JPH11100610A - Method for preheating iron source in preheating vessel - Google Patents

Method for preheating iron source in preheating vessel

Info

Publication number
JPH11100610A
JPH11100610A JP26424297A JP26424297A JPH11100610A JP H11100610 A JPH11100610 A JP H11100610A JP 26424297 A JP26424297 A JP 26424297A JP 26424297 A JP26424297 A JP 26424297A JP H11100610 A JPH11100610 A JP H11100610A
Authority
JP
Japan
Prior art keywords
preheating
gas
iron source
preheating tank
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26424297A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sato
靖浩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP26424297A priority Critical patent/JPH11100610A/en
Publication of JPH11100610A publication Critical patent/JPH11100610A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To prevent the trouble in an equipment caused by the combustion heat of unburnt gas in waste gas and to simultaneously improve the preheating efficiency of an iron source, at the time of preheating the iron source in a preheating vessel with exhaust gas from an electric furnace. SOLUTION: Plural nozzles 14, 15, 16, 17, 18 are arranged in the flowing direction of the exhaust gas in the preheating vessel 7, and oxygen-containing gas is blown into the preheating vessel from these nozzles to preheat the iron source 10 while burning the unburnt gas in the exhaust gas. At this time, the combustion of the unburnt gas is accurately controlled by individually controlling the blowing quantity of the oxygen-containing gas and the blowing angle of the nozzle for each nozzle, thereby the heat conductive efficiency is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気炉から排出さ
れる高温の排ガスを用いて鉄スクラップや直接還元鉄等
の鉄源を予熱する予熱槽において、鉄源を効率良く予熱
する予熱方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preheating method for efficiently preheating an iron source such as iron scrap or direct reduced iron using a high-temperature exhaust gas discharged from an electric furnace. Things.

【0002】[0002]

【従来の技術】電気炉では電極から発生するアーク熱に
より、鉄スクラップや直接還元鉄等の鉄源を加熱・溶解
し、精錬して溶鋼を製造するが、多くの電力を消費する
ため、電気炉から発生する高温の排ガスを用いた予熱槽
を設けて鉄源を予熱し、電力使用量の削減が図られてき
た。
2. Description of the Related Art In an electric furnace, an arc source generated from an electrode heats and melts an iron source such as iron scrap or directly reduced iron and refines it to produce molten steel. A preheating tank using high-temperature exhaust gas generated from a furnace has been provided to preheat an iron source, thereby reducing power consumption.

【0003】又、近年更なる電力使用量の削減対策とし
て、電気炉内の溶鋼又は溶融スラグ中にコークス等の炭
材と酸素とを吹き込み、炭材と酸素との反応による発熱
を利用する方法も実施されるに至り、その結果、排ガス
は高温になると共に多量の未燃焼のCOガスを含み、こ
の排ガスが予熱槽に導入されるようになった。そのた
め、予熱槽を通り排出される排ガスは多量のCOガスを
含むので、COガス等の未燃焼ガスを燃焼した後、大気
に放散していた。
[0003] In recent years, as a measure for further reducing the amount of electric power consumption, a method in which a carbon material such as coke and oxygen are blown into molten steel or molten slag in an electric furnace to utilize heat generated by a reaction between the carbon material and oxygen. As a result, the exhaust gas has a high temperature and contains a large amount of unburned CO gas, and the exhaust gas has been introduced into the preheating tank. Therefore, since the exhaust gas discharged through the preheating tank contains a large amount of CO gas, unburned gas such as CO gas is burned and then released to the atmosphere.

【0004】この燃焼のためには専用の燃焼装置が必要
であることと、排ガス中のCOガスが有功に活用されて
いないことから、排ガス中のCOガス等の未燃焼ガスを
有効に活用しようとする方法が幾つか提案されている。
[0004] Since a dedicated combustion device is required for this combustion and the CO gas in the exhaust gas is not used effectively, let's make effective use of the unburned gas such as the CO gas in the exhaust gas. Some methods have been proposed.

【0005】例えば、特開平8−136163号公報
(以下、「先行技術1」と記す)には、予熱槽の排ガス
流路に排ガス中のCOガス濃度を検出するセンサーを設
け、排ガス中のCOガス濃度を一定値以下に保つよう
に、電気炉内の上部空間即ち炉壁と炉蓋とで囲まれた自
由空間に導入する空気又は酸素の量を制御してCOガス
を燃焼させ、この排ガスで予熱する方法が開示されてい
る。
For example, Japanese Patent Application Laid-Open No. Hei 8-136163 (hereinafter referred to as "prior art 1") has a sensor for detecting the concentration of CO gas in exhaust gas in an exhaust gas passage of a preheating tank. The CO gas is burned by controlling the amount of air or oxygen introduced into the upper space in the electric furnace, that is, the free space surrounded by the furnace wall and the furnace lid, so as to keep the gas concentration below a certain value. A preheating method is disclosed.

【0006】又、特開平9−4987号公報(以下、
「先行技術2」と記す)には、少なくとも2本の空気ノ
ズルから、電気炉上方に配置された予熱槽への排ガス供
給ダクト中心位置下方の電気炉内自由空間に向かって空
気を送風し、COガスを前記自由空間で燃焼(この燃焼
を二次燃焼ともいう)させた後、予熱槽に導入して予熱
する方法が開示されている。
[0006] Also, Japanese Patent Application Laid-Open No. 9-4987 (hereinafter referred to as
In "Prior art 2"), air is blown from at least two air nozzles toward a free space in an electric furnace below a center position of an exhaust gas supply duct to a preheating tank arranged above the electric furnace, A method is disclosed in which CO gas is burned in the free space (this combustion is also referred to as secondary combustion), and then introduced into a preheating tank for preheating.

【0007】[0007]

【発明が解決しようとする課題】先行技術1及び先行技
術2では、予熱槽入り口側でCOガス等の未燃焼ガスを
二次燃焼させるので、予熱槽内の排ガス中COガス濃度
を所定値まで低減することはできるが、二次燃焼は、酸
素又は空気が供給される電気炉内の自由空間で一気に起
こる。そのため、極めて高温の排ガスが予熱槽若しくは
予熱槽に通ずるダクトに導入されるので、予熱槽や予熱
槽に通ずるダクトの熱負荷が非常に高くなり、設備トラ
ブルの原因となる。又、酸素又は空気の供給量が過剰の
場合には、電気炉内に装入直前の鉄源の酸化が発生する
ので、電気炉での溶解時は還元熱が必要となり、電力原
単位の悪化を来す。
In the prior arts 1 and 2, since the unburned gas such as CO gas is secondarily burned at the entrance of the preheating tank, the CO gas concentration in the exhaust gas in the preheating tank is reduced to a predetermined value. Although it can be reduced, the secondary combustion occurs at once in the free space in the electric furnace supplied with oxygen or air. Therefore, the extremely high temperature exhaust gas is introduced into the preheating tank or the duct leading to the preheating tank, so that the heat load of the preheating tank or the duct leading to the preheating tank becomes extremely high, which causes equipment trouble. If the supply amount of oxygen or air is excessive, oxidation of the iron source immediately before charging into the electric furnace occurs, so reduction heat is required when melting in the electric furnace, and the power consumption deteriorates. Come.

【0008】本発明は上記事情に鑑みなされたもので、
その目的とするところは、排ガス中の未燃焼ガスの燃焼
熱による設備トラブルを防止すると共に、鉄源の予熱効
率を高めることのできる予熱方法を提供することであ
る。
[0008] The present invention has been made in view of the above circumstances,
An object of the present invention is to provide a preheating method capable of preventing equipment trouble due to combustion heat of unburned gas in exhaust gas and increasing the preheating efficiency of an iron source.

【0009】[0009]

【課題を解決するための手段】第1の発明による予熱槽
における鉄源の予熱方法は、予熱槽内に充填された鉄源
を電気炉から排出される排ガスを予熱槽に導入して予熱
する際に、予熱槽内の前記排ガスの流れ方向に複数個の
ノズルを配置し、これらノズルから酸素含有ガスを予熱
槽内に吹き込み、排ガス中の未燃焼ガスを燃焼させなが
ら鉄源を予熱することを特徴とするものである。
A method of preheating an iron source in a preheating tank according to a first aspect of the present invention is to preheat an iron source filled in the preheating tank by introducing exhaust gas discharged from an electric furnace into the preheating tank. At this time, a plurality of nozzles are arranged in the flow direction of the exhaust gas in the preheating tank, an oxygen-containing gas is blown into the preheating tank from these nozzles, and the iron source is preheated while burning unburned gas in the exhaust gas. It is characterized by the following.

【0010】第2の発明による予熱槽における鉄源の予
熱方法は、第1の発明において、複数個のノズルから吹
き込む酸素含有ガスの吹き込み量を各ノズルで個別に制
御して吹き込むことを特徴とするものである。
[0010] A method for preheating an iron source in a preheating tank according to a second invention is characterized in that, in the first invention, the amount of oxygen-containing gas blown from a plurality of nozzles is blown while being controlled individually by each nozzle. Is what you do.

【0011】第3の発明による予熱槽における鉄源の予
熱方法は、第1又は第2の発明において、複数個のノズ
ルの吹き込み角度を各ノズルで個別に制御して吹き込む
ことを特徴とするものである。
A method for preheating an iron source in a preheating tank according to a third aspect of the present invention is characterized in that, in the first or second aspect, the blowing angles of a plurality of nozzles are individually controlled and blown by each nozzle. It is.

【0012】第4の発明による予熱槽における鉄源の予
熱方法は、第1の発明において、予熱槽内部で鉄源の棚
つりが発生した際は、棚つり発生位置付近の酸素含有ガ
スの吹き込み量を多くして棚つりを解消させることを特
徴とするものである。
According to a fourth aspect of the present invention, there is provided a method for preheating an iron source in a preheating tank according to the first aspect, wherein when an iron source is suspended inside the preheating tank, an oxygen-containing gas is blown in the vicinity of the position where the suspension occurs. The present invention is characterized in that the amount is increased to eliminate shelf hanging.

【0013】本発明では、予熱槽の排ガスの流れ方向複
数箇所にノズルを配置し、酸素含有ガスを各ノズルから
予熱槽内に吹き込む。すると、排ガス中のCOガス、H
2ガス等の未燃焼ガスは、吹き込まれた酸素の化学等量
に等しい分が燃焼する。即ち、排ガス中の未燃焼ガスは
一気に燃焼せずに、各ノズルから吹き込まれる酸素含有
ガスの酸素等量に従い、予熱槽を通過しながら予熱槽内
で順次燃焼する。そして、予熱槽内で完全燃焼し、予熱
槽から排出される時には、排ガス中の未燃焼ガスは無く
なっている。そのため、この未燃焼ガスの燃焼による発
熱は予熱槽全体で起こり、且つ、発生する燃焼熱はその
都度鉄源の予熱に利用されるので、排ガス自体の温度が
極端に高くなることがなく、予熱槽や予熱槽に通ずるダ
クト等の設備トラブルを抑制することができる。更に、
鉄スクラップや直接還元鉄等の鉄源が充填された中で燃
焼するので、燃焼熱は効率良く鉄源に伝達する。
In the present invention, nozzles are arranged at a plurality of positions in the flow direction of the exhaust gas in the preheating tank, and an oxygen-containing gas is blown into the preheating tank from each nozzle. Then, the CO gas in the exhaust gas, H
The unburned gas such as the two gases burns in an amount equal to the chemical equivalent of the injected oxygen. That is, the unburned gas in the exhaust gas is not burned at once, but is sequentially burned in the preheating tank while passing through the preheating tank according to the oxygen equivalent of the oxygen-containing gas blown from each nozzle. Then, when the fuel is completely burned in the preheating tank and discharged from the preheating tank, the unburned gas in the exhaust gas has disappeared. Therefore, the heat generated by the combustion of the unburned gas is generated in the entire preheating tank, and the generated combustion heat is used each time for preheating the iron source. Equipment troubles such as a duct leading to the tank and the preheating tank can be suppressed. Furthermore,
Since the fuel is burned while being filled with an iron source such as iron scrap or direct reduced iron, the combustion heat is efficiently transmitted to the iron source.

【0014】そして、酸素含有ガスの吹き込み量、及び
ノズルの吹き込み角度を各ノズルで個別に制御して吹き
込むので、予熱槽内の排ガス中未燃焼ガスの燃焼が一層
精度良く制御され、排ガス温度の上昇が抑制されると共
に鉄源への着熱効率が向上する。
Since the amount of oxygen-containing gas to be blown and the blowing angle of the nozzles are individually controlled and blown by each nozzle, the combustion of the unburned gas in the exhaust gas in the preheating tank is controlled more accurately, and the temperature of the exhaust gas is controlled. The rise is suppressed and the heat transfer efficiency to the iron source is improved.

【0015】更に、予熱中に予熱槽内で棚つりが発生し
た場合には、棚つり発生位置付近に酸素含有ガスを集中
的に吹き込むことで鉄源を軟化あるいは溶融化させ、棚
つりを解消させて予熱を継続することができる。尚、本
発明の酸素含有ガスとは、酸素、空気、及び酸素と空気
との混合ガスである。
Further, when a shelf hanging occurs in the preheating tank during preheating, the iron source is softened or melted by intensively blowing an oxygen-containing gas near the position where the shelf hanging occurs to eliminate the shelf hanging. Thus, the preheating can be continued. The oxygen-containing gas of the present invention is oxygen, air, or a mixed gas of oxygen and air.

【0016】[0016]

【発明の実施の形態】本発明を図面に基づき説明する。
図1は、本発明の実施の形態の例を示す電気炉及び予熱
槽の断面概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.
FIG. 1 is a schematic sectional view of an electric furnace and a preheating tank showing an example of an embodiment of the present invention.

【0017】図において、内部を耐火物で構築され、底
部に炉底電極5を備えた炉本体2の上部には円筒状の炉
壁3が配置されており、そして、この炉壁3の上部開口
部は開閉自在な炉蓋4で覆われ、この炉蓋4を貫通して
炉本体2内へ上下移動可能な黒鉛製の上部電極6が設け
られて直流電気炉1が構築されている。
In the figure, a cylindrical furnace wall 3 is arranged on the upper part of a furnace body 2 having a furnace bottom electrode 5 at the bottom, the inside of which is constructed of a refractory material. The opening is covered with an openable and closable furnace lid 4, and an upper electrode 6 made of graphite is provided to penetrate through the furnace lid 4 and move up and down into the furnace main body 2, thereby constructing the DC electric furnace 1.

【0018】直流電気炉1の上方には、鉄スクラップや
直接還元鉄等の鉄源10を収納する予熱槽7が配置され
ている。予熱槽7の上部側壁には集塵機(図示せず)と
連結した排気ダクト28が設けられ、又、予熱槽7の底
部には鉄源10の直流電気炉1への装入路となるダクト
8と、ダクト8の下部を移動するプッシャー9とが設け
られている。そして、ダクト8の他端は炉蓋4の開口部
に接して配置され、こうして、直流電気炉1と予熱槽7
とは連結されている。直流電気炉1で発生する排ガス
は、ダクト8、予熱槽7、排気ダクト28を順に通り集
塵機に吸引され、予熱槽7内に充填する鉄源10は排ガ
スで予熱される。
Above the DC electric furnace 1, a preheating tank 7 for storing an iron source 10 such as iron scrap or direct reduced iron is arranged. An exhaust duct 28 connected to a dust collector (not shown) is provided on an upper side wall of the preheating tank 7, and a duct 8 serving as a charging path of the iron source 10 to the DC electric furnace 1 is provided at the bottom of the preheating tank 7. And a pusher 9 that moves under the duct 8. The other end of the duct 8 is disposed in contact with the opening of the furnace lid 4, and thus the DC electric furnace 1 and the preheating tank 7
And are connected. Exhaust gas generated in the DC electric furnace 1 is sucked into the dust collector through the duct 8, the preheating tank 7, and the exhaust duct 28 in this order, and the iron source 10 filling the preheating tank 7 is preheated by the exhaust gas.

【0019】又、ダクト8と排気ダクト28にはガスセ
ンサー29、30が配置され、ガスセンサー29は予熱
槽7に流入する排ガスの温度及び流量と排ガス中のCO
ガス濃度とを検出し、又、ガスセンサー30は予熱槽7
から排出される排ガスの温度及び流量と排ガス中のCO
ガス濃度とを検出している。
Gas sensors 29 and 30 are disposed in the duct 8 and the exhaust duct 28. The gas sensor 29 detects the temperature and flow rate of the exhaust gas flowing into the preheating tank 7 and the CO 2 in the exhaust gas.
And the gas sensor 30 detects the gas concentration.
Temperature and flow rate of exhaust gas discharged from CO2 and CO in exhaust gas
Gas concentration is detected.

【0020】予熱槽7の上部には鉄源供給口25が設け
られ、この鉄源供給口25は、一対の可動棚26、26
aと開閉蓋27とにより鉄源10の予熱槽7への供給時
にもシールされ、直流電気炉1の排ガスは常に集塵機に
吸引されるようになっている。
An iron source supply port 25 is provided above the preheating tank 7, and the iron source supply port 25 is provided with a pair of movable shelves 26, 26.
a and the opening / closing lid 27 are also sealed when the iron source 10 is supplied to the preheating tank 7, so that the exhaust gas from the DC electric furnace 1 is always sucked into the dust collector.

【0021】予熱槽7内の排ガスの流れ方向の上流側か
ら下流側、即ち予熱槽7の下部側から上部側への複数箇
所に、例えば図1では5個所に、酸素含有ガスを吹き込
むノズル14、15、16、17、18を配置する。図
1ではノズル14〜18が等間隔で配置されているが、
等間隔とする必要はない。但し、配置間隔を3m以下と
することが好ましい。3mを超える間隔の場合には、排
ガス中の未燃焼ガスの燃焼が不均一となり、設備トラブ
ルにつながる過剰な温度上昇を来す恐れがあるからであ
る。ノズル14〜18は個別に設けた流量制御弁(図示
せず)により独自にガス吹き込み量を制御でき、又、各
ノズル14〜18に取り付けたノズル駆動装置(図示せ
ず)により吹き込み角度を上下左右に変更できるように
なっている。
A nozzle 14 for blowing an oxygen-containing gas into a plurality of locations from the upstream side to the downstream side in the flow direction of the exhaust gas in the preheating tank 7, that is, five places in FIG. , 15, 16, 17, and 18 are arranged. In FIG. 1, the nozzles 14 to 18 are arranged at equal intervals,
There is no need to make them evenly spaced. However, it is preferable that the arrangement interval is 3 m or less. If the interval is more than 3 m, the combustion of the unburned gas in the exhaust gas becomes non-uniform, which may cause an excessive rise in temperature, which may lead to equipment trouble. The nozzles 14 to 18 can independently control the gas blowing amount by individually provided flow rate control valves (not shown), and can raise and lower the blowing angle by nozzle driving devices (not shown) attached to the respective nozzles 14 to 18. It can be changed left and right.

【0022】用いる酸素含有ガスは、酸素、空気、又は
酸素と空気との混合ガスから適宜選択する。空気を用い
る場合には、空気中の窒素による冷却効果があり排ガス
の温度上昇が抑制されるが、酸素の場合にはこの冷却効
果はない。従って、ガスセンサー29により検出される
排ガス温度及び排ガスのCOガス濃度に応じて酸素含有
ガスを選択する。即ち、排ガスの温度及びCOガス濃度
が共に低い場合には酸素を、逆に、共に高い場合には空
気を、又、共に中間の場合やどちらか一方が低い場合に
は酸素と空気との混合ガスを用いれば良い。
The oxygen-containing gas to be used is appropriately selected from oxygen, air, or a mixed gas of oxygen and air. In the case of using air, there is a cooling effect by nitrogen in the air and the temperature rise of the exhaust gas is suppressed, but in the case of oxygen, there is no such cooling effect. Therefore, the oxygen-containing gas is selected according to the exhaust gas temperature detected by the gas sensor 29 and the CO gas concentration of the exhaust gas. That is, when the temperature of the exhaust gas and the CO gas concentration are both low, oxygen is used. On the contrary, when both are high, air is used. When both are intermediate or one of them is low, mixing of oxygen and air is performed. Gas may be used.

【0023】予熱槽7には光発信器19a、20a、2
1a、22aと光受信器19b、20b、21b、22
bからなる4つの棚つり検知センサー19、20、2
1、22が配置されている。鉄源10の棚つりは、例え
ば光発信器19aから発信した光を光受信器19bが感
知した場合、棚つり検知センサー19の上方で棚つりが
発生したと判定するものである。
The preheating tank 7 has optical transmitters 19a, 20a, 2
1a, 22a and optical receivers 19b, 20b, 21b, 22
b, four shelf hanging detection sensors 19, 20, 2
1, 22 are arranged. For example, when the light receiver 19b detects the light transmitted from the optical transmitter 19a, the shelf hanging of the iron source 10 determines that the shelf hanging has occurred above the shelf hanging detection sensor 19.

【0024】直流電気炉1には、炉壁3を貫通し、炉本
体2内に挿入可能な酸素吹き込みランス23と炭材吹き
込みランス24とが設けられ、酸素吹き込みランス23
からは酸素が炉本体2内に吹き込まれ、そして、炭材吹
き込みランス24からは空気や窒素等を搬送用ガスとし
てコークス、チャー、石炭等の炭材が炉本体2内に吹き
込まれる。
The DC electric furnace 1 is provided with an oxygen blowing lance 23 and a carbon material blowing lance 24 which penetrate the furnace wall 3 and can be inserted into the furnace main body 2.
Oxygen is blown into the furnace main body 2, and a carbon material such as coke, char, and coal is blown into the furnace main body 2 from the carbon material blowing lance 24 using air, nitrogen or the like as a carrier gas.

【0025】この直流電気炉1における操業は、先ず、
前の操業時に予熱槽7内で予熱された鉄源10の所定量
をプッシャー9を介して炉本体2内に初装入する。尚、
冷炉で操業を開始する場合には、炉蓋4を開けてバケッ
ト等により初装入しても、又、予熱槽7からプッシャー
9を介して初装入してもどちらでも良い。炉本体2への
初装入完了後、鉄源供給口25から鉄源10を予熱槽7
内へ供給し、予熱槽7内で所定量の鉄源10を充填させ
る。
The operation of the DC electric furnace 1 is as follows.
A predetermined amount of the iron source 10 preheated in the preheating tank 7 during the previous operation is initially charged into the furnace main body 2 via the pusher 9. still,
When the operation is started in the cold furnace, the furnace lid 4 may be opened and initially charged by a bucket or the like, or the initial charging may be performed from the preheating tank 7 via the pusher 9. After the initial charging into the furnace body 2 is completed, the iron source 10 is supplied from the iron source supply port 25 to the preheating tank 7.
And a predetermined amount of the iron source 10 is filled in the preheating tank 7.

【0026】次いで、炉底電極5と上部電極6との間に
直流電流を給電しつつ、上部電極6を昇降させて上部電
極6と炉底電極5及び装入した鉄源10との間でアーク
13を発生させる。そして、発生するアーク熱により鉄
源10を溶解し、溶鋼11を生成させる。溶鋼11の生
成と共に炉本体2内の鉄源10のレベルが低下するの
で、プッシャー9を介して予熱槽7内の鉄源10を炉本
体2へ追加装入すると共に、鉄源供給口25から予熱槽
7へ鉄源10を供給して予熱槽7内の鉄源10を所定量
確保する。予熱槽7内の鉄源10は、発生する高温の排
ガスにより予熱される。
Next, while supplying a direct current between the furnace bottom electrode 5 and the upper electrode 6, the upper electrode 6 is moved up and down to allow the upper electrode 6 to move between the furnace bottom electrode 5 and the inserted iron source 10. An arc 13 is generated. Then, the iron source 10 is melted by the generated arc heat, and the molten steel 11 is generated. Since the level of the iron source 10 in the furnace main body 2 decreases with the generation of the molten steel 11, the iron source 10 in the preheating tank 7 is additionally charged into the furnace main body 2 via the pusher 9, and the iron source supply port 25 The iron source 10 is supplied to the preheating tank 7 to secure a predetermined amount of the iron source 10 in the preheating tank 7. The iron source 10 in the preheating tank 7 is preheated by the generated high-temperature exhaust gas.

【0027】溶鋼11の生成と共に、生石灰、蛍石等の
フラックスを炉本体2内に装入して、溶融スラグ12を
溶鋼11上に形成させ、溶鋼11の酸化を防止すると共
に溶鋼11の保温を図る。
Along with the formation of the molten steel 11, a flux such as quicklime or fluorite is charged into the furnace main body 2 to form a molten slag 12 on the molten steel 11, thereby preventing oxidation of the molten steel 11 and keeping the molten steel 11 warm. Plan.

【0028】又、溶鋼11の生成する頃から、酸素吹き
込みランス23及び炭材吹き込みランス24から、酸素
と炭材とを溶鋼11面又は溶融スラグ12中に吹き込
む。溶鋼11中に溶解した炭材又は溶融スラグ12中に
懸濁した炭材と、吹き込まれる酸素とが反応して燃焼熱
が発生すると共に、反応生成物のCOガスが溶融スラグ
12をフォーミングさせて、アーク13が溶融スラグ1
2に包まれ、アークの着熱効率が上昇して、鉄源10の
溶解が促進される。同時に、排ガスの温度が上昇して排
ガスの発生量が増大すると共に、排ガスは大量の未燃焼
のCOガスを含むようになる。尚、炭材の吹き込み量
は、吹き込まれる酸素の化学等量に等しい程度の炭材を
添加する。炭材の吹き込み量が吹き込まれる酸素量に比
べて少ないと、溶鋼11が過剰に酸化するので好ましく
ない。
Also, from the time when the molten steel 11 is formed, oxygen and carbon material are blown into the surface of the molten steel 11 or into the molten slag 12 from the oxygen blowing lance 23 and the carbon material blowing lance 24. The carbon material dissolved in the molten steel 11 or the carbon material suspended in the molten slag 12 reacts with the blown oxygen to generate combustion heat, and the reaction product CO gas forms the molten slag 12. , Arc 13 is molten slag 1
2, the arc heating efficiency increases, and the melting of the iron source 10 is promoted. At the same time, the temperature of the exhaust gas rises and the amount of generated exhaust gas increases, and the exhaust gas contains a large amount of unburned CO gas. It should be noted that the amount of the carbon material to be blown is about the same as the chemical equivalent of the oxygen to be blown. If the amount of carbon material blown is smaller than the amount of oxygen blown, it is not preferable because the molten steel 11 is excessively oxidized.

【0029】ガスセンサー29により検出される排ガス
流量及び排ガスのCOガス濃度に応じて、ノズル14〜
18の酸素含有ガスの吹き込み流量を決める。ノズル1
4〜18の総吹き込み流量は、COガスを完全燃焼させ
るために、総吹き込みガス中の酸素量が、排ガス中のC
Oガスの化学等量に等しいか、若しくはやや多い量とす
る。そして、総吹き込み流量からノズル14〜18の個
別の吹き込み流量を決める。
Depending on the flow rate of the exhaust gas detected by the gas sensor 29 and the CO gas concentration of the exhaust gas, the nozzles 14 to
The blowing flow rate of the oxygen-containing gas is determined. Nozzle 1
In order to completely burn the CO gas, the total flow rate of the blown gas is 4 to 18.
The amount is equal to or slightly larger than the chemical equivalent of O gas. Then, the individual blowing flow rates of the nozzles 14 to 18 are determined from the total blowing flow rate.

【0030】吹き込み流量をノズル14〜18で均等と
しても良いが、鉄源10の温度が低くなる位置、即ち予
熱槽7内ガス流れの中流付近での吹き込み流量を多くす
ることが好ましい。但し、排気ダクト28付近の下流側
での吹き込み流量を多くしても、予熱槽7から排出され
る排ガス温度が上昇するのみで、鉄源10への着熱は少
なくなるので好ましくない。又、吹き込み角度をノズル
14〜18で交互に左右にずらすことで、COガスを順
序良く燃焼させることができる。そして、ガスセンサー
30により、COガスが完全燃焼していることを確認す
る。
The blowing flow rate may be equalized by the nozzles 14 to 18. However, it is preferable to increase the blowing flow rate at a position where the temperature of the iron source 10 becomes low, that is, near the middle of the gas flow in the preheating tank 7. However, increasing the blowing flow rate on the downstream side near the exhaust duct 28 is not preferable because only the temperature of the exhaust gas discharged from the preheating tank 7 increases, and the heat applied to the iron source 10 decreases. Further, the CO gas can be burned in order by shifting the blowing angle alternately left and right by the nozzles 14 to 18. Then, it is confirmed by the gas sensor 30 that the CO gas is completely burned.

【0031】予熱中に棚つり検知センサー19〜22に
て棚つりが検知された時は、棚つりの検知された検知セ
ンサーの直下と直上に位置するノズル、例えば棚つり検
知センサー20で棚つりが検知された場合には、ノズル
15とノズル16の吹き込み流量を増加させて、棚つり
部を軟化若しくは溶融させて、棚つりを解消する。その
際に、ノズル15の吹き込み角度を上向きにすれば、棚
つりの解消は容易になる。棚つりが解消したならば、吹
き込み流量を元に戻して予熱を継続する。
When a shelf change is detected by the shelf change detection sensors 19 to 22 during preheating, the nozzles located immediately below and immediately above the detection sensor for detecting the shelf change, for example, the shelf change detection sensor 20 use the shelf change detection sensor 20. Is detected, the blowing flow rate of the nozzles 15 and 16 is increased to soften or melt the shelf hanging portion, thereby eliminating the shelf hanging. At this time, if the blowing angle of the nozzle 15 is set to be upward, it is easy to eliminate the hanging. When the hanging of the shelves has been resolved, the blowing flow rate is returned to the original, and the preheating is continued.

【0032】このようにして、予熱槽7からの炉本体2
への鉄源10の追加装入と、予熱槽7への鉄源10の供
給を継続して行い、炉本体2内に1ヒート分の溶鋼11
量が確保された時点で、炉本体2への追加装入と予熱槽
7への供給を停止し、次いで、溶鋼11を出鋼するのに
都合の良い温度に調整する。その後、直流電気炉1を傾
動させ、出鋼口(図示せず)から溶鋼11を溶鋼収納搬
送容器(図示せず)に出鋼する。出鋼後、予熱された鉄
源10を予熱槽7から炉本体2に再び初装入して、再度
アーク加熱を行い直流電気炉1の操業を継続する。
In this way, the furnace body 2 from the preheating tank 7
The addition of the iron source 10 to the furnace and the supply of the iron source 10 to the preheating tank 7 are continuously performed, and the molten steel 11 for one heat is
When the amount is secured, the additional charging to the furnace main body 2 and the supply to the preheating tank 7 are stopped, and then the temperature is adjusted to a temperature convenient for tapping the molten steel 11. Thereafter, the DC electric furnace 1 is tilted, and the molten steel 11 is tapped from a tapping port (not shown) to a molten steel storage / transport container (not shown). After tapping, the preheated iron source 10 is initially charged from the preheating tank 7 into the furnace main body 2 again, the arc heating is performed again, and the operation of the DC electric furnace 1 is continued.

【0033】このようにして鉄源10を予熱すること
で、COガスの燃焼熱は効率良く鉄源10に着熱して電
力原単位が削減する。又、鉄源10の充填した場所でC
Oガスを燃焼させるので、ガス温度の過度の上昇がな
く、設備トラブルを防止することができる。
By preheating the iron source 10 in this manner, the heat of combustion of the CO gas efficiently heats the iron source 10 to reduce the power consumption. Also, at the place where the iron source 10 is filled, C
Since the O gas is burned, the gas temperature does not rise excessively, and equipment troubles can be prevented.

【0034】図2は、本発明の実施の形態の他の例を示
す電気炉及び予熱槽の断面概略図である。図2におい
て、図1と同一の部分は同一符号により示し、その説明
は省略する。
FIG. 2 is a schematic sectional view of an electric furnace and a preheating tank showing another embodiment of the present invention. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.

【0035】本実施の形態では、炉本体2の上部に予熱
槽7と炉壁3とが配置され、直流電気炉1と予熱槽7と
が直結された型式であり、予熱槽7に供給されて予熱さ
れた鉄源10は、炉本体2内で溶解される鉄源10に見
合う量が予熱槽7内を自然落下して炉本体2に装入され
るものである。又、図1と異なり、3つの棚つり検知セ
ンサー19、20、21を配置した場合を示したもので
ある。
In the present embodiment, a preheating tank 7 and a furnace wall 3 are arranged at the upper part of the furnace main body 2 and the DC electric furnace 1 and the preheating tank 7 are directly connected. The preheated iron source 10 is charged into the furnace main body 2 by a natural amount falling in the preheating tank 7 in an amount corresponding to the iron source 10 melted in the furnace main body 2. Further, unlike FIG. 1, the case where three shelf hanging detection sensors 19, 20, and 21 are arranged is shown.

【0036】この直流電気炉1と予熱槽7における操業
は、予熱槽7内に1ヒート分の鉄源10を供給したら、
予熱槽7への鉄源10の供給を停止して予熱槽7内の鉄
源10を全て溶解し、予熱槽7内に未溶解の鉄源10が
残らない状態で溶鋼11を出鋼し、これを繰り返して行
うものであるが、その他の操業方法は、図1に示す直流
電気炉1の方法と同じであり、上記説明に従い本発明を
実施する。
The operation in the DC electric furnace 1 and the preheating tank 7 is performed by supplying an iron source 10 for one heat into the preheating tank 7.
The supply of the iron source 10 to the preheating tank 7 is stopped, all the iron sources 10 in the preheating tank 7 are melted, and the molten steel 11 is tapped with no unmelted iron source 10 remaining in the preheating tank 7. This operation is repeated, but the other operation methods are the same as those of the DC electric furnace 1 shown in FIG. 1, and the present invention is implemented according to the above description.

【0037】尚、上記説明では、直流電気炉1の場合に
ついて説明したが、交流電気炉でも全く支障なく本発明
を適用でき、更に、上部電極6の数や炉底電極5等の構
造の違い、及び、ガスセンサー29、30の配置数等の
違いは本発明の支障とならないことは言うまでもない。
In the above description, the case of the DC electric furnace 1 has been described. However, the present invention can be applied without any problem to the AC electric furnace, and furthermore, the difference in the number of the upper electrodes 6 and the structure of the furnace bottom electrode 5 and the like. Needless to say, the difference in the number of the gas sensors 29, 30 and the like does not hinder the present invention.

【0038】[0038]

【実施例】図1に示す直流電気炉における実施例を以下
に説明する。電気炉は、炉容量120トンであり、予熱
槽は幅3m、長さ5mで、予熱槽中心底部から排気ダク
トまでの高さが9mの直方体形状である。そして、予熱
槽中心底部から0.5mの高さ位置を起点として0.8
m間隔で10本のノズルを配置した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the DC electric furnace shown in FIG. 1 will be described below. The electric furnace has a furnace capacity of 120 tons, a preheating tank having a width of 3 m and a length of 5 m, and a rectangular parallelepiped shape having a height of 9 m from the center bottom of the preheating tank to an exhaust duct. Then, starting at a height of 0.5 m from the center of the preheating tank, 0.8
Ten nozzles were arranged at m intervals.

【0039】予熱槽入口での排ガス温度は1600℃、
排ガス流量は280Nm3/min、そして、排ガス中
のCOガス濃度は80%であった。空気を吹き込み用ガ
スとして用い、空気の総吹き込み流量を560Nm3
minと決め、実施例1では各ノズルからの吹き込み流
量を56Nm3/minとして均等に吹き込み、実施例
2では図3に示すように予熱槽下側2本と最上位置のノ
ズルから34Nm3/minとし、下から6〜8番目で
78Nm3/minとし、これらの間は直線的に増減さ
せた。又、比較のために予熱槽への吹き込みを停止した
比較例も実施した。尚、上記の操業条件は、直流電気炉
を連続して操業し、予熱槽内の鉄スクラップの予熱温度
が定常状態となっている時の条件である。
The temperature of the exhaust gas at the inlet of the preheating tank is 1600 ° C.
The exhaust gas flow rate was 280 Nm 3 / min, and the CO gas concentration in the exhaust gas was 80%. Air is used as blowing gas, and the total blowing flow rate of air is 560 Nm 3 /
min, and in Example 1, the blowing flow rate from each nozzle was 56 Nm 3 / min, and the nozzles were evenly blown. In Example 2, as shown in FIG. 3, 34 Nm 3 / min from the lower two preheating tanks and the uppermost nozzle. The value was set to 78 Nm 3 / min from the sixth to the eighth from the bottom, and the value was linearly increased and decreased between these. For comparison, a comparative example in which blowing into the preheating tank was stopped was also performed. The above operating conditions are those when the DC electric furnace is operated continuously and the preheating temperature of the iron scrap in the preheating tank is in a steady state.

【0040】そして、予熱槽から炉本体へ装入される鉄
スクラップをそれぞれの条件で20個ずつ回収して測温
し、20個の温度の平均値を予熱温度とした。予熱温度
は実施例1で890℃、実施例2で900℃となり、比
較例の320℃に比べて大幅に予熱温度を上げることが
できた。表1に実施例1、実施例2及び比較例の予熱条
件、予熱結果をまとめて示す。
Then, 20 pieces of iron scrap charged into the furnace main body from the preheating tank were collected and measured for each condition, and the average value of the temperatures of the 20 pieces was taken as the preheating temperature. The preheating temperature was 890 ° C. in Example 1 and 900 ° C. in Example 2, indicating that the preheating temperature was significantly increased as compared with 320 ° C. in Comparative Example. Table 1 collectively shows the preheating conditions and the preheating results of Example 1, Example 2, and Comparative Example.

【0041】[0041]

【表1】 [Table 1]

【0042】又、実施例1及び実施例2で予熱槽の排ガ
ス温度を測定したが、実施例1では最下段のノズル付近
で1700℃の最高温度となったが、その後は徐々に低
下していた。実施例2では予熱槽入口で1600℃の最
高温度となり、その後は鉄スクラップに熱を奪われ、1
600℃を超えることはなかった。そのため、実施例1
及び実施例2共に、設備トラブルは全く発生しなかっ
た。又、実施例1及び実施例2では、比較例に比べ電力
原単位を大幅に低減することができた。
In Examples 1 and 2, the temperature of the exhaust gas from the preheating tank was measured. In Example 1, the temperature reached 1700 ° C. in the vicinity of the lowermost nozzle, but thereafter decreased gradually. Was. In Example 2, the maximum temperature was 1600 ° C. at the entrance of the preheating tank.
It did not exceed 600 ° C. Therefore, Embodiment 1
In both Example 2 and Example 2, no equipment trouble occurred. In Examples 1 and 2, the power consumption was significantly reduced as compared with the comparative example.

【0043】[0043]

【発明の効果】本発明では電気炉で発生する排ガスを鉄
源の充填された予熱槽内で徐々に燃焼させるので、排ガ
スの燃焼熱は効率良く鉄源に着熱して鉄源の予熱温度が
上昇し、電力原単位を低減することができる。更に、燃
焼熱による排ガス温度の過度の上昇を防止できるので、
過度の温度上昇に起因する設備トラブルを未然に防ぐこ
とができる。
According to the present invention, since the exhaust gas generated in the electric furnace is gradually burned in the preheating tank filled with the iron source, the combustion heat of the exhaust gas efficiently heats the iron source to reduce the preheating temperature of the iron source. As a result, power consumption can be reduced. Furthermore, since it is possible to prevent the exhaust gas temperature from excessively rising due to combustion heat,
Equipment troubles caused by excessive temperature rise can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の例を示す電気炉及び予熱
槽の断面概略図である。
FIG. 1 is a schematic sectional view of an electric furnace and a preheating tank showing an example of an embodiment of the present invention.

【図2】本発明の実施の形態の他の例を示す電気炉及び
予熱槽の断面概略図である。
FIG. 2 is a schematic sectional view of an electric furnace and a preheating tank showing another example of the embodiment of the present invention.

【図3】実施例2における空気の吹き込みパターンを示
す図である。
FIG. 3 is a diagram showing an air blowing pattern in a second embodiment.

【符号の説明】[Explanation of symbols]

1 直流電気炉 2 炉本体 3 炉壁 4 炉蓋 5 炉底電極 6 上部電極 7 予熱槽 8 ダクト 9 プッシャー 10 鉄源 11 溶鋼 12 溶融スラグ 13 アーク 14 ノズル DESCRIPTION OF SYMBOLS 1 DC electric furnace 2 Furnace main body 3 Furnace wall 4 Furnace lid 5 Furnace bottom electrode 6 Upper electrode 7 Preheating tank 8 Duct 9 Pusher 10 Iron source 11 Molten steel 12 Molten slag 13 Arc 14 Nozzle

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 予熱槽内に充填された鉄源を電気炉から
排出される排ガスを予熱槽に導入して予熱する際に、予
熱槽内の前記排ガスの流れ方向に複数個のノズルを配置
し、これらノズルから酸素含有ガスを予熱槽内に吹き込
み、排ガス中の未燃焼ガスを燃焼させながら鉄源を予熱
することを特徴とする予熱槽における鉄源の予熱方法。
A plurality of nozzles are arranged in a flow direction of the exhaust gas in the preheating tank when preheating the iron source filled in the preheating tank by introducing the exhaust gas discharged from the electric furnace into the preheating tank. A method for preheating an iron source in a preheating tank, wherein an oxygen-containing gas is blown into the preheating tank from these nozzles to preheat the iron source while burning unburned gas in the exhaust gas.
【請求項2】 前記複数個のノズルから吹き込む酸素含
有ガスの吹き込み量を各ノズルで個別に制御して吹き込
むことを特徴とする請求項1に記載の予熱槽における鉄
源の予熱方法。
2. The method for preheating an iron source in a preheating tank according to claim 1, wherein the blowing amount of the oxygen-containing gas blown from the plurality of nozzles is controlled by each nozzle individually.
【請求項3】 前記複数個のノズルの吹き込み角度を各
ノズルで個別に制御して吹き込むことを特徴とする請求
項1又は請求項2に記載の予熱槽における鉄源の予熱方
法。
3. The method for preheating an iron source in a preheating tank according to claim 1, wherein the blowing angles of the plurality of nozzles are individually controlled and blown by each nozzle.
【請求項4】 予熱槽内部で鉄源の棚つりが発生した際
は、棚つり発生位置付近の酸素含有ガスの吹き込み量を
多くして棚つりを解消させることを特徴とする請求項1
に記載の予熱槽における鉄源の予熱方法。
4. The apparatus according to claim 1, wherein when a shelf of the iron source is generated inside the preheating tank, the amount of the oxygen-containing gas blown in the vicinity of the position where the shelf is dropped is increased to eliminate the hanging.
A method for preheating an iron source in the preheating tank described in 1.
JP26424297A 1997-09-29 1997-09-29 Method for preheating iron source in preheating vessel Pending JPH11100610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26424297A JPH11100610A (en) 1997-09-29 1997-09-29 Method for preheating iron source in preheating vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26424297A JPH11100610A (en) 1997-09-29 1997-09-29 Method for preheating iron source in preheating vessel

Publications (1)

Publication Number Publication Date
JPH11100610A true JPH11100610A (en) 1999-04-13

Family

ID=17400468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26424297A Pending JPH11100610A (en) 1997-09-29 1997-09-29 Method for preheating iron source in preheating vessel

Country Status (1)

Country Link
JP (1) JPH11100610A (en)

Similar Documents

Publication Publication Date Title
SU1496637A3 (en) Method and apparatus for continuous refining of steel in electric furnace
CN1120653A (en) Electric arc furnace post combustion method
US4701216A (en) Melting of metals
US6693948B2 (en) Apparatus for arc-melting cold iron source and method thereof
BR112015000912B1 (en) Method for initiating a melt bath-based casting process for a metalliferous material in a foundry container that defines a casting chamber and a melt metal production chamber
CN108624739B (en) Steelmaking equipment and smelting method for steelmaking by using scrap steel
JPH0726318A (en) Operation of electric furnace for steelmaking
JP2861794B2 (en) Melting furnace with raw material preheating tank
JPH11100610A (en) Method for preheating iron source in preheating vessel
CN104152712A (en) A side-blown lead melting reduction process
JP4077533B2 (en) Metal melting method
EP1226283B1 (en) High temperature premelting apparatus
JP3629740B2 (en) Hot metal production method
JPH11140529A (en) Operation of arc furnace
RU2645858C2 (en) Electric steel melting unit ladle-furnace (esu-lf)
JPH11257859A (en) Method for melting cold iron source and melting facility
JPH02200713A (en) Device and method for producing molten iron
JP3814768B2 (en) Arc furnace operation method
JP2000017319A (en) Operation of arc furnace
JP3650193B2 (en) Method for melting metal raw materials
JP2001074377A (en) Method and facility for melting cold iron source
US20240093320A1 (en) Method for producing molten iron using electric furnace provided with video device
JPH1123156A (en) Fusion furnace for metal, and fusion method for metal
JPH08219644A (en) Vertical scrap-melting-furnace and operating method therefor
JP3521277B2 (en) Cold iron source melting method and melting equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323