JPH1110142A - Waste water treatment process - Google Patents

Waste water treatment process

Info

Publication number
JPH1110142A
JPH1110142A JP16611397A JP16611397A JPH1110142A JP H1110142 A JPH1110142 A JP H1110142A JP 16611397 A JP16611397 A JP 16611397A JP 16611397 A JP16611397 A JP 16611397A JP H1110142 A JPH1110142 A JP H1110142A
Authority
JP
Japan
Prior art keywords
photocatalyst
wastewater
water
dye
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16611397A
Other languages
Japanese (ja)
Inventor
Kunitaka Jiyou
邦恭 城
Yoshihiro Tomita
芳宏 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP16611397A priority Critical patent/JPH1110142A/en
Publication of JPH1110142A publication Critical patent/JPH1110142A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To decolor simply waste water and discharge the same as environmental water free from the pollution feeling by carrying out the oxidization reaction treatment of colored waste water containing a dye with the reaction of a photocatalyst. SOLUTION: In the case of treating colored waste water containing a dye of large coloring strength discharged out of a coloring plant or a dye synthesizing plant, a photocatalyst is used, and also the water is treated by the photocatalyst and then treated biologically or reverse osmosis treated to recycle the water for use. As for the photocatalyst, titanium oxide, strontium titanate or the like is preferred from the viewpoints of conditions of catalyst activities, safety, price and the like, and the photocatalyst is used alone in the powdery shape, granular shape or the like and dispersed in water, or used in the state of being carried on carriers of various shapes such as the membrane shape, porous shape, fiber shape or fabric shape. As a light source emitted for the purpose of energizing the photocatalyst, a source including the wavelength of generating the electric charge separation of the photocatalyst, for example, a filament lamp, a mercury lamp or the like is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は排水処理に関するもので
あり、さらに詳しくは、排水を生物処理する前に光触媒
で反応させて効率的な処理が可能な、または、排水を光
触媒で反応させた後、逆浸透膜で処理して水をリサイク
ルできる排水処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment, and more particularly, to an efficient treatment by treating a wastewater with a photocatalyst before biological treatment, or a wastewater reacted with a photocatalyst. The present invention relates to a wastewater treatment method in which water can be recycled by treating with a reverse osmosis membrane.

【0002】[0002]

【従来の技術】最近に至り、着色排水による環境水の汚
染問題が再び大きくクロ−ズアップしてきている。特に
染色工場や染料合成工場からの排水は着色強度が大きい
ことから汚濁感を与えやすく、その防止対策が求められ
るようになってきた。染色工場の数は極めて多く、地場
産業として各地に分布している。一般にこれらの工場か
らの排水の組成は非常に複雑である。繊維素材の種類が
多く、また染色には多種の染料、助剤、薬剤が使用さ
れ、染色工程も複雑であり、水量、水質の変動が著し
い。これらの排水の処理方法としてはこれまで凝集沈殿
法、活性汚泥法がメインに用いられている。
2. Description of the Related Art Recently, the problem of pollution of environmental water by colored wastewater has been greatly increased. In particular, wastewater from dyeing factories and dye synthesis factories has a high coloring strength, so that it tends to give a feeling of contamination, and measures to prevent it have been required. The number of dyeing factories is extremely large and is distributed locally as a local industry. Generally, the composition of the effluent from these factories is very complex. There are many types of fiber materials, many types of dyes, auxiliaries, and chemicals are used for dyeing, the dyeing process is complicated, and the amount of water and the quality of water vary significantly. As a method for treating these wastewaters, a coagulation sedimentation method and an activated sludge method have been mainly used so far.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の方法での問題点は、凝集沈殿法では、着色成分が十分
に除去できないことに加えて、凝集スラッジの量が多い
ため廃棄物の増大をひきおこす。また、活性汚泥法で
は、染料成分が生物的難分解性物質であるため、ほとん
ど処理ができず環境水の着色汚染をひきおこしやすいと
いう問題点があった。 本発明は、上記問題点を解決す
るためのもので、排水を簡便に脱色し、汚濁感のない環
境水として放流することができるか、またはリサイクル
水として再利用することができる排水処理方法を提案す
ることを目的としている。
However, the problems with these methods are that, in the coagulation sedimentation method, in addition to the inability to sufficiently remove the coloring components, the amount of coagulated sludge is large, resulting in an increase in waste. . Further, in the activated sludge method, since the dye component is a biologically hardly decomposable substance, there is a problem that it is hardly treated and coloration of environmental water is easily caused. The present invention has been made to solve the above problems, and a wastewater treatment method capable of easily decolorizing wastewater and discharging the wastewater as a pollution-free environment water or reusing it as recycled water. It is intended to make suggestions.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明は基本的に下記の構成を有する。
In order to achieve the above object, the present invention basically has the following arrangement.

【0005】染料含有着色排水を光触媒の反応により酸
化反応して処理する排水処理方法または排水を光触媒の
反応により酸化反応して後、生物処理することを特徴と
する排水処理方法または排水を光触媒の反応により酸化
反応して後、逆浸透膜処理をして水をリサイクル使用す
ることを特徴とする排水処理方法である。
[0005] A wastewater treatment method in which dye-containing colored wastewater is oxidized by a photocatalytic reaction and treated, or a wastewater treatment method characterized by subjecting wastewater to an oxidative reaction by a photocatalytic reaction and then biologically treated. A wastewater treatment method characterized in that a reverse osmosis membrane treatment is performed after the oxidation reaction by the reaction, and water is recycled.

【0006】[0006]

【発明の実施の形態】本発明での排水とは、繊維の染色
における排水と染料およびその中間体合成工場からの排
水とに分けることができる。繊維の染色における染料含
有染色排水には、一般に染色工程からの排水に加えて、
前工程である糊抜、精練および漂白や後工程の仕上加工
などの工程からの排水も含まれているため、染料の他に
もこれらの工程にかかわる様々な物質が含まれることに
なる。また染色工程には浸染法と捺染法の2通りがあ
り、前者は染料や助剤の溶解した染浴中で均一に染色す
る方法、後者は染料を含む糊を型を用いて布に転写し、
染料を後処理により固定して染色する方法である。した
がって、同じ染色工程排水であっても、その組成にはい
くつか異なる点がある。浸染法では染める繊維の種類に
応じて、直接染料、酸性染料、塩基性染料、媒染染料、
分散染料、バット染料、反応染料硫化染料などの種々の
染料が用いられるほか、助剤については、染料溶解剤、
分散剤、促進剤および均染剤として硫化ナトリウム、硫
酸ナトリウム、炭酸ナトリウム等の塩類、硫酸、酢酸等
の酸類およびアニオン性やノニオン性の界面活性剤な
ど、媒染剤としてタンニンや重クロム酸カリウム、酸化
剤として塩化第二鉄、染料固着剤として高分子塩基など
が用いられる。捺染法では上記の種々の染料に加えて、
蛍光顔料や一般顔料等が用いられるほか、糊料としてゴ
ム類や天然、加工あるいは合成の糊料、顔料を用いるこ
とからそれらを繊維に付着させたり捺染糊の調整を行う
ために高分子や石油系溶剤のエマルジョン(バインダお
よびエクステンダ)などが用いられる。また、糊抜、精
練工程からは糊料のほか界面活性剤や繊維くず、あるい
は繊維への付着物などが排出され、漂白および仕上加工
工程からは排出量は少ないが、酸化剤のような微生物に
対する毒性の強いものが排出される。このような染料含
有着色排水は組成が非常に複雑であるのに加えて、排出
源としては中小規模の工場が多く、染色の対象となる繊
維によって染料および各種助剤などの種類が変わるた
め、日間、月間、あるいは季節間の水質や水量の変動も
非常に大きい。浸染染料含有着色排水の一例をあげると
排水量400m3/日、COD300〜500mg/
L、着色度500〜2000(染料濃度数十〜百mg/
Lのオ−ダ−)となっている。
BEST MODE FOR CARRYING OUT THE INVENTION The wastewater used in the present invention can be divided into wastewater for dyeing fibers and wastewater from a plant for synthesizing dyes and intermediates thereof. Dye-containing dyeing wastewater in the dyeing of fibers, in addition to the wastewater from the dyeing process in general,
Since wastewater from processes such as desizing, scouring and bleaching as a pre-process, and finishing in a post-process is also included, various substances related to these processes are also included in addition to dyes. There are two types of dyeing processes: dip dyeing and printing. The former is a method of dyeing uniformly in a dye bath in which dyes and auxiliaries are dissolved. The latter is a method in which paste containing dyes is transferred to cloth using a mold. ,
In this method, the dye is fixed and dyed by post-treatment. Therefore, there are some differences in the composition of the same dyeing process wastewater. In the dip dyeing method, depending on the type of fiber to be dyed, direct dye, acid dye, basic dye, mordant dye,
Various dyes such as disperse dyes, vat dyes, reactive dyes and sulfur dyes are used.
Salts such as sodium sulfide, sodium sulfate and sodium carbonate as dispersants, accelerators and leveling agents, acids such as sulfuric acid and acetic acid, and anionic and nonionic surfactants; mordanting agents such as tannin and potassium bichromate; Ferric chloride is used as an agent, and a polymer base is used as a dye fixing agent. In the printing method, in addition to the various dyes described above,
In addition to the use of fluorescent pigments and general pigments, rubber and natural or processed or synthetic pastes and pigments are used as pastes, so polymers and petroleum are used to attach them to fibers and adjust printing paste. An emulsion of a system solvent (a binder and an extender) is used. Desizing and scouring processes discharge surfactants, fiber scraps, and deposits on fibers, as well as paste, and the bleaching and finishing processes produce a small amount of microorganisms such as oxidizing agents. Is highly toxic to In addition to the fact that such dye-containing colored wastewater has a very complicated composition, there are many small and medium-sized factories as discharge sources, and the types of dyes and various auxiliaries vary depending on the fiber to be dyed. Fluctuations in water quality and quantity between days, months and seasons are very large. As an example of a colored drainage containing an infiltration dye, the drainage amount is 400 m 3 / day, COD is 300 to 500 mg / day.
L, coloring degree 500-2000 (dye concentration several tens to 100 mg /
L order).

【0007】一方、染料およびその中間体合成工場から
の染料含有着色排水中にも染料の他、多種多量の有機化
合物が含まれており、その多くは化学的合成品のため微
生物分解が困難であることが多い。これらの工場はその
ほとんどがバッチ式工程による多品種少量生産を行って
おり、また比較的短期間に製造品種が変わるため、染色
排水と同様排水の水質変動が大きい。染料合成工場排水
の一例をあげると排水量200〜300m3/日、着色
度50000、COD25000mg/Lであり、着色
度、CODとも非常に高い値となっている。
On the other hand, the dye-containing colored wastewater from the dye and its intermediates also contains a large amount of various organic compounds in addition to the dye, and most of them are chemically synthesized products, so that microbial decomposition is difficult. There are many. Most of these factories perform multi-product small-quantity production by a batch process, and the variety of products changes in a relatively short period of time. To give an example of wastewater from a dye synthesis plant, the amount of wastewater is 200 to 300 m 3 / day, the degree of coloration is 50,000, COD is 25,000 mg / L, and both the degree of coloration and COD are extremely high.

【0008】従って、染料含有着色排水の水質特性につ
いてまとめると、組成が非常に複雑なこと、排水量やp
H、BOD、CODなどをはじめとして水質が短期間で
大きく変動すること、着色度が高いこと、染料をはじめ
とする難分解性物質を多量に含んでいることなどがあげ
られる。
Accordingly, the water quality characteristics of the dye-containing colored wastewater can be summarized as follows: the composition is very complicated,
H, BOD, COD, etc., water quality fluctuates greatly in a short period of time, high degree of coloring, contains a large amount of hardly decomposable substances such as dyes, and the like.

【0009】本発明での光触媒としては、二酸化チタ
ン、三酸化タングステン、酸化亜鉛、三酸化鉄、チタン
酸ストロンチウムなどの金属酸化物や、硫化カドミウ
ム、硫化亜鉛、硫化インジウムなどの金属硫化物や、セ
レン化カドミウム、セレン化亜鉛などの金属セレン化
物、リン化ゲルマニウム、リン化インジウムなどの金属
リン化物など、およびこれらの光触媒に白金、ロジウ
ム、ルテニウム、ニオブ、銅、鉄などの金属および金属
酸化物を担持したもの、など従来公知のものを挙げるこ
とができる。その中で、特に、触媒活性、安全性、価格
などの条件から、二酸化チタン、チタン酸ストロンチウ
ムなどが好ましい。
Examples of the photocatalyst in the present invention include metal oxides such as titanium dioxide, tungsten trioxide, zinc oxide, iron trioxide and strontium titanate; metal sulfides such as cadmium sulfide, zinc sulfide and indium sulfide; Metal selenides such as cadmium selenide and zinc selenide, metal phosphides such as germanium phosphide and indium phosphide, and metals and metal oxides such as platinum, rhodium, ruthenium, niobium, copper and iron for these photocatalysts And those conventionally known, such as those carrying. Among them, titanium dioxide, strontium titanate, and the like are particularly preferable in terms of catalytic activity, safety, and price.

【0010】光触媒は、それ自身だけで粉末状、粒状等
を水中に分散させる形態でも、膜状、多孔質状、繊維
状、織物状など様々な形状の担体に担持させた状態でも
使用することができる。
The photocatalyst may be used by itself in a form in which powders, granules, etc. are dispersed in water, or in a state in which it is supported on carriers of various shapes such as membrane, porous, fibrous, and woven. Can be.

【0011】この光触媒による反応の大きな特徴は、非
常に強い酸化力を持っていることである。例えば光触媒
として酸化チタンを使用する場合、近紫外光の照射下で
溶液種から電子を引き抜く正孔は、3.0V(標準水素
電極電位基準)のポテンシャルエネルギ−を持つことが
知られている。これは、O2/H2Oの1.23V、O3
/O2の2.07Vと比較しても、かなり高い酸化能力
を有しており、理論状ほとんどすべての有機物を水と炭
酸ガスにまで分解することが可能である。
A major feature of this photocatalytic reaction is that it has a very strong oxidizing power. For example, when titanium oxide is used as a photocatalyst, it is known that holes that extract electrons from solution species under irradiation with near-ultraviolet light have a potential energy of 3.0 V (based on a standard hydrogen electrode potential). This is because of 1.23 V of O 2 / H 2 O, O 3
Compared with 2.07 V of / O 2 , it has a considerably high oxidizing ability, and can theoretically decompose almost all organic substances into water and carbon dioxide gas.

【0012】光触媒を励起するために照射する光源とし
ては、光触媒の電荷分離を引き起こす波長(可視及び/
又は紫外)を含むものであれば使用できる。(例えば二
酸化チタンであれば387nm以下)。具体的には、白
熱灯などのフィラメントランプ、水銀灯、キセノン灯な
どの高輝度放電灯、蛍光灯、ブラックライト、殺菌灯
類、レ−ザ光などの人工光源または、太陽光の自然光源
を用いることができる。また自然光源の補助光源として
人工光源を同時に使用しても良い。
The light source for irradiating to excite the photocatalyst may be a wavelength (visible and / or visible) that causes charge separation of the photocatalyst.
Or ultraviolet). (For example, 387 nm or less for titanium dioxide). Specifically, an artificial light source such as a filament lamp such as an incandescent lamp, a high-intensity discharge lamp such as a mercury lamp or a xenon lamp, a fluorescent lamp, a black light, a germicidal lamp, a laser light, or a natural light source of sunlight is used. be able to. An artificial light source may be used at the same time as an auxiliary light source for the natural light source.

【0013】本発明での生物処理とは、微生物によって
分解処理するプロセスを示すが、菌の種類によって、好
気性菌処理と嫌気性菌処理に分けることができる。好気
性菌処理の代表として活性汚泥法がある。活性汚泥処理
プロセスとは、浄化機能をもったフロック状の生物増殖
体を必要に応じて生物反応系内で絶えず循環し、曝気槽
内で基質(排水のBOD成分)と浄化微生物の比率が常
に一定となるように人為的に操作し、溶存酸素の存在の
もとで、基質と異種固体群の微生物によって構成される
フロックとを十分に接触せしめて、これを好気的に酸
化、分解する処理プロセスである。活性汚泥は、細菌
類、真菌類、原生動物、後生動物など異種固体群の微生
物によって構成される混合培養体である。
The biological treatment in the present invention refers to a process of decomposing by a microorganism, and can be divided into an aerobic bacteria treatment and an anaerobic bacteria treatment depending on the kind of bacteria. The activated sludge method is a representative of the aerobic bacteria treatment. Activated sludge treatment process means that floc-like biological multiplication body with purification function is constantly circulated in the biological reaction system as needed, and the ratio of substrate (BOD component of wastewater) and purification microorganisms is always in the aeration tank. Artificially manipulated to be constant, and in the presence of dissolved oxygen, the substrate and floc composed of microorganisms of different solid groups are brought into sufficient contact to aerobically oxidize and decompose this It is a processing process. Activated sludge is a mixed culture composed of microorganisms of different solid groups such as bacteria, fungi, protozoa and metazoans.

【0014】本発明での逆浸透膜は、低濃度の塩水(カ
ン水)を脱塩、海水の淡水化、また半導体の製造に利用
される超純水の製造に用いることができる分離膜であ
る。この逆浸透膜としては、非対称型の酢酸セルロ−ス
膜(例えば、米国特許第3133132号明細書)や線
状芳香族ポリアミド膜(例えば、米国特許第35676
32号明細書)や架橋芳香族ポリアミド膜(例えば、特
公昭63−36803号公報)などが上げられる。この
中で、逆浸透膜として、実質的に分離性能を有する超薄
膜層が、実質的に分離性能を有さない微多孔性支持膜上
に被覆されてなり、該超薄膜層は、多官能アミンと多官
能ハロゲン化物との界面重縮合によって得られる架橋芳
香族ポリアミド膜が、透水量も高く除去特性も高いので
好ましい。この架橋芳香族ポリアミド膜の中でも、表面
がアニオン荷電している膜が、排水を光触媒で酸化処理
した水の有機物がアニオン荷電になるので、除去特性が
高いため、好ましい。
The reverse osmosis membrane of the present invention is a separation membrane that can be used for desalting low-concentration salt water (can water), desalinating seawater, and producing ultrapure water used for producing semiconductors. is there. Examples of the reverse osmosis membrane include an asymmetric cellulose acetate membrane (for example, US Pat. No. 3,133,132) and a linear aromatic polyamide membrane (for example, US Pat. No. 35,676).
No. 32) and a crosslinked aromatic polyamide film (for example, JP-B-63-36803). In this, as a reverse osmosis membrane, an ultra-thin film layer having substantially separation performance is coated on a microporous support membrane having substantially no separation performance, and the ultra-thin film layer is formed of a polyfunctional membrane. A crosslinked aromatic polyamide membrane obtained by interfacial polycondensation between an amine and a polyfunctional halide is preferred because of its high water permeability and high removal characteristics. Among the crosslinked aromatic polyamide films, a film whose surface is anion-charged is preferable because an organic substance of water obtained by oxidizing wastewater with a photocatalyst is anion-charged and thus has high removal characteristics.

【0015】染料含有着色排水を光触媒で処理すること
によって、染料等の生物的難分解性物質を分解して、生
物が分解できる程度の低分子量物質に変換し、活性汚泥
等の生物処理が効率的に行うことが可能である。また、
染料含有着色排水を光触媒で分解することによって、染
料等の着色物質が分解されて脱色される。この処理水
は、有機物質が低分子量物質まで分解されているので、
逆浸透膜に供給して処理した場合でも、逆浸透膜の膜面
ファウリングが非常に少なく連続的に長期に安定してリ
サイクル水を製造することが可能である。また、光触媒
処理水は、アニオン荷電物質が多くなるので、逆浸透膜
の中でもアニオン荷電膜を使用することによって、除去
特性が高くなり、より清澄なリサイクル水を製造するこ
とが可能である。
The dye-containing colored wastewater is treated with a photocatalyst to decompose biologically hardly decomposable substances such as dyes and convert them into low-molecular-weight substances capable of decomposing organisms. It is possible to perform it. Also,
By decomposing the dye-containing colored wastewater with a photocatalyst, coloring substances such as dyes are decomposed and decolorized. In this treated water, since organic substances are decomposed into low molecular weight substances,
Even in the case where the reverse osmosis membrane is supplied and processed, the membrane surface fouling of the reverse osmosis membrane is extremely small, and it is possible to continuously and stably produce recycled water for a long period of time. In addition, since the photocatalyst-treated water contains a large amount of anion-charged substances, the use of an anion-charged membrane among the reverse osmosis membranes enhances the removal characteristics and makes it possible to produce clearer recycled water.

【0016】本発明の限外濾過膜処理または精密濾過膜
処理に用いられる限外濾過膜は、限外濾過膜や精密濾過
膜をあげることができる。濾過膜の孔径は、小さい程除
去率が高いので好ましいが、マンガンの酸化物や鉄の酸
化物の大きさから0.4ミクロン以下が好ましく、より
好ましくは0.1ミクロン程度である。該濾過膜の材質
は特に限定されるものではないが、例えば公知の、セル
ロース系・ポリアミド系・ポリスルフォン系・ポリオレ
フィン系およびポリアクリロニトリルなどの高分子物質
を挙げることができる。素材は使用する際の要求条件に
よって適宜選択し、例えば強度が高いものが必要であれ
ばポリアクリロニトリル、疎水性を強くしたいのであれ
ばポリオレフィン系というように選択可能である。
The ultrafiltration membrane used in the ultrafiltration membrane treatment or the microfiltration membrane treatment of the present invention includes an ultrafiltration membrane and a microfiltration membrane. The pore size of the filtration membrane is preferably smaller as the removal rate becomes higher, but is preferably 0.4 μm or less, more preferably about 0.1 μm, in view of the size of manganese oxide or iron oxide. The material of the filtration membrane is not particularly limited, and examples thereof include known polymer materials such as cellulose-based, polyamide-based, polysulfone-based, polyolefin-based, and polyacrylonitrile. The material can be appropriately selected depending on the required conditions at the time of use. For example, polyacrylonitrile can be selected if high strength is required, and polyolefin is used if hydrophobicity is desired.

【0017】該限外濾過膜または精密濾過膜は、中空糸
内部に原水を供給する内圧型と中空糸外部に原水を供給
する外圧型があるが、膜閉塞することが少ない外圧型が
好ましい。該限外濾過膜または精密濾過膜は、特に排水
にSS成分がある場合、SS成分が除去されてるので、
光触媒処理の前に用いると光触媒効率が改善されて好ま
しいが、特に限定されるものではなく、光触媒処理の後
段に用いても良いし、あるいは前後の両方に用いても良
い。あるいは、前述の逆浸透膜や生物処理を併用しても
よく、例えば、前段で限外濾過膜処理をして、中段で光
触媒処理をし、後段で逆浸透膜するなどと組み合わせて
も良い。
As the ultrafiltration membrane or the microfiltration membrane, there are an internal pressure type for supplying raw water to the inside of the hollow fiber and an external pressure type for supplying raw water to the outside of the hollow fiber. The ultrafiltration membrane or microfiltration membrane, especially when there is an SS component in the wastewater, since the SS component is removed,
It is preferable to use the photocatalyst before the photocatalytic treatment because the photocatalytic efficiency is improved. However, the photocatalytic efficiency is not particularly limited, and the photocatalytic treatment may be used after the photocatalytic treatment or both before and after the photocatalytic treatment. Alternatively, the above-mentioned reverse osmosis membrane or biological treatment may be used in combination. For example, a combination with a front stage ultrafiltration membrane treatment, a middle stage photocatalytic treatment, and a subsequent stage reverse osmosis membrane treatment may be used.

【0018】[0018]

【実施例】以下に実施例を示すが、本発明はこれに限定
されるものではない。
EXAMPLES Examples will be shown below, but the present invention is not limited to these examples.

【0019】(1)吸光度の評価方法 それぞれの実験において吸光度の測定には、島津製作所
(株)製UV−3100自記分光光度計を用いた。脱色
率Dの計算は次式により計算した。
(1) Method of Evaluating Absorbance In each experiment, the absorbance was measured using a UV-3100 self-recording spectrophotometer manufactured by Shimadzu Corporation. The decolorization rate D was calculated by the following equation.

【0020】D=(Ao−Ai)/Ao×100 Ao:処理前の吸光度 Ai:処理後の吸光度 (実施例1)反応染料であるSumifix Supr
a Br.Red 3BF(住友化学工業(株)製)7
0ppmとアルギン酸ソ−ダ200ppmと重炭酸ソ−
ダ150ppmとヘキサメタリン酸ソ−ダ30ppmと
m−ニトロベンゼンスルホン酸ソ−ダ150ppmと非
イオン系界面活性剤300ppmを混合した水溶液を1
000cc調整し、モデル染色排水を作った。モデル染
色排水のBODは38ppmでCODは280ppmで
あった。本水溶液を高圧水銀灯(100w)の取付けら
れた1.5L容器に入れ、酸化チタンのゾルゲル法によ
って模紗織り目開きガラス繊維クロス表面の固定化した
光触媒(日本無機(株)製)200cm2 をセットし
て、水溶液を撹拌しながら2時間紫外線処理をした。処
理された水溶液のBODは25ppmであり、CODは
150ppmであった。原水と処理水を比較した脱色率
は85%であった。この処理水を架橋芳香族ポリアミド
逆浸透膜SU−800(東レ(株)製)を使用して、圧
力10kg/cm2 で透過させた。得られた処理水のB
ODは1ppm以下、CODは1ppm以下であり、脱
色率は99.9%であった。処理した後の逆浸透膜の表
面は、ほとんどファウリングを受けていなかった。
D = (Ao-Ai) / Ao × 100 Ao: Absorbance before treatment Ai: Absorbance after treatment (Example 1) Sumfix Supr which is a reactive dye
a Br. Red 3BF (manufactured by Sumitomo Chemical Co., Ltd.) 7
0 ppm, sodium alginate 200 ppm and sodium bicarbonate
Aqueous solution obtained by mixing 150 ppm of sodium hydroxide, 30 ppm of sodium hexametaphosphate, 150 ppm of soda m-nitrobenzenesulfonate and 300 ppm of a nonionic surfactant.
000 cc was adjusted to make model dyeing wastewater. The BOD of the model dyeing wastewater was 38 ppm and the COD was 280 ppm. This aqueous solution was placed in a 1.5 L container equipped with a high-pressure mercury lamp (100 w), and 200 cm 2 of a photocatalyst (manufactured by Nippon Inorganic Co., Ltd.) in which the surface of a glass fiber cloth with imitation woven fabric was fixed by a sol-gel method of titanium oxide was set. Then, an ultraviolet treatment was performed for 2 hours while stirring the aqueous solution. The BOD of the treated aqueous solution was 25 ppm and the COD was 150 ppm. The decolorization ratio of raw water and treated water was 85%. This treated water was permeated at a pressure of 10 kg / cm 2 using a crosslinked aromatic polyamide reverse osmosis membrane SU-800 (manufactured by Toray Industries, Inc.). B of treated water obtained
The OD was 1 ppm or less, the COD was 1 ppm or less, and the decolorization rate was 99.9%. The surface of the reverse osmosis membrane after the treatment was hardly fouled.

【0021】(比較例1)実施例1で用いたモデル染色
排水を直接、架橋芳香族ポリアミド逆浸透膜SU−80
0(東レ(株)製)を使用して、圧力10kg/cm2
で透過させた。得られた処理水のBODは2ppm、C
ODは2ppmであり、脱色率は97%であった。ま
た、処理した後の逆浸透膜の表面は、赤色に染色されて
おりファウリングを受けていた。
(Comparative Example 1) The model dyeing wastewater used in Example 1 was directly subjected to a crosslinked aromatic polyamide reverse osmosis membrane SU-80.
0 (manufactured by Toray Industries, Inc.) at a pressure of 10 kg / cm 2
Through. The BOD of the obtained treated water is 2 ppm, C
The OD was 2 ppm, and the decolorization rate was 97%. Further, the surface of the reverse osmosis membrane after the treatment was stained red and was fouled.

【0022】(実施例2)反応染料であるSumifi
x Supra Br.Red 3BF(住友化学工業
(株)製)70ppmとアルギン酸ソ−ダ200ppm
と重炭酸ソ−ダ150ppmとヘキサメタリン酸ソ−ダ
30ppmとm−ニトロベンゼンスルホン酸ソ−ダ15
0ppmと非イオン系界面活性剤300ppmを混合し
た水溶液を1000cc調整し、モデル染色排水を作っ
た。モデル染色排水のBODは38ppmでCODは2
80ppmであった。本水溶液を高圧水銀灯(100
w)の取付けられた1.5L容器に入れ、酸化チタンの
ゾルゲル法によって模紗織り目開きガラス繊維クロス表
面の固定化した光触媒(日本無機(株)製)200cm
2 をセットして、水溶液を撹拌しながら2時間紫外線処
理をした。処理された水溶液のBODは25ppmであ
り、CODは150ppmであった。本水溶液を滋賀県
の都市型下水処理場汚泥を使用して20日間生物処理を
した。得られた処理水をろ紙でろ過して、分析したが、
BODは5ppmであり、CODは20ppmであっ
た。脱色率は90%であった。
Example 2 Sumifi, a reactive dye
x Supra Br. Red 3BF (manufactured by Sumitomo Chemical Co., Ltd.) 70 ppm and sodium alginate 200 ppm
And sodium bicarbonate (150 ppm), sodium hexametaphosphate (30 ppm) and m-nitrobenzenesulfonic acid soda (15).
1000 cc of an aqueous solution in which 0 ppm and 300 ppm of a nonionic surfactant were mixed was prepared to prepare a model dyeing wastewater. BOD of model dyeing wastewater is 38 ppm and COD is 2
It was 80 ppm. This aqueous solution is supplied with a high pressure mercury lamp (100
w), placed in a 1.5 L container with titanium oxide sol-gel method, and immobilized photocatalyst (manufactured by Nippon Inorganic Co., Ltd.) on the surface of a woven fabric having a woven pattern with a mosaic weave.
2 was set, and an ultraviolet treatment was performed for 2 hours while stirring the aqueous solution. The BOD of the treated aqueous solution was 25 ppm and the COD was 150 ppm. This aqueous solution was subjected to biological treatment for 20 days using sludge of an urban sewage treatment plant in Shiga Prefecture. The resulting treated water was filtered through filter paper and analyzed.
The BOD was 5 ppm and the COD was 20 ppm. The decolorization rate was 90%.

【0023】(比較例2)実施例2で用いたモデル染色
排水を用いて、滋賀県の都市型下水処理場汚泥を使用し
て20日間生物処理をした。得られた処理水をろ紙でろ
過して分析したが、BODは10ppmであり、COD
は30ppmであった。また、脱色率は70%であっ
た。
(Comparative Example 2) Using the model dyeing wastewater used in Example 2, the sludge of an urban type sewage treatment plant in Shiga Prefecture was subjected to biological treatment for 20 days. The resulting treated water was filtered through a filter paper and analyzed. The BOD was 10 ppm and the COD was
Was 30 ppm. The decolorization rate was 70%.

【0024】(実施例3)反応染料であるSumifi
x Supra Br.Red 3BF(住友化学工業
(株)製)70ppmとアルギン酸ソ−ダ200ppm
と重炭酸ソ−ダ150ppmとヘキサメタリン酸ソ−ダ
30ppmとm−ニトロベンゼンスルホン酸ソ−ダ15
0ppmと非イオン系界面活性剤300ppmを混合し
た水溶液を1000cc調整し、さらに下水排水を加え
MLSS約10000ppmになるように調整し、モデル染色排水を
作った。モデル染色排水のBODは38ppmでCOD
は280ppmであった。
Example 3 Sumifi, a reactive dye
x Supra Br. Red 3BF (manufactured by Sumitomo Chemical Co., Ltd.) 70 ppm and sodium alginate 200 ppm
And sodium bicarbonate (150 ppm), sodium hexametaphosphate (30 ppm) and m-nitrobenzenesulfonic acid soda (15).
1000 cc of an aqueous solution obtained by mixing 0 ppm and 300 ppm of a nonionic surfactant was added, and sewage drainage was further added.
MLSS was adjusted to about 10000 ppm to make model dyeing wastewater. BOD of model dyeing wastewater is 38 ppm COD
Was 280 ppm.

【0025】限外濾過膜として、ポリアクリル製中空糸
膜で平均孔径が0.01μ、膜面積12m2 であり、外
圧型濾過で使用した。1時間に1回運転を止め、濾過膜
透過側から供給側に20秒通水した後、1分間20l/
分で空気を吹かして中空糸膜を揺動し、表面に付着した
濾過残存物を剥離した。濾過処理水を0.6m3 /hr
で2カ月間運転したが運転圧力は0.35 (atm)
でほとんど圧力上昇がなかった。
As the ultrafiltration membrane, a polyacrylic hollow fiber membrane having an average pore diameter of 0.01 μm and a membrane area of 12 m 2 was used for external pressure filtration. The operation was stopped once an hour, and water was passed from the permeation side of the filtration membrane to the supply side for 20 seconds.
The hollow fiber membrane was oscillated by blowing air in minutes, and the filtration residue adhering to the surface was peeled off. 0.6 m 3 / hr of filtered water
The operation pressure was 0.35 (atm)
There was almost no pressure rise.

【0026】この限外濾過膜の濾過液を、高圧水銀灯
(100w)の取付けられた1.5L容器に入れ、酸化
チタンのゾルゲル法によって模紗織り目開きガラス繊維
クロス表面の固定化した光触媒(日本無機(株)製)2
00cm2 をセットして、水溶液を撹拌しながら2時間
紫外線処理をした。処理された水溶液のBODは25p
pmであり、CODは150ppmであった。脱色率は
90%であった。
The filtrate from the ultrafiltration membrane is placed in a 1.5 L container equipped with a high-pressure mercury lamp (100 W), and a photocatalyst (Japan) is immobilized on the surface of a glass-fiber cloth with a woven pattern by the sol-gel method of titanium oxide. (Inorganic Co., Ltd.) 2
00 cm 2 was set, and ultraviolet light treatment was performed for 2 hours while stirring the aqueous solution. BOD of treated aqueous solution is 25p
pm and COD was 150 ppm. The decolorization rate was 90%.

【0027】(比較例3)限外濾過膜で処理しない以外
は実施例3と同様にした。得られた処理水をろ紙でろ過
して分析したが、BODは10ppmであり、CODは
30ppmであった。また、脱色率は70%であった。
(Comparative Example 3) The same operation as in Example 3 was performed except that the treatment was not performed with the ultrafiltration membrane. The obtained treated water was filtered through a filter paper and analyzed. The BOD was 10 ppm and the COD was 30 ppm. The decolorization rate was 70%.

【0028】[0028]

【発明の効果】本発明は、光触媒の酸化分解を利用する
ことによって、染料含有着色排水を簡便に脱色し、汚濁
感のない環境水として放流することができるか、または
リサイクル水として再利用することができる排水処理方
法を提案することができた。
According to the present invention, by utilizing the oxidative decomposition of the photocatalyst, the dye-containing colored wastewater can be easily decolorized and discharged as environmental water free of polluting, or reused as recycled water. A possible wastewater treatment method could be proposed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 9/00 502 C02F 9/00 502G 502N 502R 503 503C 504 504B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 9/00 502 C02F 9/00 502G 502N 502R 503 503C 504 504B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 染料含有着色排水を光触媒により処理す
る排水処理方法。
1. A wastewater treatment method for treating dye-containing colored wastewater with a photocatalyst.
【請求項2】 排水を光触媒により処理して後、生物処
理することを特徴とする排水処理方法。
2. A wastewater treatment method, wherein wastewater is treated with a photocatalyst and then biologically treated.
【請求項3】 排水を光触媒により処理して後、逆浸透
膜処理をして水をリサイクル使用することを特徴とする
排水処理方法。
3. A wastewater treatment method comprising treating wastewater with a photocatalyst, treating the wastewater with a reverse osmosis membrane, and recycling and using the water.
【請求項4】 排水が染料含有着色排水であることを特
徴とする請求項2または請求項3記載の排水処理方法。
4. The wastewater treatment method according to claim 2, wherein the wastewater is dye-containing colored wastewater.
【請求項5】 光触媒が二酸化チタンであることを特徴
とする請求項1乃至は請求項4記載の排水処理方法。
5. The wastewater treatment method according to claim 1, wherein the photocatalyst is titanium dioxide.
【請求項6】 限外濾過膜処理または精密濾過膜処理を
併用することを特徴とする請求項1乃至は請求項5記載
の排水処理方法。
6. The wastewater treatment method according to claim 1, wherein an ultrafiltration membrane treatment or a microfiltration membrane treatment is used in combination.
JP16611397A 1997-06-23 1997-06-23 Waste water treatment process Pending JPH1110142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16611397A JPH1110142A (en) 1997-06-23 1997-06-23 Waste water treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16611397A JPH1110142A (en) 1997-06-23 1997-06-23 Waste water treatment process

Publications (1)

Publication Number Publication Date
JPH1110142A true JPH1110142A (en) 1999-01-19

Family

ID=15825273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16611397A Pending JPH1110142A (en) 1997-06-23 1997-06-23 Waste water treatment process

Country Status (1)

Country Link
JP (1) JPH1110142A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260013A (en) * 2011-05-19 2011-11-30 波鹰(厦门)科技有限公司 Device and method for preparing recycled water on basis of electrolysis and double-membrane technology
JP2013099284A (en) * 2011-11-08 2013-05-23 Dainippon Printing Co Ltd Method for determining washing condition for cell culture support
JP2016185514A (en) * 2015-03-27 2016-10-27 栗田工業株式会社 Cleaning method of permeable membrane, and cleaner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260013A (en) * 2011-05-19 2011-11-30 波鹰(厦门)科技有限公司 Device and method for preparing recycled water on basis of electrolysis and double-membrane technology
JP2013099284A (en) * 2011-11-08 2013-05-23 Dainippon Printing Co Ltd Method for determining washing condition for cell culture support
JP2016185514A (en) * 2015-03-27 2016-10-27 栗田工業株式会社 Cleaning method of permeable membrane, and cleaner

Similar Documents

Publication Publication Date Title
Shabir et al. A review on recent advances in the treatment of dye-polluted wastewater
Hai et al. Hybrid treatment systems for dye wastewater
US20020100734A1 (en) Oxidation catalyst, method for preparing the same, method for recycling the same and method for treating wastewater using the same
CN102616881A (en) Treatment process for printing and dyeing wastewater
JPH1043775A (en) Decomposing method of organic matter in water by photocatalyst
Suryawan et al. Laboratory scale ozone-based post-treatment from textile wastewater treatment plant effluent for water reuse
CN110204031A (en) The integrated apparatus and its application method of light Fenton-just infiltration Combined Treatment bio-refractory organic wastewater
Saini Synthetic textile dyes: constitution, dying process and environmental impacts
CN108862834A (en) A kind of dyeing waste water advanced treatment system and its processing method
Othman et al. Advanced membrane technology for textile wastewater treatment
JP3676654B2 (en) Method and apparatus for purifying COD-containing water
JP2005169304A (en) Method of treating high concentration colored organic waste water
KR100294075B1 (en) System for treating landfill leachate
CN210438469U (en) Catalytic oxidation reaction system for advanced wastewater treatment
JPH1110142A (en) Waste water treatment process
CN208667411U (en) A kind of dyeing waste water advanced treatment system
KR101208683B1 (en) Water Re-Cycling System and method thereof
KR100390652B1 (en) Method for treating a waste water using a photocatalytic reaction
Meric et al. Treatment of reactive dyes and textile finishing wastewater using Fenton's oxidation for reuse
CN1100724C (en) Technology for treating industrial waste water
JPH06320184A (en) Treating method for waste developer
Meena Photo catalytic degradation of textile Azo dye using newly developed photo catalyst
CN207775004U (en) Industrial wastewater Treatment by Photocatalysis Oxidation reclamation set
Petrinić et al. Textile wastewater treatment with membrane bioreactor and water re-use.
JP2004089991A (en) Painting waste water treatment method