JPH11100233A - Optical element, optical element blank and their production and apparatus for production therefor - Google Patents

Optical element, optical element blank and their production and apparatus for production therefor

Info

Publication number
JPH11100233A
JPH11100233A JP26314097A JP26314097A JPH11100233A JP H11100233 A JPH11100233 A JP H11100233A JP 26314097 A JP26314097 A JP 26314097A JP 26314097 A JP26314097 A JP 26314097A JP H11100233 A JPH11100233 A JP H11100233A
Authority
JP
Japan
Prior art keywords
glass substrate
glass
optical element
optical
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26314097A
Other languages
Japanese (ja)
Inventor
Shoji Nakamura
正二 中村
Yoshiyuki Shimizu
義之 清水
Takahisa Kondo
隆久 近藤
Masaaki Haruhara
正明 春原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26314097A priority Critical patent/JPH11100233A/en
Publication of JPH11100233A publication Critical patent/JPH11100233A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass

Abstract

PROBLEM TO BE SOLVED: To obtain optical elements in the atm. without using metal molds by melting a glass material of the same quality as the quality of the glass of a glass substrate worked to an optical mirror finished surface or the quality different therefrom, dropping the melt thereon onto the glass substrate and fusing the drops and imparting an optical function to the molten liquid drops. SOLUTION: The optical elements are formed by fusing the liquid drop glass 3 of the same quality as the quality of the glass substrate or the quality different therefrom onto the glass substrate worked to the optical mirror finished surface and are provided in plural pieces at a prescribed pitch. The apparatus for production has the following constitution: A heating plate 34 embedded with heaters 33 via a heat insulating plate 32 is disposed on a table 31 which may be positioned with a slide within an X-Y plane and a processing section 35 integrated therewith is disposed. A crucible 37 arranged in the central part of the heating furnace 36 held at the prescribed temp. is disposed above the processing section 35, by which the fused glass 38 is obtd. A liquid dropping section 41 adapted to allow the dropping of the liquid drops 40 of the molten glass from a nozzle 39 disposed at the bottom end of the crucible 37 is disposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はハロゲンランプやメ
タルハロイドランプ等を光源としたプロジェクター装置
の照明光学系に用いる光学素子に関するものである。特
に照明光学系では光の利用効率および照明の均一性(明
るさ、色ムラ)のより向上を狙いとした光学素子として
マイクロレンズアレイが用いられている。本発明はマイ
クロレンズアレイに代表される光学素子、光学素子素材
とそれらの製造方法およびそれらの製造装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element used in an illumination optical system of a projector using a halogen lamp, a metal halide lamp or the like as a light source. In particular, in an illumination optical system, a microlens array is used as an optical element aiming at further improvement of light use efficiency and illumination uniformity (brightness, color unevenness). The present invention relates to an optical element represented by a microlens array, an optical element material, a method for manufacturing them, and an apparatus for manufacturing them.

【0002】[0002]

【従来の技術】従来は上述した様な光学素子を製作する
にあたり、下記の二つの方法が代表的である。
2. Description of the Related Art Conventionally, the following two methods are typical for producing the above-described optical element.

【0003】(1)溶融ガラス塊を直接金型内に供給し
てプレスするダイレクトプレス法。 (2)所定の光学機能面を有する金型を用い、比較的低
温度でガラスプリフォームをリヒート成形する方法であ
る。
(1) A direct press method in which a molten glass lump is directly supplied into a mold and pressed. (2) A method of reheating a glass preform at a relatively low temperature using a mold having a predetermined optical function surface.

【0004】何れも光学機能面を有した成形金型を必要
とし、ガラス材料に金型機能面の形状を転写させること
が特徴である。
[0004] Each of them requires a molding die having an optical function surface, and is characterized in that the shape of the die function surface is transferred to a glass material.

【0005】しかしながら、(1)の方法は用いる金型
面数が最小限で行え、大気中で成形できる利点はあるも
のの、供給するガラスが高温のための欠点をも併せ持っ
ている。すなわち、溶融ガラスが成形されて常温になる
までの温度差から生じる収縮量があまりにも大きいため
金型形状を精密に転写することが難しい。
However, the method (1) has an advantage that the number of mold surfaces to be used can be minimized and molding can be performed in the atmosphere, but also has a drawback that the glass to be supplied has a high temperature. That is, since the shrinkage caused by the temperature difference between the time when the molten glass is formed and the room temperature is reached is too large, it is difficult to transfer the mold shape precisely.

【0006】そのため成型品にヒケが生じ、それを回避
するため研磨などによる二次加工が必要になるなどの煩
雑性を有している。また型開きを比較的に高温で行わな
いと割れや、金型から成型品がはずれない等、離型性の
問題をも含んでいる。
[0006] For this reason, the molded article has sinks, and it is complicated to perform secondary processing such as polishing to avoid the sinks. Also, if the mold is not opened at a relatively high temperature, there is a problem of mold releasability, such as cracking or a molded product not coming off the mold.

【0007】従って必然的にサイクルタイムを短くする
ことで成形できる。また金型自身も高温に曝されるため
酸化が進行し、そのため定期的に金型メンテを行う必要
性があることから、金型メンテの回数を重ねるに従って
徐々に光学機能面の形状を損なう恐れを有している。
Accordingly, molding can be performed by necessarily shortening the cycle time. In addition, since the mold itself is exposed to high temperatures, the oxidation proceeds, and it is necessary to perform the mold maintenance on a regular basis. Therefore, as the number of the mold maintenance is increased, the shape of the optical functional surface may be gradually deteriorated. have.

【0008】一方、(2)の方法は高価な成形金型を保
護し、またガラスとの離型性を安定にするため不活性ガ
スを充満したチャンバー内で押圧成形を行うのが一般的
である。ガラスの屈伏点近傍(屈伏点+100℃以内)
の比較的に低い温度での成形が可能なことと、低温であ
るが故に金型とガラスとの離型性が良好(ガラスの濡れ
性が悪い)なため、塑性変形領域の最低温まで押圧が可
能となり精密な転写性を得ることができる。
On the other hand, in the method (2), press molding is generally performed in a chamber filled with an inert gas in order to protect an expensive molding die and stabilize mold release from glass. is there. Near the sag point of glass (within sag point + 100 ° C)
Can be formed at a relatively low temperature, and because of the low temperature, the mold releasability between the mold and the glass is good (the wettability of the glass is poor). And precise transferability can be obtained.

【0009】その反面、成形温度から常温までのサイク
ルを短縮するために多くの金型を必要とすることや、供
給する光学素子素材の形状にも制約があるなどの欠点を
有している。
On the other hand, it has disadvantages such as the need for a large number of dies to shorten the cycle from the molding temperature to the normal temperature, and the restriction on the shape of the optical element material to be supplied.

【0010】図6は従来法(2)を参考にして考えられ
る成型法を示すものであり、下型51、上型52、胴型
53とで構成された成形金型の内部に光学素子素材54
を入れ、成形金型全体を加熱して光学素子素材が屈伏点
以上で変形可能な温度に達した時点で圧力Pによって成
形する。
FIG. 6 shows a molding method which can be considered with reference to the conventional method (2). The optical element material is placed inside a molding die composed of a lower mold 51, an upper mold 52 and a body mold 53. 54
And the entire molding die is heated, and when the optical element material reaches a deformable temperature above the yield point, molding is performed with pressure P.

【0011】上下型は光学素子素材と接する面に光学機
能面の平面および凹面形状が所望の複数個だけ精密に加
工されている。この場合光学素子素材の形状としては平
板状が最も得やすく、かつ安価であることから有利であ
る。
In the upper and lower molds, a desired plurality of flat and concave shapes of the optical function surface are precisely processed on the surface in contact with the optical element material. In this case, the shape of the optical element material is advantageously flat because it is most easily obtained and inexpensive.

【0012】しかし下型の凹面部と光学素子素材の平面
とで形成された複数個の密閉空間55の内部にガスが閉
じこめられた場合、成形された光学素子の凸面側には未
転写の部分が残り光学素子としての機能を果たさないこ
とになる。従って、現状技術は(1)の方法が主流であ
る、が前述した多くの課題を有している。
However, when gas is trapped in a plurality of enclosed spaces 55 formed by the concave surface of the lower mold and the plane of the optical element material, the untransferred portion is formed on the convex side of the molded optical element. Will not fulfill the function as the remaining optical element. Therefore, the current technology mainly uses the method (1), but has many problems as described above.

【0013】[0013]

【発明が解決しようとする課題】本発明は上記従来の方
法における課題に鑑み成されたもので、まず従来とは全
く異なる方法、すなわち成形金型を用いることなく光学
素子を得ること。若しくは光学素子素材が得られるこ
と。上記の光学素子および光学素子素材が大気中で製造
できること。所望する光学素子および光学素子素材の形
状がある程度選択できること。また前記の光学素子素材
を従来法(2)で用いれば成形の転写性を向上させるこ
と等の課題を解決するものである。さらに上述した光学
素子と光学素子素材とを製造する装置を提供して課題の
解決とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the conventional method. First, an object is to obtain an optical element completely different from the conventional method, that is, without using a molding die. Alternatively, an optical element material can be obtained. The above optical element and optical element material can be manufactured in the atmosphere. Desirable shapes of desired optical elements and optical element materials can be selected. Further, if the above-mentioned optical element material is used in the conventional method (2), it is possible to solve problems such as improvement of transferability of molding. Further, an apparatus for manufacturing the optical element and the optical element material described above is provided to solve the problem.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
に本願発明の光学素子は、両面が光学鏡面で平板状から
なるガラス基板を準備し、同組成もしくは別組成のガラ
ス材料を溶融して、光学機能面を形成するに必要な所定
の体積量だけ、前記のガラス基板上に液滴し、ガラス基
板と液滴ガラスの両者を光学的な欠陥が無いように溶着
させて光学素子とするものであり、従来例には見られな
い金型を必要とせず、溶融した液滴ガラスを光学機能面
に用いる手段によって得られる光学素子である。
In order to solve the above-mentioned problems, an optical element according to the present invention is provided by preparing a glass substrate having both sides in the form of a flat plate having an optical mirror surface, and melting a glass material having the same composition or another composition. An amount of a predetermined amount of liquid necessary for forming an optical function surface is dropped on the glass substrate, and both the glass substrate and the droplet glass are welded so as to have no optical defects to form an optical element. This is an optical element obtained by means using molten glass droplets for the optical function surface without the need for a mold not seen in the conventional example.

【0015】本発明による光学素子の製造方法は、前記
光学素子の課題を解決する手段として記述する。光学素
子の一部を形成するためのガラス基板を光学鏡面に加工
して準備し、ガラス基板とは別にガラス材料を溶融して
所定体積の溶融ガラスを前記のガラス基板上に液滴さ
せ、全体を冷却固化させて光学素子を得る。溶融液滴の
温度およびガラス基板の相対温度が重要であり本発明の
場合、少なくともガラス基板を所定温度に加熱する手段
を用いることで光学的に欠陥のない光学素子の製造方法
である。
A method for manufacturing an optical element according to the present invention will be described as means for solving the problems of the optical element. A glass substrate for forming a part of an optical element is prepared by processing it into an optical mirror surface, a glass material is melted separately from the glass substrate, and a predetermined volume of molten glass is dropped on the glass substrate, and the entire glass substrate is melted. Is cooled and solidified to obtain an optical element. The temperature of the molten droplet and the relative temperature of the glass substrate are important. In the case of the present invention, at least a means for heating the glass substrate to a predetermined temperature is used to manufacture an optical element free from optical defects.

【0016】本発明による光学素子素材は従来例(2)
の方法における課題を解決するもので、前記の光学素子
の製造方法によるものに基本思想は同様である。しかし
異なる点はガラス基板の加熱温度を下げること、若しく
は常温で行うことで、液滴はガラス基板に溶着して仮固
定される。液滴されたガラスはより球形状に近い形態を
得ることで課題解決の手段とする。従って押成型時に於
けるガスの閉じこめの無い光学素子素材の製造方法であ
る。
The optical element material according to the present invention is a conventional example (2).
The basic idea is the same as that of the above-described method for manufacturing an optical element. However, the difference is that the droplet is welded to the glass substrate and temporarily fixed by lowering the heating temperature of the glass substrate or by performing the heating at room temperature. The dropped glass is used as a means for solving the problem by obtaining a shape closer to a spherical shape. Therefore, this is a method for producing an optical element material without trapping gas during extrusion.

【0017】本発明による光学素子および光学素子素材
の製造装置は、加熱板を備えかつスライドと位置決めが
可能な加工部、該加工部の上方には所望のガラス材料を
投入した坩堝と、ガラス材料を加熱する加熱ヒータと、
前記坩堝の下端ノズルから溶融液滴を供給可能にした液
滴部を備え、前記加工部と前記液滴部との距離を可変可
能にすることを解決の手段とした製造装置である。
An apparatus for manufacturing an optical element and an optical element material according to the present invention comprises a processing section provided with a heating plate and capable of positioning with a slide, a crucible having a desired glass material charged above the processing section, and a glass material. A heater for heating the
A manufacturing apparatus is provided which includes a droplet portion capable of supplying a molten droplet from a lower end nozzle of the crucible, and makes a distance between the processing portion and the droplet portion variable.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)本発明の光学素子は、図1の斜視図に
示すような平ー凸形状をしたレンズアレイの構成とした
光学素子1である。硼珪酸バリュウム系からなるガラス
基板を20mm角の大きさに切り出し、従来の光学研磨
法を用いて両面を鏡面に加工して2mm厚のガラス基板
2を作製した。
(Embodiment 1) The optical element of the present invention is an optical element 1 having a lens array having a flat-convex shape as shown in the perspective view of FIG. A glass substrate made of barium borosilicate was cut into a size of 20 mm square, and both surfaces were mirror-polished using a conventional optical polishing method to produce a glass substrate 2 having a thickness of 2 mm.

【0019】後述する製造方法によってガラス基板と同
組成の液滴ガラス3が所定に9個配設されている。液滴
ガラスの表面は自由鏡面であった。ガラス基板と液滴ガ
ラスとの界面には光学機能を阻害する泡や亀裂などの欠
陥は確認できなかった。液滴ガラスの形状は自由曲面を
呈しているが、その中心部をフィゾー型の干渉計で評価
したところ、その曲率半径は1.9mmであり9個とも
にほぼ一定した形状を示し、照明光学系に用いるに十分
であることを確認した。液滴ガラスが形成する形状は適
宜の設計に依存し、最適な焦点距離を得るための設計に
すればよい。
Nine droplet glass pieces 3 having the same composition as the glass substrate are provided by a manufacturing method described later. The surface of the droplet glass was a free mirror surface. No defects, such as bubbles or cracks, that hinder the optical function were found at the interface between the glass substrate and the droplet glass. The shape of the droplet glass has a free-form surface, but the center of the droplet glass was evaluated with a Fizeau interferometer. The radius of curvature was 1.9 mm, and all nine particles showed a substantially constant shape. It was confirmed that it was sufficient for use. The shape formed by the droplet glass depends on an appropriate design, and may be designed to obtain an optimum focal length.

【0020】図2には上記の光学素子を用いた液晶プロ
ジェクターの照明光学系の原理を説明するものである。
ハロゲンやメタルハロイド等を光源とするランプ21の
発光体Sから出た平行光線は、第1レンズアレイ22の
第1レンズ23を通過し、第2レンズアレイ24の第2
レンズ25の主平面上に集光して発光体Sの実像、すな
わち発光体像S’が形成される。その後、第2レンズア
レイを通過した光は液晶パネルP’面に均一に照射され
る。
FIG. 2 illustrates the principle of an illumination optical system of a liquid crystal projector using the above-described optical element.
A parallel light beam emitted from the luminous body S of the lamp 21 having a light source of halogen, metal halide, or the like passes through the first lens 23 of the first lens array 22 and passes through the second lens array 24 of the second lens array 24.
The light is focused on the main plane of the lens 25 to form a real image of the luminous body S, that is, a luminous body image S ′. Thereafter, the light that has passed through the second lens array is uniformly applied to the liquid crystal panel P ′.

【0021】したがって、第1レンズアレイは第2レン
ズアレイの主平面上に集光されて発光体の実像を形成す
るのに作用し、第2レンズアレイは第1レンズアレイの
開口に入射した光束を所定の倍率に応じて拡大し被照明
領域である液晶パネルを照明する光を形成する原理を用
いたものである。
Therefore, the first lens array acts to form a real image of the illuminant by being condensed on the main plane of the second lens array, and the second lens array acts as a light beam entering the opening of the first lens array. Is enlarged in accordance with a predetermined magnification to form light for illuminating a liquid crystal panel which is an illuminated area.

【0022】従って、本レンズアレイの特性は複数個そ
れぞれのレンズ形状、すなわち焦点距離をいかに一定に
するかで決定される。
Therefore, the characteristics of the present lens array are determined by the shape of each lens, that is, how to keep the focal length constant.

【0023】(実施の形態2)本発明による光学素子お
よび光学素子素材の製造方法を図3の製造装置を示すも
ので説明する。XーY平面内でスライドと位置決めが可
能なテーブル31上に、断熱板32を介してヒータ33
を埋設した加熱板34を配し、前記これらを一体化した
加工部35を具備し、該加工部35の上方には、所定温
度に保持された加熱炉36の中心部に配した坩堝37を
設け、溶融ガラス38を得る。坩堝37の下端に設けた
ノズル39から溶融したガラスの液滴40が落下可能に
した液滴部41とを具備し、前記加工部35と液滴部と
の相対位置(高さ)は図中矢印方向の+Zおよび−Zで
任意に設定し固定できる構成の製造装置である。
(Embodiment 2) A method for manufacturing an optical element and an optical element material according to the present invention will be described with reference to a manufacturing apparatus shown in FIG. A heater 33 is placed on a table 31 capable of sliding and positioning in an XY plane via a heat insulating plate 32.
Is provided, and a crucible 37 disposed at the center of a heating furnace 36 maintained at a predetermined temperature is provided above the processing portion 35. And a molten glass 38 is obtained. A drop portion 41 is provided at which a melted glass droplet 40 is allowed to fall from a nozzle 39 provided at the lower end of the crucible 37. The relative position (height) between the processing portion 35 and the drop portion is shown in FIG. This manufacturing apparatus has a configuration that can be arbitrarily set and fixed at + Z and -Z in the direction of the arrow.

【0024】加熱板34、加熱炉36の温度制御は図示
しない通常の熱電対を用いて行っており、また加工部3
5と液滴部41との相対距離の調整は図示しないテーブ
ル31全体を上下させて調整するか、液滴部全体を上下
するアームに取り付けることで簡便に行えるようにして
いる。
The temperature control of the heating plate 34 and the heating furnace 36 is performed by using a normal thermocouple (not shown).
The adjustment of the relative distance between the liquid droplet 5 and the liquid drop portion 41 is performed by moving the entire table 31 (not shown) up or down, or by attaching the whole liquid drop portion to an arm that moves up and down.

【0025】500℃に設定加熱された加熱板34の上
に両面を光学鏡面に研磨した比較的に融点の低い硼珪酸
系のガラス材料(ガラス転移点:501℃、屈伏点:5
49℃)からなるガラス基板2を載置した。基板の厚み
は2mmであった。
A borosilicate glass material (glass transition point: 501 ° C., sag point: 5) having a relatively low melting point and both surfaces polished to an optical mirror surface on a heating plate 34 heated to 500 ° C.
(49 ° C.). The thickness of the substrate was 2 mm.

【0026】載置した後、ガラス基板の温度が加熱板の
設定温度とほぼ同じになる間だけ保持した後、同組成の
溶融ガラス38からなり、溶融温度が1250℃で約6
0mgの液滴40をガラス基板2の上に所定のピッチで
落下させた。落下させるタイミングは約4秒であった。
After mounting, the glass substrate is held for a period of time until the temperature of the glass substrate becomes substantially the same as the set temperature of the heating plate.
A 0 mg droplet 40 was dropped on the glass substrate 2 at a predetermined pitch. The drop timing was about 4 seconds.

【0027】またガラス基板2と液滴40との距離は1
00mmとした。本実施の形態では液滴40の落下ピッ
チを7.5mmとした。液滴を完了して冷却されて得ら
れた光学素子1は図1に示した通りである。
The distance between the glass substrate 2 and the droplet 40 is 1
00 mm. In the present embodiment, the drop pitch of the droplets 40 is 7.5 mm. The optical element 1 obtained by completing the droplets and cooling is as shown in FIG.

【0028】本実施の形態ではガラス基板の温度をガラ
ス転移点に制御して行った。その理由は、当然、基板温
度を高く設定する方が液滴との溶着性は向上させられる
が、ガラス基板全体の形状を変化させないためである。
落下距離は液滴が落下中に冷却される度合いで決定さ
れ、短ければ短いほど密着性は向上するが実施の形態で
は装置の制約から100mm一定とした。
In this embodiment, the temperature of the glass substrate is controlled to the glass transition point. The reason is, of course, that the higher the substrate temperature, the better the adhesion to droplets, but the more the shape of the entire glass substrate is not changed.
The drop distance is determined by the degree to which the droplet is cooled during the drop, and the shorter the droplet, the better the adhesion.

【0029】(実施の形態3)加熱板34の設定温度を
常温としてガラス基板2を載置し、実施の形態1と同様
のガラス材料を1250℃に溶融して液滴ガラス3を落
下させた。ガラス基板と液滴ガラスと溶着されたり、ま
たは例え溶着してもガラス基板にクラックが発生して光
学素子とはならなかった。ガラス基板が、高温である液
滴ガラスの急激な熱収縮のためと、両材料の熱膨張の違
いが考えられるが、本実施の形態では前者の理由と考え
られる。しかし、両者の熱膨張を合致させることは光学
素子を得るために望ましいことは云うまでもない。
(Embodiment 3) The glass substrate 2 is placed with the set temperature of the heating plate 34 at room temperature, the same glass material as in Embodiment 1 is melted at 1250 ° C., and the droplet glass 3 is dropped. . Even if the glass substrate was welded to the droplet glass, or even if the glass substrate was welded, cracks occurred in the glass substrate and did not become an optical element. The difference between the thermal expansion of the two materials and the rapid thermal shrinkage of the glass droplet, which is a high temperature glass substrate, can be considered. In the present embodiment, the former is considered to be the reason. However, it is needless to say that matching the thermal expansions of the two is desirable for obtaining an optical element.

【0030】(実施の形態4)基板34の材料として硼
珪酸ガラスであるパイレックスガラス(軟化点:820
℃、ガラス転移点:560℃、屈伏点:653℃)で液
滴ガラスよりも屈伏点の高いものを選定し、基板の両面
を光学鏡面に加工してガラス基板2を準備した。ガラス
基板の温度を常温およびガラス転移点より十分低い30
0℃とした。溶融ガラス材料は実施の形態1から3まで
と同様ものである。
(Embodiment 4) Pyrex glass (softening point: 820) which is borosilicate glass as a material of the substrate 34
C., glass transition point: 560.degree. C., sag point: 653.degree. C.) and having a sagging point higher than that of the drop glass, and a glass substrate 2 was prepared by processing both surfaces of the substrate into optical mirror surfaces. Keep the temperature of the glass substrate at room temperature and sufficiently lower than the glass transition point.
0 ° C. The molten glass material is the same as in the first to third embodiments.

【0031】落下距離を100mmとして、約60mg
の液滴40を落下させたところ、ガラス基板2の温度が
常温と300℃の何れもに液滴ガラス3は曲率半径が約
1.7mmのほぼ球に近い形状で溶着さていた。
When the falling distance is 100 mm, about 60 mg
When the droplet 40 was dropped, the droplet glass 3 was welded in a substantially spherical shape with a radius of curvature of about 1.7 mm at both the normal temperature and 300 ° C. of the glass substrate 2.

【0032】ガラス基板と液滴ガラスとの界面にはクラ
ック、気泡などの光学機能を阻害する欠陥は見られなか
ったが、幾分かガラス基板を加熱したほうが溶着力で優
れており、また望ましい。
No defects such as cracks and bubbles were observed at the interface between the glass substrate and the droplet glass. However, it is preferable to heat the glass substrate to some extent because the glass substrate is more excellent in welding force. .

【0033】しかし所望する光学素子としては直接使用
できないものの後記する光学素子素材として、上述した
従来例(2)の成形用素材として用いられることが確認
されている。従ってガラス基板と液滴ガラスを異なる材
料で構成した図4の断面図に示す光学素子素材54を得
ることができた。
However, it has been confirmed that the desired optical element, which cannot be directly used, is used as a molding material of the above-mentioned conventional example (2) as an optical element material described later. Therefore, the optical element material 54 shown in the cross-sectional view of FIG. 4 in which the glass substrate and the droplet glass were formed of different materials was obtained.

【0034】(実施の形態5)基板材料として硼珪酸ガ
ラスであるパイレックスガラスを選定し、基板の両面を
光学鏡面に加工してガラス基板2を準備した。溶融ガラ
ス材料は実施の形態1から4までと同様のものである。
ガラス基板の設定温度を560℃にし、落下距離を10
0mmとして、1250℃の溶融ガラスを約60mgの
液滴40を落下させたところ、界面の欠陥がなく、かつ
基板のクラックの発生もなく互いに溶着され、液滴ガラ
スの形状は実施の形態1および2よりも中心曲率は小さ
く、実施の形態3および4よりも中心曲率の大きな光学
素子1を得ることができた。
Embodiment 5 Pyrex glass, which is a borosilicate glass, was selected as a substrate material, and both surfaces of the substrate were processed into optical mirror surfaces to prepare a glass substrate 2. The molten glass material is the same as in the first to fourth embodiments.
Set the temperature of the glass substrate to 560 ° C and set the drop distance to 10
Assuming 0 mm, the molten glass at 1250 ° C. was dropped about 60 mg of the droplets 40, and they were welded to each other without defects at the interface and without generation of cracks on the substrate. Thus, the optical element 1 having a smaller central curvature than that of the optical element 2 and a larger central curvature than the third and fourth embodiments could be obtained.

【0035】(実施の形態6)実施の形態4で得られた
光学素子素材を用いて従来法(2)で行う光学素子の成
形方法であり、図5を用いて説明する。下型51、上型
52、胴型53の中に光学素子素材54を投入する。上
型の光学面は平面に、下型の光学面は凹面形状(曲率半
径13.5mm)が所定のピッチに9個形成されてい
る。金型全体を580℃に加熱して、すなわち、液滴ガ
ラスの熱特性を考慮した条件で押圧成形を行ったところ
金型形状を精密に転写された光学素子を得ることができ
た。下型の凹面形状よりも光学素子素材の液滴ガラスの
曲率半径が十分に小さく、すなわち液滴ガラスに押圧変
形量を残すことで、従来例のような密閉空間を形成する
ことなく、ガスの閉じこめが発生しない構成としたため
精密な転写性を実現した光学素子を得ることができた。
(Embodiment 6) This is a method of molding an optical element by the conventional method (2) using the optical element material obtained in Embodiment 4, which will be described with reference to FIG. The optical element material 54 is put into the lower mold 51, the upper mold 52, and the body mold 53. The optical surface of the upper mold has a flat surface, and the optical surface of the lower mold has nine concave shapes (radius of curvature of 13.5 mm) at a predetermined pitch. When the entire mold was heated to 580 ° C., that is, press-molding was performed under conditions that considered the thermal characteristics of the droplet glass, it was possible to obtain an optical element in which the mold shape was precisely transferred. The radius of curvature of the droplet glass of the optical element material is sufficiently smaller than the concave shape of the lower mold, that is, by leaving the amount of pressing deformation on the droplet glass, without forming a closed space as in the conventional example, the gas An optical element that achieved precise transferability was obtained because of the configuration in which no confinement occurs.

【0036】[0036]

【発明の効果】以上のように本発明の光学素子は、成形
金型を必要とせずに得られ金型作製のリードタイムを著
しく短縮できる。また光学素子素材も前記光学素子を得
るための製造条件の変更のみで得ることだでき、成型時
に於ける従来の欠点を除去し、転写性の良好な成型品を
実現できる。またその製造方法はガラス基板、液滴ガラ
スの温度条件および落下距離の変更に伴って任意の光学
機能を有する光学素子を得ることが可能となる。さらに
製造装置は簡便な構成で実現でき、産業上利用価値の高
いものである。
As described above, the optical element of the present invention can be obtained without the need for a molding die, and can significantly reduce the lead time for producing the die. In addition, the optical element material can be obtained only by changing the manufacturing conditions for obtaining the optical element, and the conventional defects at the time of molding can be removed, and a molded article having good transferability can be realized. Further, according to the manufacturing method, it is possible to obtain an optical element having an arbitrary optical function according to a change in the temperature condition and the drop distance of the glass substrate and the droplet glass. Further, the manufacturing apparatus can be realized with a simple configuration, and has high industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学素子をせつめいする立体斜視図FIG. 1 is a three-dimensional perspective view showing an optical element of the present invention.

【図2】本発明による光学素子を用いた照明光学系を説
明する原理図
FIG. 2 is a principle diagram illustrating an illumination optical system using an optical element according to the present invention.

【図3】本発明の製造方法と製造装置を説明する概略断
面図
FIG. 3 is a schematic sectional view illustrating a manufacturing method and a manufacturing apparatus of the present invention.

【図4】本発明で得られた光学素子素材の断面図FIG. 4 is a sectional view of an optical element material obtained by the present invention.

【図5】本発明の光学素子素材を用いて行われる従来成
型法を説明する断面図
FIG. 5 is a cross-sectional view illustrating a conventional molding method performed using the optical element material of the present invention.

【図6】従来法の成形を説明する断面図FIG. 6 is a cross-sectional view illustrating a conventional molding method.

【符号の説明】[Explanation of symbols]

1 光学素子 2 ガラス基板 3 液滴ガラス 21 ランプ 22 第1レンズアレイ 24 第2レンズアレイ 31 テーブル 32 断熱板 33 ヒータ 34 加熱板 35 加工部 36 加熱炉 37 坩堝 38 溶融ガラス 39 ノズル 40 液滴 41 液滴部 51 下型 52 上型 53 胴型 54 光学素子素材 55 密閉空間 S’ 発光体像 P’ 液晶パネル面 REFERENCE SIGNS LIST 1 optical element 2 glass substrate 3 droplet glass 21 lamp 22 first lens array 24 second lens array 31 table 32 heat insulating plate 33 heater 34 heating plate 35 processing section 36 heating furnace 37 crucible 38 molten glass 39 nozzle 40 droplet 41 liquid Drop part 51 Lower mold 52 Upper mold 53 Body mold 54 Optical element material 55 Enclosed space S 'Light emitter image P' Liquid crystal panel surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 春原 正明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued from the front page (72) Inventor Masaaki Sunohara 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 光学鏡面に加工されたガラス基板上に、
該ガラスと同質もしくは異質のガラス材料を溶融液滴し
て融着させ、前記溶融液滴に光学機能をもたせたことを
特徴とする光学素子。
1. A glass substrate processed into an optical mirror surface,
An optical element, characterized in that a glass material of the same or a different kind as the glass is melted and dropped to form a fusion, and the melted droplet has an optical function.
【請求項2】 前記溶融液滴に相当する部分が所望の形
状に整形されて光学機能をもたせたことを特徴とする請
求項1記載の光学素子。
2. The optical element according to claim 1, wherein a portion corresponding to the molten droplet is shaped into a desired shape and has an optical function.
【請求項3】 前記溶融液滴が前記ガラス基板上に所定
ピッチでかつ複数個に配設してなることを特徴とする請
求項1または2記載の光学素子。
3. The optical element according to claim 1, wherein said molten liquid droplets are arranged in plural at a predetermined pitch on said glass substrate.
【請求項4】 ガラス基板を光学鏡面に加工して準備す
る工程、前記ガラス基板を所定温度に加熱する工程、前
記ガラス基板と同質もしくは異質でかつ所定量のガラス
材料を前記ガラス基板上に溶融液滴する工程、前記ガラ
ス材料全体を冷却固化する工程とを具備し、前記ガラス
基板と前記液滴させたガラス材料とを光学的に溶着させ
て光学機能効果をもたせたことを特徴とする光学素子の
製造方法。
4. A step of preparing a glass substrate by processing it into an optical mirror surface, a step of heating the glass substrate to a predetermined temperature, and a step of melting a glass material of the same or different quality as the glass substrate and a predetermined amount on the glass substrate. An optical function, comprising: a step of dropping, and a step of cooling and solidifying the entire glass material, and optically welding the glass substrate and the dropped glass material to provide an optical function effect. Device manufacturing method.
【請求項5】 前記溶融液滴が前記ガラス基板上に所定
ピッチでかつ複数個に配設することを特徴とする請求項
2または3記載の光学素子の製造方法。
5. The method for manufacturing an optical element according to claim 2, wherein the molten liquid droplets are arranged at a predetermined pitch on the glass substrate.
【請求項6】 ガラス基板を光学鏡面に加工して準備す
る工程、前記ガラス基板上に光学機能を効果をもたせる
ための同質もしくは異質のガラス材料を溶融液滴し、前
記ガラス基板と前記溶融液滴とを仮固定されたことを特
徴とする光学素子成型用の光学素子素材。
6. A step of preparing a glass substrate by processing it into an optical mirror surface, melting and dropping a homogeneous or dissimilar glass material for providing an optical function on the glass substrate, An optical element material for molding an optical element, wherein a droplet and a droplet are temporarily fixed.
【請求項7】 前記溶融液滴が前記ガラス基板上に所定
ピッチでかつ複数個に配設されたことを特徴とする請求
項6記載の光学素子素材。
7. The optical element material according to claim 6, wherein a plurality of the molten droplets are arranged at a predetermined pitch on the glass substrate.
【請求項8】 ガラス基板を光学鏡面に加工して準備す
る工程、前記ガラス基板上に光学機能効果をもたせるた
めの同質もしくは異質のガラス材料を溶融液滴し、前記
ガラス基板と前記溶融液滴とを仮固定させる工程とを具
備し、前記溶融液滴に押圧変形量を残した形状としたこ
とを特徴とする光学素子素材の製造方法。
8. A step of preparing a glass substrate by processing it into an optical mirror surface, wherein the same or different glass material for imparting an optical function effect is melted and dropped on the glass substrate, and the glass substrate and the molten droplet are melted. And a step of temporarily fixing the molten liquid droplets, wherein the molten liquid droplets have a shape with a pressing deformation amount remaining.
【請求項9】 テーブル上に断熱板と加熱板および光学
素子の一部を成すガラス基板とを積載可能にして前記テ
ーブルがXーY平面内でスライドと位置決めとが可能な
構成にした加工部と、該加工部の上方に所望のガラス材
料を投入した坩堝とガラス材料を溶融温度まで加熱する
加熱ヒータと前記坩堝の下端ノズルから溶融液滴を供給
可能にした構成の液滴部とからなり、前記スライド部と
前記液滴部との相対距離を可変可能にしたことを特徴と
する光学素子および光学素子素材の製造装置。
9. A processing section in which a heat insulating plate, a heating plate, and a glass substrate forming a part of an optical element can be mounted on a table so that the table can be slid and positioned in an XY plane. A crucible charged with a desired glass material above the processing portion, a heater for heating the glass material to a melting temperature, and a droplet portion configured to supply molten droplets from a lower end nozzle of the crucible. An apparatus for manufacturing an optical element and an optical element material, wherein a relative distance between the slide section and the liquid drop section is variable.
JP26314097A 1997-09-29 1997-09-29 Optical element, optical element blank and their production and apparatus for production therefor Pending JPH11100233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26314097A JPH11100233A (en) 1997-09-29 1997-09-29 Optical element, optical element blank and their production and apparatus for production therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26314097A JPH11100233A (en) 1997-09-29 1997-09-29 Optical element, optical element blank and their production and apparatus for production therefor

Publications (1)

Publication Number Publication Date
JPH11100233A true JPH11100233A (en) 1999-04-13

Family

ID=17385375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26314097A Pending JPH11100233A (en) 1997-09-29 1997-09-29 Optical element, optical element blank and their production and apparatus for production therefor

Country Status (1)

Country Link
JP (1) JPH11100233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155090B2 (en) 2003-08-01 2006-12-26 Seiko Epson Corporation Optical device and method for manufacturing the same, optical module, and optical transmission device
CN110058332A (en) * 2019-04-30 2019-07-26 安徽大学 A kind of production method of lenticule

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155090B2 (en) 2003-08-01 2006-12-26 Seiko Epson Corporation Optical device and method for manufacturing the same, optical module, and optical transmission device
US7483603B2 (en) 2003-08-01 2009-01-27 Seiko Epson Corporation Optical device and method for manufacturing the same, optical module, and optical transmission device
CN110058332A (en) * 2019-04-30 2019-07-26 安徽大学 A kind of production method of lenticule
CN110058332B (en) * 2019-04-30 2020-09-11 安徽大学 Method for manufacturing micro lens

Similar Documents

Publication Publication Date Title
US9290402B2 (en) Method and device for producing technical glass parts for optical applications
US20110000260A1 (en) Method for producing an optical glass part, particularly of a motor vehicle headlight lens
US20100206007A1 (en) Method for producing a headlight lens for a vehicle headlight
JP2004339039A (en) Optical element manufacturing method
JP4045833B2 (en) Optical element manufacturing method
JPH11100233A (en) Optical element, optical element blank and their production and apparatus for production therefor
JPS62292635A (en) Molding method for glass lens
JPH08319124A (en) Formation of glass gob
JP3188676B2 (en) Method for manufacturing glass molded body
JP2007186392A (en) Method of molding thermoplastic base material
JPH05286728A (en) Production of glass lens
JPH06206730A (en) Production of glass gob
JP3673554B2 (en) Glass gob molding method and molding apparatus
JPH11236224A (en) Method for forming optical element
JP3162178B2 (en) Method for molding optical glass element
WO2015137457A1 (en) Optical element manufacturing method
JP3585260B2 (en) Apparatus and method for manufacturing optical element
JP2007076945A (en) Method and apparatus for molding glass lens
JPH0692654A (en) Method for molding glass lens
JP3614902B2 (en) Preform for glass molded lens and manufacturing method thereof
JP2002128534A (en) Forming method of optical glass element
JPH07165431A (en) Forming of gob and forming apparatus therefor
JPH1149528A (en) Method for forming glass element
JPH0769650A (en) Production of optical element
JPH05279055A (en) Production of glass lens