特徴とする走行車両の軸重測定方法。The variable axle weight value of the traveling vehicle (2) is measured a number of times at a predetermined minute sampling time by a single axle weight detector (3) to form a variable axle weight value data string for each axle (40), the fluctuation component of each axle (40), expressed at a constant coefficient difference equation having a common parameter assumed to be sustained oscillations for the fluctuation axle load value data string by applying the constant coefficient difference equation travel The frequency of the fluctuation component of the vehicle (2) in the vehicle is estimated, and then the phase and amplitude of the fluctuation component and the stationary axle weight value are estimated for each axle (40) using the frequency. A method for measuring the axle load of a traveling vehicle.
JP27947597A 1997-09-26 1997-09-26 Axle weight measurement method for traveling vehicles Expired - Fee Related JP3621816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27947597A JP3621816B2 (en) 1997-09-26 1997-09-26 Axle weight measurement method for traveling vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27947597A JP3621816B2 (en) 1997-09-26 1997-09-26 Axle weight measurement method for traveling vehicles

Publications (2)

Publication Number Publication Date
JPH11101683A JPH11101683A (en) 1999-04-13
JP3621816B2 true JP3621816B2 (en) 2005-02-16

Family

ID=17611578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27947597A Expired - Fee Related JP3621816B2 (en) 1997-09-26 1997-09-26 Axle weight measurement method for traveling vehicles

Country Status (1)

Country Link
JP (1) JP3621816B2 (en)

Also Published As

Publication number Publication date
JPH11101683A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
US10378159B2 (en) Detection of short term irregularities in a road surface
CN107000503B (en) Determine the System and method for of at least one tyre contact area parameter of the size of the tyre contact area on the tire of characterization wheel
EP2012106B1 (en) Deflection calculating method at tire wheeling time, data storing method at tire wheeling time, and grounding length calculating method at tire wheeling time
US7918131B2 (en) Tire slip state detecting method and tire slip state detecting apparatus
US6234022B1 (en) Bearing rigidity evaluation apparatus
US8296080B2 (en) Method for determining at least one parameter representative of at least one interaction along a longitudinal direction between a tyre for vehicle and the ground
US8108103B2 (en) Nonlinear frequency dependent filtering for vehicle ride/stability control
US20150308926A1 (en) Vibration analysis method and vibration analysis device of vehicle
CN108515984A (en) A kind of wheel hurt detection method and device
KR20130063811A (en) Road profiling apparatus and signal processing method thereof and system with the same
CN111601739B (en) System for determining the angular velocity of a wheel axle of a rail vehicle and corresponding method
JP2019113373A (en) Wheel load estimation device
JP3621816B2 (en) Axle weight measurement method for traveling vehicles
JP5191856B2 (en) Wheel / axle weight measurement system
CN109060209A (en) Measuring device and measurement method for sedan braking system dynamic brake force moment
JPH11148852A (en) Measuring method and device for vehicle weight
JP2009109264A (en) Distance detection apparatus for vehicle
JP3686184B2 (en) Vehicle wheel load measuring device
JP5241556B2 (en) Road surface condition estimation device
JPH0579950A (en) Testing device for vehicle
JPH10311752A (en) Vehicle weight metering device
KR101365366B1 (en) Measuring device and method for tire handing performance
JP2003130629A (en) Device and method for measuring displacement
CN107907076B (en) Road surface power spectrum measuring method
US6675653B2 (en) Method and system for detecting drive train vibrations

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees