JPH109924A - Thermal air flowmeter - Google Patents

Thermal air flowmeter

Info

Publication number
JPH109924A
JPH109924A JP8164319A JP16431996A JPH109924A JP H109924 A JPH109924 A JP H109924A JP 8164319 A JP8164319 A JP 8164319A JP 16431996 A JP16431996 A JP 16431996A JP H109924 A JPH109924 A JP H109924A
Authority
JP
Japan
Prior art keywords
temperature
air flow
heating
resistor
measuring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8164319A
Other languages
Japanese (ja)
Other versions
JP3193872B2 (en
Inventor
Masamichi Yamada
雅通 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16431996A priority Critical patent/JP3193872B2/en
Publication of JPH109924A publication Critical patent/JPH109924A/en
Application granted granted Critical
Publication of JP3193872B2 publication Critical patent/JP3193872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Micromachines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal air flowmeter in which the dynamic range is widened while reducing noise and the reliability of dustproofness is enhanced by providing a pair of heatting elements, respectively, on the upstream side and the downstream side of a temperature measuring element. SOLUTION: In a measuring element 1, upper surface of a semiconductor substrate 2 is coated with an electric insulation film which closes the upper surface side of a cavity 3. A pair of heating elements 5, 6 are arranged, respectively, on the opposite sides of a temperature measuring element 4 in the upstream and downstream of an air flow. The heating elements 5, 6 are fed with currents for heating up the temperature measuring element 4 to a temperature higher by a predetermined level than the temperature of an air temperature measuring element 7. In order to control the temperature measuring element 4 to have a temperature higher by a predetermined level than the temperature of an air temperature measuring element 7, the air flow rate is measured by taking advantage of the fact that the heating current to be fed to the heating elements 5, 6 increase when the air flow rate increases. Direction of the air flow 9 is also detected from the temperature difference between the heating elements 5, 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、熱式空気流量計に
係り、特に内燃機関の吸入空気量を測定するのに好適な
熱式空気流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal air flow meter, and more particularly to a thermal air flow meter suitable for measuring an intake air amount of an internal combustion engine.

【従来の技術】従来より自動車などの内燃機関の電子制
御燃料噴射装置に設けられ吸入空気量を測定する空気流
量計として、熱式のものが質量空気量を直接検知できる
ことから主流となってきている。この中で、半導体マイ
クロマシニング技術により製造された空気流量計が、コ
ストが低減でき且つ低電力で駆動することが出来ること
から特に注目されてきた。このような従来の半導体基板
を用いた熱式空気流量計が、例えば、特開昭60−14
2268号公報および特開平7−174600号公報等
に開示されている。上記公報に記載の技術は、製造コス
トはある程度低減されているが、吸入空気量の測定に際
して、流量計測レンジが狭い、ノイズが大きい、耐塵埃
信頼性が十分でない等の問題があった。
2. Description of the Related Art Conventionally, as an air flow meter which is provided in an electronically controlled fuel injection device of an internal combustion engine of an automobile or the like and measures an intake air amount, a thermal air flow meter has become mainstream since it can directly detect a mass air amount. I have. Among them, an air flow meter manufactured by a semiconductor micromachining technique has been particularly noted because it can reduce the cost and can be driven with low power. Such a conventional thermal air flow meter using a semiconductor substrate is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-14 / 1985.
No. 2,268, and JP-A-7-174600. Although the technology described in the above-mentioned publication reduces manufacturing costs to some extent, it has problems such as a narrow flow rate measurement range, large noise, and insufficient dust resistance reliability when measuring the amount of intake air.

【発明が解決しようとする課題】従来技術には、次のよ
うな課題がある。上記特開昭60−142268号公報
に記載の従来技術を図10を参照し説明する。図10は
従来の熱式空気流量計の測定素子の平面図であり、該公
報に記載の第2図である。図において、1が熱式空気流
量計の測定素子で、シリコン等の半導体基板を異方性エ
ッチングにより形成した空洞(23a,b,c)を架橋す
る電気絶縁膜からなる2本の橋24a,24bを有し、
空気の流れの上流側が橋24a、下流側が橋24bとな
っている。2本の橋24a,24bとの間の開口した空
洞23cを挟んで発熱抵抗体5を配置しこれらの橋24
a,24bには発熱抵抗体5の側部に各々測温抵抗体4
a、4bが配置され、更に、電気絶縁膜の空洞23aの
上流側の一部に空気温度を測定する空気温度測温抵抗体
7を配設している。また、空洞23a,23b及び23
cは、電気絶縁膜の開口部を利用して半導体基板を異方
性エッチングすることから電気絶縁膜の橋24a,24
b下で連続した一体の空洞となっている。この空気流量
計では、空気温度測温抵抗体7により定められる空気温
度よりも一定温度高い温度となるように、発熱抵抗体5
が加熱駆動される。空気流量は、空気の熱運搬効果を利
用して、流路の上流側測温体4bと下流側測温体4aと
の間に生じる温度差から計測される。図11は、従来の
熱式空気流量計の他の例を説明するための図であり、上
記特開平7−174600号公報の図1記載の測定素子
の平面図となっている。測定素子1は、前記の従来例と
同じように半導体基板2上に電気絶縁膜10を形成し公
知のホトリソグラフィ技術により電気絶縁体10の23
d,23eの部分をエッチングし、更に、この開口部2
3d,23eから半導体基板2を異方性エッチングして
空洞23d,23eを形成する。この空洞23d,23
eは、前記の従来例と同じように電気絶縁膜の橋24下
で連続した一体の空洞を形成している。この従来例で
は、橋24上に発熱抵抗体5とこれに近接して測温抵抗
体4が空気流の上流側に配設され、さらに、空気温度測
温抵抗体7が測定素子1の最上流に配設される。この空
気流量計では、空気温度測温抵抗体7で検知される空気
温度より測温抵抗体4が一定温度高くなるように発熱抵
抗体5を加熱(傍熱)駆動する。空気流量は、空気の流量
が増加するに従い冷却される測温抵抗体4を傍熱する発
熱抵抗体5に流す加熱電流から計測する。このように構
成された従来例では、例えば図10の測定素子では、前
記特開平7−174600号公報の明細書の項目(00
12)に記載されているように、空気流量が大流速域で
出力変化が小さく、直線性が悪くなり、計測可能な流速
レンジが狭くなる問題がある。これを改善したのが図1
1に示した測定素子だが、この従来例においては、空気
の流れの方向が検知出来ないという問題がある。更に、
図10、図11の両方の従来例に共通する問題として、
空気流量を計測する上で重要な空気流と接する検出有効
面積(この従来例では測温抵抗体4,4a,4bおよび発
熱抵抗体5の空気流に接する面積)が小さいことにより
出力ノイズが大きいこと、 また、空気流に接する測定
素子の表面に 空洞23a,23b,23c,23d,
23eが開口しており、自動車等の過酷な条件で使用さ
れる場合、上記開口部に塵埃等が蓄積し長期間に渡って
信頼性の高い計測が出来ない等がある。従って、本発明
の目的は、従来技術の課題を解決し、流量計測のダイナ
ミックレンジが広く、ノイズが小さく、さらには、耐塵
埃信頼性の高い熱式空気流量計を提供することにある。
The prior art has the following problems. The prior art described in Japanese Patent Application Laid-Open No. Sho 60-142268 will be described with reference to FIG. FIG. 10 is a plan view of a measuring element of a conventional thermal air flow meter, and is a second diagram described in the publication. In the figure, reference numeral 1 denotes a measuring element of a thermal air flow meter, and two bridges 24a, 24a, made of an electrically insulating film bridging a cavity (23a, b, c) formed by anisotropically etching a semiconductor substrate such as silicon. 24b,
The upstream side of the air flow is the bridge 24a, and the downstream side is the bridge 24b. The heating resistor 5 is arranged with the open cavity 23c between the two bridges 24a and 24b, and these bridges 24
a and 24b are provided on the side of the heating resistor 5 respectively.
a and 4b are arranged, and an air temperature measuring resistor 7 for measuring the air temperature is arranged in a part of the electrical insulating film on the upstream side of the cavity 23a. Also, the cavities 23a, 23b and 23
c is anisotropic etching of the semiconductor substrate using the opening of the electric insulating film, so that the bridges 24a and 24 of the electric insulating film are formed.
It is a continuous integral cavity below b. In this air flow meter, the heating resistor 5 is set to a temperature higher than the air temperature determined by the air temperature measuring resistor 7 by a certain temperature.
Is driven by heating. The air flow rate is measured from the temperature difference generated between the upstream temperature measuring element 4b and the downstream temperature measuring element 4a of the flow channel by utilizing the heat transport effect of air. FIG. 11 is a diagram for explaining another example of the conventional thermal air flow meter, and is a plan view of the measuring element shown in FIG. 1 of the above-mentioned Japanese Patent Application Laid-Open No. 7-174600. The measuring element 1 is formed by forming an electric insulating film 10 on a semiconductor substrate 2 in the same manner as in the above-described conventional example, and forming the electric
d, 23e are etched, and the opening 2
The semiconductor substrate 2 is anisotropically etched from 3d and 23e to form cavities 23d and 23e. These cavities 23d, 23
e forms a continuous integral cavity under the bridge 24 of the electric insulating film in the same manner as the conventional example. In this conventional example, a heating resistor 5 and a temperature measuring resistor 4 close to the heating resistor 5 are arranged on the bridge 24 on the upstream side of the air flow. Installed upstream. In this air flow meter, the heating resistor 5 is heated (indirectly heated) so that the temperature of the temperature measuring resistor 4 becomes higher than the air temperature detected by the air temperature measuring resistor 7 by a certain temperature. The air flow rate is measured from a heating current flowing through a heating resistor 5 that indirectly heats the temperature measuring resistor 4 that is cooled as the air flow rate increases. In the conventional example configured as described above, for example, in the measuring element of FIG. 10, the item (00) of the specification of Japanese Patent Application Laid-Open No. 7-174600 is used.
As described in 12), there is a problem in that the output change is small in a large air flow rate region, the linearity is deteriorated, and the measurable flow speed range is narrowed. Figure 1 shows the improvement.
However, in this conventional example, there is a problem that the direction of the air flow cannot be detected. Furthermore,
As a problem common to both the conventional examples of FIGS. 10 and 11,
Output noise is large due to a small effective detection area (in this conventional example, an area in contact with the airflow of the resistance temperature detectors 4, 4a, 4b and the heating resistor 5) which is in contact with the airflow which is important in measuring the airflow. That the cavities 23a, 23b, 23c, 23d,
When the opening 23e is open and used under severe conditions such as an automobile, dust and the like accumulate in the opening, and highly reliable measurement cannot be performed over a long period of time. Accordingly, it is an object of the present invention to solve the problems of the prior art and to provide a thermal air flow meter having a wide dynamic range of flow measurement, low noise, and high dust-proof reliability.

【課題を解決するための手段】上記目的を達成する熱式
空気流量計は、上面を電気絶縁膜で塞がれて下面に開口
している空洞を有する半導体基板と、前記空洞上の部位
の前記電気絶縁膜上に形成された測温抵抗体および該測
温抵抗体を中に被測定流体の上下流側に振り分けられて
いる一対の発熱抵抗体と、前記空洞部上以外の部位の前
記電気絶縁膜上に形成された流体温度測温抵抗体とを有
する測定素子と、前記測温抵抗体と前記流体温度測温抵
抗体の温度差を一定に保つように前記各発熱抵抗体に加
熱電流を流す加熱制御手段と、前記各発熱抵抗体の温度
差に基づいて前記被測定流体の流れ方向を検知する方向
検知手段と、前記各発熱抵抗体の温度差または前記各発
熱抵抗体に流す電流値に基づいて前記被測定流体の流量
を検知する流量検知手段とから構成するものである。本
発明によれば、一個の測温抵抗体を一対の発熱抵抗体で
挟み、該測温抵抗体の温度を基準温度として一対の発熱
抵抗体が成す温度差を大きく検出できるようにしたの
で、流量計測時のダイナミックレンジ及び対ノイズの改
善が図られる。
A thermal air flow meter which achieves the above object has a semiconductor substrate having a cavity whose upper surface is closed by an electrical insulating film and which is open at the lower surface, and a portion of the cavity above the cavity. A temperature measuring resistor formed on the electric insulating film and a pair of heating resistors distributed to the upstream and downstream sides of the fluid to be measured in the temperature measuring resistor, and a portion other than on the cavity portion; A measuring element having a fluid temperature measuring resistor formed on an electric insulating film; and heating the heating resistors so as to keep a temperature difference between the temperature measuring resistor and the fluid temperature measuring resistor constant. Heating control means for flowing an electric current, direction detecting means for detecting a flow direction of the fluid to be measured based on a temperature difference between the heating resistors, and a temperature difference between the heating resistors or flowing to the heating resistors. A flow rate detector for detecting a flow rate of the fluid to be measured based on a current value. And it constitutes and means. According to the present invention, one temperature measuring resistor is sandwiched between a pair of heating resistors, and the temperature difference between the pair of heating resistors can be detected largely using the temperature of the temperature measuring resistor as a reference temperature. The dynamic range and noise immunity during flow rate measurement are improved.

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。図1は、本発明による一
実施例の測定素子(熱式空気流量計用)を示す平面図であ
る。熱式空気流量計に用いられる測定素子を示してい
る。図2は、図1のA−A’断面を示す図である。
図1,2において、測定素子1
は、シリコン等からなる半導体基板2と、半導体基板2
の上面に被膜形成されて後述する空洞3の上面側を塞い
でいる形になっている電気絶縁膜10aと、電気絶縁膜
10a上に形成された、測温抵抗体4,該測温抵抗体4
を中に挟みかつ近傍に隣接して空気流9に対する上流側
と下流側とに振り分けられて配置形成された一対の発熱
抵抗体5及び6,空気温度を計測するための空気温度測
温抵抗体7,測定素子1としての各抵抗体からの信号を
外部回路に引き出すための端子電極8と、各抵抗体や端
子電極8等を保護するために被覆形成されている電気絶
縁膜10bと、測温抵抗体4と発熱抵抗体5及び6とが
形成されている部位を、半導体基板2の下面側(開口部
3a)より異方性エッチングにより電気絶縁膜10aの
境界面まで穿ち半導体基板2に設けられた空洞3とから
構成される。ここで、一対の発熱抵抗体5,6は、電気
絶縁膜10a上で電気的に直列に接続されて引き出され
た2つの端子電極8(,)と、中間接続点Mから引き
出された中間端子電極としての端子電極8()とを有す
る。すなわち、図1では、発熱抵抗体5,6を直列で接
続し、途中(中間接続点M)から端子電極8()を引き出
している。しかし、場合によっては、端子電極8が1個
増えて多くなる繁雑さはあるが、それぞれ独立に端子電
極8を取り出し外部回路にて直列接続することも可能で
ある。そして、空気流9に接する面積(検出有効面積)が
広い電気絶縁膜10a上に形成された、一対の発熱抵抗
体5,6には、測温抵抗体4の温度が空気流9の流路先
端に配置された空気温度測温抵抗体7の温度より一定温
度高くなるように、加熱(傍熱)電流が流されている。ま
た、空気流9の方向は、空洞3上の部位にあって電気絶
縁膜10a上のほぼ中央の位置に形成された測温抵抗体
4を中にして、被測定流体の上下流側に振り分けられて
いる、望ましくは、測温抵抗体4に対して対称に形成さ
れている発熱抵抗体5および6の、各温度(温度に対応
した各抵抗値)を比較することにより検知される。つま
り、発熱抵抗体5,6は、被測定流体の空気流が零のと
きは、測温抵抗体4の温度とほぼ同じ温度を示し、温度
差が生じない。空気流がある場合、図1の空気流9の方
向(順流)では、主に上流側に配置された発熱抵抗体5の
方が、下流側に配置された発熱抵抗体6より、空気流9
による冷却効果が大きいことから、加えて、発熱抵抗体
5,6は直列接続であり同じ加熱電流が流れて両方の発
熱量がほぼ同一であることから、上流側の発熱抵抗体5
の温度が発熱抵抗体6の温度より低い値となる。また、
空気流が図1の矢印方向と反対(逆流)のときには、今度
は下流側の発熱抵抗体6の温度方が上流側の発熱抵抗体
5の温度より低くなる。このように、発熱抵抗体5,6
の各温度(各抵抗値)を比較することにより空気流9の方
向が検知できる。一方、空気流量の計測は、上記の発熱
抵抗体5,6の温度差が空気流量の増大に対して大きく
なることを利用して、温度差より空気流の方向と空気流
量を同時に計測する。あるいは、測温抵抗体4を空気温
度測温抵抗体7より一定温度高く制御するために、発熱
抵抗体5,6に流す加熱(傍熱)電流値が、空気流量の増
大にともない増加することを利用して計測する。ところ
で、発熱抵抗体5,6は、空洞3上の電気絶縁膜10a
上に形成されており、本実施例の発熱抵抗体面積(2個
の発熱抵抗体の面積)は、従来例の発熱抵抗体面積(1個
の発熱抵抗体の面積)に比較して広い(検出有効面積が広
い)構成とすることになるので、空気流量信号が大きく
取り出せて、ダイナミックレンジが広く取れる。かつ、
空気流の局所的な乱れに対して平均的な出力になる、換
言すれば出力に対するノイズ比(N/S)が小さくなるこ
とから、ノイズに強い構成となっている。更に、図1に
示すように、空気温度測温抵抗体7は基板2の先端に位
置し、空気流9の流路に突き出て配置されており、空気
流9が順流または逆流のいずれの場合においても、発熱
抵抗体5,6の加熱された空気流の影響を受けない位置
に配設されており、精度の高い空気流量の計測が可能と
なっている。図3は、図1の測定素子を実装した本発明
による一実施例の熱式空気流量計を示す断面図である。
例えば、自動車等の内燃機関の吸気通路に実装した熱式
空気流量計の実施例を示す断面図である。熱式空気流量
計は、図のように、測定素子1と支持体13と外部回路
14とを含み構成される。そして吸気通路11の内部に
ある副通路12に測定素子1が配置される。外部回路1
4は支持体13を介して測定素子1の端子電極8に電気
的に接続されている。ここで、通常では被測定流体とし
ての吸入空気は空気流9で示された方向に流れており、
ある内燃機関の条件によって空気流9とは逆の方向(逆
流)に吸入空気が流れる。図4は、図3の測定素子部を
示す拡大図である。図3の測定素子1および支持体13
の拡大図である。図5は、図4のB−B’断面を示す図
である。図6は、図4のC−C’断面を示す図である。
図4〜図6において、測定素子1は、空気温度測温抵抗
体7の表裏面が空気流9に直接晒されるように支持体1
3b上に固定され、更に、端子電極15および信号処理
回路を有しアルミナ等の電気絶縁基板上に形成された外
部回路14が、同じく支持体13b上に固定されてい
る。この測定素子1と外部回路14は、端子電極8およ
び15間を金線16等でワイヤボンディングにより電気
的に接続された後、前記の金線16、電極端子8、15
や外部回路14を保護するために支持体13aにより密
封保護される。このように実装された測定素子1では、
図4〜6に示すように、空洞3は、下面が支持体13b
により大部分が塞がれており、また上面が電気絶縁膜1
0により、空気流9に対してほぼ隔離(閉塞)されてい
る。従って、上記したような本実施例を採用すれば、従
来例のように空洞3が空気流9に対して開口している部
分がなくなるので、自動車等の内燃機関の空気流量を計
測する際に問題となる塵埃等が、空洞部あるいは開口部
に蓄積することがなく信頼性の高い計測が可能となる。
また、自動車等の内燃機関では、内燃機関の熱により図
3に示す吸気通路11および支持体13の温度が上昇
し、さらに、この熱が測定素子1に伝わり、空気流量の
計測に誤差を生じさせ温度特性を悪くすることがある。
これに対して、本実施例では、図4に示すように、空気
温度測温抵抗体7は、支持体13より最も遠い場所に配
設され、更に、支持体13から突き出して配置されてい
る。このように配設するにとにより、空気流9により表
裏面ともに晒され放熱が十分されることから、上記吸気
通路11および支持体13の温度上昇による影響を殆ど
受けない温度特性の優れた構成となっている。更には、
図5のB−B’断面図に示したように、空気流9に対し
て支持体13bの先端形状を流線型にしたことにより、
空気流9が測定素子1に至った位置においても、空気流
の乱れがなく一様に流れることから、更にノイズの少な
い計測が可能となる。次に、図7、図8および図9を参
照し、本発明による熱式空気流量計の動作について説明
する。図7は、本発明による一実施例の熱式空気流量計
を示す回路構成図である。図1に示す各抵抗体4,5,
6,7などからなる測定素子1と、測定素子1からの信
号を処理するための外部回路14(加熱制御手段と方向
検知手段と流量検知手段としての回路)との構成を示し
たものである。図中、17a,17b,17c,17d
は差動増幅噐、18は発熱抵抗体5,6に加熱(傍熱)電
流を流すためのトランジスタ、19は電源、22a,2
2b,22cは抵抗、20は、発熱抵抗体5,6に流す
加熱電流に比例する抵抗22aの電位より得られた空気
流量に対応する信号出力Cから、差動増幅噐17dより
得られる空気流の方向信号Fに基づいて、プラス(順流)
またはマイナス(逆流)に変換した出力信号Gを得るため
の、切り替え回路である。ここで、測温抵抗体4、空気
温度測温抵抗体7、抵抗22b,22cよりなるブリッ
ジ回路は、測温抵抗体4の温度(抵抗値)が空気温度に対
応する空気温度測温抵抗体7の温度(抵抗値)よりある一
定値(例えば150℃)高くなるよう各抵抗値が設定され
る。測温抵抗体4の温度が、設定値より低い場合にはブ
リッジ回路の中点の電位HとI間に差が生じ、差動増幅
噐17aの出力Jによりトランジスタ18がオンし、発
熱抵抗体5,6に加熱電流が流れる。発熱抵抗体5,6
により傍熱された測温抵抗体4の温度が設定値に達する
と、差動増幅噐17aの出力Jによりトランジスタ18
がオフし、加熱電流が遮断される。このように、測温抵
抗体4の温度が設定値に一定になるようにフィードバッ
ク制御されており、このときの発熱抵抗体5,6に流す
加熱電流値(抵抗22aの電位Cに対応)が空気流量とな
る。一方、空気流の方向は、発熱抵抗体5,6の温度差
より検出する。図9には、発熱抵抗体5,6と測温抵抗
体4の温度分布を、空気流が順流および逆流の場合につ
いて摸式的に示している。図において、前記したように
測温抵抗体4はある一定の基準温度に設定されている。
発熱抵抗体5,6は直列接続されており同じ加熱電流が
流れる構成であることから、空気流が順流の場合には、
上流側の発熱抵抗体5がより空気流により熱を奪われる
ことから温度が低くなる。一方、空気流が逆流の場合に
は、逆に発熱抵抗体6の温度が低くなる。つまり、図9
に示したように、発熱抵抗体5,6の温度(抵抗値)を比
較することにより、空気流の方向が検知できる。これに
ついて、以下、さらに詳説する。図9は、図1の測定素
子のA−A’断面および動作原理を示す図である。図9
に示したように、一個の測温抵抗体4を一対の発熱抵抗
体5,6で挟むようにし測温抵抗体4の温度を基準温度
に設定する本発明の構成にしたことにより、発熱抵抗体
5および6が成す温度差を十分に大きくして検出でき
る。これに対して、図10に示した従来例では、逆に一
個の発熱抵抗体を一対の測温抵抗体で挟んでおり、中心
の発熱抵抗体が基準温度に設定される構成であることか
ら、図9の従来例の温度分布に示すように、一対の測温
抵抗体の温度は基準温度より共に低くなり、従って、温
度差があまり大きくならない。本発明のように、温度差
を大きく検出できることは、信号レベルが大きくなり、
広いダイナミックレンジが得られ、かつ、対ノイズ特性
に関して有利になる。図7に戻り、外部回路14では、
発熱抵抗体5,6の両温度(両抵抗値)の比較を、直列接
続された各抵抗体の両端の電位により行う。上流側の発
熱抵抗体5の温度に対応するのは図7のA−B点間の電
位差であり、下流側の発熱抵抗体6の温度に対応するの
はB−C間の電位差である。従って、差動増幅噐17b
の出力Dが発熱抵抗体5の温度に、差動増幅噐17cの
出力Eが発熱抵抗体6の温度に各々対応し、差動増幅器
17dにより出力DおよびEを比較することにより、空
気流の方向が出力Fとして検知できる。上記した空気流
量に対応した抵抗22aの出力信号Cと、空気流の方向
信号である差動増幅器17dの出力Fで作動する切り替
え回路20とにより、空気流の方向を加味した空気流量
信号G(順流は正逆流は負)が出力される。図8は、本発
明による他の実施例の熱式空気流量計を示す回路構成図
である。別の方式の抵抗体4,5,6,7と信号処理の
ための外部回路14を示したものである。図7の構成と
異なるのは、切り替え回路20の代わりに除算回路21
を設けたことである。この方式は、空気流の方向および
流量として、発熱抵抗体5,6の温度差そのものを出力
しようとするものである。図9に示したように、発熱抵
抗体5,6の温度差(ΔT)は、その正負により空気流の
方向が検知できると共に、絶対値は空気流量に対応する
ものである。従って、発熱抵抗体5,6の温度差(ΔT)
は抵抗値差(ΔR)と同等なので、この抵抗値差(ΔR)が
出力される構成にすれば、空気流量が計測される。即
ち、図8において、差動増幅噐17dには、図7での動
作と同じように発熱抵抗体5,6の両端の電位が入力さ
れ、その電位差がFとして除算回路21に出力される。
電位差Fは、発熱抵抗体5,6の抵抗値差(ΔR)と発熱
抵抗体5,6に流れる加熱電流値の積となっているの
で、電位差Fを加熱電流値に対応する抵抗22aの電位
Cで除算することにより、抵抗値差(ΔR)が除算回路2
1の出力Gとして得られる。この出力Gの正負から空気
流の方向が、そしてまた、出力Gの絶対値から空気流量
が計測される。次に、本発明による熱式空気流量計の測
定素子の具体例について、図1,2を参照して説明す
る。まず、シリコン半導体基板2上に電気絶縁体10a
として、熱酸化あるいはCVD等の方法で、約0.5ミ
クロンの厚さの二酸化ケイ素、窒化ケイ素等を形成す
る、更に、抵抗体4,5,6,7として、スパッタ等の
方法で、約0.2ミクロンの厚さの白金を形成する。そ
の後、公知のホトリソグラフィ技術により、所定の形状
にレジストを形成した後、イオンミリング等の方法によ
り白金をパターニングする。次に、端子電極8を金メッ
キ等で形成した後、端子電極8以外の部分を保護膜とし
て、先と同様に約0.5ミクロンの厚さの電気絶縁体1
0bを形成する。最後に、シリコン基板2の裏面より二
酸化ケイ素等をマスク材として、異方性エッチングする
ことにより空洞3を形成し、チップに切断することによ
り、測定素子1が得られる。ここで、空洞3上の電気絶
縁膜10は、従来例の検出有効面積(約0.2mm×1
mm:特開平7−174600号公報の明細書「002
8」項に記載)に対して、本実施例では1.5mm×1.
5mmの検出有効面積とし、従来例の約10倍の大きさ
にした。また、測温抵抗体4を囲むように発熱抵抗体
5,6を形成したことから、発熱抵抗体の占有面積が大
きくとれる。このことにより、空洞3上の発熱抵抗体
5,6の空気流量信号のダイナミックレンジおよび対ノ
イズが、従来例に比較して大幅に改善した。なお、空洞
3を大きくした場合でも、本実施例の測定素子1の大き
さは、約2.5mm×5mmであり、従来例(約3mm
×3mm:特開平7−174600号公報の明細書「0
028」項に記載)の約1.4倍に過ぎない。また、従来
例のように空気流9に晒される開口部がないことにより
耐塵埃信頼性が向上した。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing a measuring element (for a thermal air flow meter) of one embodiment according to the present invention. 2 shows a measuring element used in a thermal air flow meter. FIG. 2 is a diagram showing a cross section taken along line AA ′ of FIG.
1 and 2, the measuring element 1
Are a semiconductor substrate 2 made of silicon or the like;
An electric insulating film 10a formed on the upper surface of the substrate and covering the upper surface side of a cavity 3 described later, and the temperature measuring resistor 4 and the temperature measuring resistor 4 formed on the electric insulating film 10a. 4
A pair of heating resistors 5 and 6, which are arranged adjacent to and adjacent to and adjacent to and adjacent to the air flow 9 and arranged upstream and downstream with respect to the air flow 9, for measuring the air temperature. 7, a terminal electrode 8 for extracting a signal from each resistor as the measuring element 1 to an external circuit, an electric insulating film 10b formed to protect each resistor, the terminal electrode 8, and the like; A portion where the heating resistor 4 and the heating resistors 5 and 6 are formed is cut out from the lower surface side (opening 3a) of the semiconductor substrate 2 to the boundary surface of the electric insulating film 10a by anisotropic etching. And a cavity 3 provided. Here, the pair of heating resistors 5 and 6 are electrically connected in series on the electrical insulating film 10a and are drawn out from two terminal electrodes 8 (,) and an intermediate terminal drawn out from the intermediate connection point M. And a terminal electrode 8 () as an electrode. That is, in FIG. 1, the heating resistors 5 and 6 are connected in series, and the terminal electrode 8 () is drawn out from the middle (middle connection point M). However, depending on the case, although there is the complexity that one terminal electrode 8 increases by one, it is also possible to take out the terminal electrodes 8 independently and connect them in series by an external circuit. A pair of the heating resistors 5 and 6 formed on the electric insulating film 10a having a large area (effective detection area) in contact with the air flow 9 has a temperature of the temperature measuring resistor 4 in a flow path of the air flow 9. A heating (indirect heat) current is supplied so that the temperature becomes higher than the temperature of the air temperature measuring resistor 7 disposed at the tip by a certain temperature. The direction of the air flow 9 is distributed to the upstream and downstream sides of the fluid to be measured, with the resistance bulb 4 formed at a position on the cavity 3 and substantially at the center on the electric insulating film 10a as the center. It is detected by comparing each temperature (each resistance value corresponding to the temperature) of the heating resistors 5 and 6, which are preferably formed symmetrically with respect to the temperature measuring resistor 4. That is, when the airflow of the fluid to be measured is zero, the heating resistors 5 and 6 exhibit substantially the same temperature as the temperature of the temperature measuring resistor 4, and no temperature difference occurs. When there is an airflow, in the direction (forward flow) of the airflow 9 in FIG. 1, the heating resistor 5 arranged mainly on the upstream side has a larger airflow 9 than the heating resistor 6 arranged on the downstream side.
In addition, since the heating effect is large, the heating resistors 5 and 6 are connected in series, and the same heating current flows, and both heating values are almost the same.
Is lower than the temperature of the heating resistor 6. Also,
When the airflow is opposite to the direction of the arrow in FIG. 1 (reverse flow), the temperature of the heating resistor 6 on the downstream side is lower than the temperature of the heating resistor 5 on the upstream side. Thus, the heating resistors 5, 6
By comparing each temperature (each resistance value), the direction of the air flow 9 can be detected. On the other hand, the measurement of the air flow rate measures the direction of the air flow and the air flow rate at the same time based on the temperature difference, utilizing the fact that the temperature difference between the heating resistors 5 and 6 increases with an increase in the air flow rate. Alternatively, in order to control the temperature measuring resistor 4 to be higher than the air temperature measuring resistor 7 by a certain temperature, the heating (indirect heat) current value flowing through the heating resistors 5 and 6 increases with an increase in the air flow rate. Measure using. By the way, the heating resistors 5 and 6 are formed on the electric insulating film 10 a on the cavity 3.
The heating resistor area (area of two heating resistors) of the present embodiment is larger than the heating resistor area of the conventional example (area of one heating resistor). Since the configuration has a (large detection effective area), a large air flow rate signal can be taken out and a wide dynamic range can be taken. And,
Since the output becomes an average with respect to the local turbulence of the air flow, in other words, the noise ratio (N / S) to the output becomes small, so that the configuration is strong against noise. Further, as shown in FIG. 1, the air temperature measuring resistor 7 is located at the tip of the substrate 2 and is arranged so as to protrude into the flow path of the air flow 9. In this case, the heaters 5 and 6 are provided at positions not affected by the heated airflow, and the measurement of the airflow can be performed with high accuracy. FIG. 3 is a sectional view showing a thermal air flow meter according to an embodiment of the present invention, on which the measuring element of FIG. 1 is mounted.
For example, it is a cross-sectional view showing an embodiment of a thermal air flow meter mounted in an intake passage of an internal combustion engine such as an automobile. As shown in the figure, the thermal air flow meter includes a measuring element 1, a support 13, and an external circuit 14. Then, the measuring element 1 is arranged in the sub-passage 12 inside the intake passage 11. External circuit 1
4 is electrically connected to the terminal electrode 8 of the measuring element 1 via the support 13. Here, normally, the intake air as the fluid to be measured flows in the direction indicated by the airflow 9,
Depending on the conditions of a certain internal combustion engine, the intake air flows in the direction opposite to the air flow 9 (reverse flow). FIG. 4 is an enlarged view showing the measuring element unit of FIG. Measuring element 1 and support 13 of FIG.
FIG. FIG. 5 is a view showing a BB ′ section of FIG. 4. FIG. 6 is a diagram showing a cross section taken along line CC ′ of FIG.
4 to 6, the measuring element 1 has a support 1 so that the front and back surfaces of the air temperature measuring resistor 7 are directly exposed to the air flow 9.
3b, and an external circuit 14 having a terminal electrode 15 and a signal processing circuit and formed on an electrically insulating substrate such as alumina is similarly fixed on the support 13b. The measurement element 1 and the external circuit 14 are electrically connected between the terminal electrodes 8 and 15 by wire bonding with a gold wire 16 or the like, and then the gold wire 16 and the electrode terminals 8 and 15 are connected.
And the external circuit 14 is hermetically protected by the support 13a. In the measuring element 1 thus mounted,
As shown in FIGS. 4 to 6, the lower surface of the cavity 3
And the upper surface is electrically insulating film 1
By 0, it is substantially isolated (closed) from the air flow 9. Therefore, when the present embodiment as described above is employed, there is no portion where the cavity 3 is open to the air flow 9 as in the conventional example, and therefore, when measuring the air flow rate of the internal combustion engine of an automobile or the like, Dust and the like that cause a problem do not accumulate in the cavity or the opening, and highly reliable measurement can be performed.
Further, in an internal combustion engine such as an automobile, the temperature of the intake passage 11 and the support 13 shown in FIG. 3 rises due to the heat of the internal combustion engine, and this heat is transmitted to the measuring element 1, causing an error in the measurement of the air flow rate. Temperature characteristics may be deteriorated.
On the other hand, in the present embodiment, as shown in FIG. 4, the air temperature measuring resistor 7 is provided at a position farthest from the support 13 and further protrudes from the support 13. . With this arrangement, both the front and back surfaces are exposed by the air flow 9 and sufficient heat radiation is achieved, so that the configuration having excellent temperature characteristics which is hardly affected by the rise in temperature of the intake passage 11 and the support 13 is provided. It has become. Furthermore,
As shown in the BB ′ cross-sectional view of FIG. 5, by making the tip shape of the support 13 b streamlined with respect to the airflow 9,
Even at the position where the air flow 9 reaches the measuring element 1, since the air flow flows uniformly without any disturbance, measurement with less noise is possible. Next, the operation of the thermal air flow meter according to the present invention will be described with reference to FIGS. 7, 8 and 9. FIG. 7 is a circuit diagram showing a thermal air flow meter according to an embodiment of the present invention. Each of the resistors 4, 5, shown in FIG.
1 shows the configuration of a measuring element 1 composed of 6, 7 or the like, and an external circuit 14 (a circuit as a heating control means, a direction detecting means, and a flow rate detecting means) for processing a signal from the measuring element 1. . In the figure, 17a, 17b, 17c, 17d
Is a differential amplifier, 18 is a transistor for passing a heating (indirectly heated) current to the heating resistors 5 and 6, 19 is a power supply, 22a and 2a
2b and 22c are resistors, 20 is an air flow obtained from a differential amplifier 17d from a signal output C corresponding to an air flow obtained from a potential of the resistor 22a proportional to a heating current flowing through the heating resistors 5 and 6. (Forward) based on the direction signal F of
Alternatively, it is a switching circuit for obtaining an output signal G converted to minus (backflow). Here, a bridge circuit composed of the temperature measuring resistor 4, the air temperature measuring resistor 7, and the resistors 22b and 22c is an air temperature measuring resistor whose temperature (resistance value) corresponds to the air temperature. Each resistance value is set so as to be higher than the temperature (resistance value) 7 by a certain value (for example, 150 ° C.). If the temperature of the resistance bulb 4 is lower than the set value, a difference occurs between the potentials H and I at the middle point of the bridge circuit, and the transistor 18 is turned on by the output J of the differential amplifier 17a, and the heating resistor Heating current flows through 5,6. Heating resistors 5, 6
When the temperature of the resistance bulb 4 heated by the indirect heat reaches the set value, the output J of the differential amplifier 17a causes the transistor 18 to output.
Is turned off, and the heating current is cut off. As described above, the feedback control is performed so that the temperature of the temperature measuring resistor 4 becomes constant at the set value, and the heating current value (corresponding to the potential C of the resistor 22a) flowing through the heating resistors 5 and 6 at this time is adjusted. Air flow rate. On the other hand, the direction of the air flow is detected from the temperature difference between the heating resistors 5 and 6. FIG. 9 schematically shows the temperature distribution of the heating resistors 5 and 6 and the temperature measuring resistor 4 when the air flow is a forward flow and a reverse flow. In the figure, the resistance temperature detector 4 is set at a certain reference temperature as described above.
Since the heating resistors 5 and 6 are connected in series and have a configuration in which the same heating current flows, when the air flow is a forward flow,
The temperature is lowered because the heating resistor 5 on the upstream side is deprived of heat by the airflow. On the other hand, when the air flow is the reverse flow, the temperature of the heating resistor 6 decreases. That is, FIG.
As shown in (2), the direction of the air flow can be detected by comparing the temperatures (resistance values) of the heating resistors 5 and 6. This will be described in more detail below. FIG. 9 is a diagram showing a cross section AA ′ of the measuring element of FIG. 1 and an operation principle. FIG.
As shown in FIG. 2, the configuration of the present invention in which one temperature measuring resistor 4 is sandwiched between a pair of heat generating resistors 5 and 6 and the temperature of the temperature measuring resistor 4 is set to a reference temperature is employed. The temperature difference between the bodies 5 and 6 can be detected with a sufficiently large value. On the other hand, in the conventional example shown in FIG. 10, on the contrary, one heating resistor is sandwiched between a pair of temperature measuring resistors, and the central heating resistor is set to the reference temperature. As shown in the temperature distribution of the conventional example in FIG. 9, the temperatures of the pair of resistance temperature detectors are both lower than the reference temperature, so that the temperature difference does not increase so much. As in the present invention, the ability to detect a large temperature difference means that the signal level increases,
A wide dynamic range is obtained, and it is advantageous with respect to noise characteristics. Returning to FIG. 7, in the external circuit 14,
Comparison of both temperatures (both resistance values) of the heating resistors 5 and 6 is performed based on the potentials at both ends of each resistor connected in series. The potential difference between points A and B in FIG. 7 corresponds to the temperature of the heating resistor 5 on the upstream side, and the potential difference between B and C corresponds to the temperature of the heating resistor 6 on the downstream side. Therefore, the differential amplifier 17b
The output D corresponds to the temperature of the heating resistor 5 and the output E of the differential amplifier 17c corresponds to the temperature of the heating resistor 6, and the outputs D and E are compared by the differential amplifier 17d. The direction can be detected as the output F. The output signal C of the resistor 22a corresponding to the above-described air flow and the switching circuit 20 which operates with the output F of the differential amplifier 17d, which is the direction signal of the air flow, provide an air flow signal G ( (For forward flow, negative for forward and reverse flow). FIG. 8 is a circuit diagram showing a thermal air flow meter according to another embodiment of the present invention. FIG. 5 shows another type of resistors 4, 5, 6, 7 and an external circuit 14 for signal processing. 7 is different from the configuration of FIG.
That is, In this method, the temperature difference between the heating resistors 5 and 6 is output as the direction and flow rate of the air flow. As shown in FIG. 9, the temperature difference (ΔT) between the heating resistors 5 and 6 can detect the direction of the air flow by its sign, and the absolute value corresponds to the air flow. Therefore, the temperature difference (ΔT) between the heating resistors 5 and 6
Is equivalent to the resistance value difference (ΔR). Therefore, if the resistance value difference (ΔR) is output, the air flow rate is measured. That is, in FIG. 8, the potentials at both ends of the heating resistors 5 and 6 are input to the differential amplifier 17d as in the operation in FIG. 7, and the potential difference is output to the division circuit 21 as F.
Since the potential difference F is the product of the resistance value difference (ΔR) between the heating resistors 5 and 6 and the heating current flowing through the heating resistors 5 and 6, the potential difference F is determined by the potential of the resistor 22a corresponding to the heating current value. By dividing by C, the resistance difference (ΔR) becomes
1 as an output G. The direction of the air flow is measured from the sign of the output G, and the air flow rate is measured from the absolute value of the output G. Next, a specific example of the measuring element of the thermal air flow meter according to the present invention will be described with reference to FIGS. First, an electric insulator 10a is formed on a silicon semiconductor substrate 2.
To form silicon dioxide, silicon nitride, etc. with a thickness of about 0.5 micron by a method such as thermal oxidation or CVD. Further, as a resistor 4, 5, 6, 7 by a method such as sputtering. Form platinum 0.2 microns thick. Then, after a resist is formed in a predetermined shape by a known photolithography technique, platinum is patterned by a method such as ion milling. Next, after the terminal electrode 8 is formed by gold plating or the like, a portion other than the terminal electrode 8 is used as a protective film, and the electrical insulator 1 having a thickness of about 0.5 μm is formed as described above.
0b is formed. Finally, the cavity 3 is formed by anisotropic etching from the back surface of the silicon substrate 2 using silicon dioxide or the like as a mask material, and cut into chips to obtain the measuring element 1. Here, the electric insulating film 10 on the cavity 3 has a detection effective area (about 0.2 mm × 1) of the conventional example.
mm: Japanese Patent Application Laid-Open No. 7-174600, “002”
8)), in this embodiment, 1.5 mm × 1.
The detection effective area was 5 mm, and the size was about 10 times the size of the conventional example. Further, since the heating resistors 5 and 6 are formed so as to surround the temperature measuring resistor 4, the area occupied by the heating resistors can be increased. As a result, the dynamic range of the air flow rate signal of the heating resistors 5 and 6 on the cavity 3 and the noise immunity are greatly improved as compared with the conventional example. In addition, even when the cavity 3 is enlarged, the size of the measuring element 1 of the present embodiment is about 2.5 mm × 5 mm, and the conventional example (about 3 mm
× 3 mm: JP-A-7-174600, specification “0”
028 ”)). In addition, since there is no opening exposed to the airflow 9 as in the conventional example, the reliability of dust resistance is improved.

【発明の効果】本発明によれば、測温抵抗体4の上下流
に一対の発熱抵抗体5,6を半導体基板に形成した検出
有効面積の大きい空洞3上の電気絶縁体10に形成し、
且つ、発熱抵抗体5,6を直列接続し上記発熱抵抗体
5,6の温度差および加熱電流から、空気流の方向と流
量を計測する構成としたことにより、空気流量の計測時
のダイナミックレンジおよび対ノイズの改善が図られ
る。また、空気流9に対して開口している所がない構成
にすることから、耐塵埃信頼性が向上し、更には、空気
温度測温抵抗体7を空気流に突き出す構成とすることに
より、温度特性の改善を図った熱式空気流量計が提供で
きる効果がある。
According to the present invention, a pair of heating resistors 5 and 6 are formed on the electrical insulator 10 above and below the temperature measuring resistor 4 on the cavity 3 having a large effective detection area formed on the semiconductor substrate. ,
In addition, since the heating resistors 5 and 6 are connected in series and the direction and the flow rate of the air flow are measured from the temperature difference and the heating current of the heating resistors 5 and 6, the dynamic range at the time of measuring the air flow rate is obtained. In addition, the noise immunity is improved. In addition, since there is no opening for the air flow 9, the reliability of dust resistance is improved, and further, the air temperature measuring resistor 7 is configured to protrude into the air flow. There is an effect that a thermal air flowmeter with improved temperature characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例の測定素子(熱式空気流
量計用)を示す平面図である。
FIG. 1 is a plan view showing a measuring element (for a thermal air flow meter) of one embodiment according to the present invention.

【図2】図1のA−A’断面を示す図である。FIG. 2 is a diagram showing a cross section taken along line A-A 'of FIG.

【図3】図1の測定素子を実装した本発明による一実施
例の熱式空気流量計を示す断面図である。
FIG. 3 is a sectional view showing a thermal air flow meter according to an embodiment of the present invention, on which the measuring element of FIG. 1 is mounted.

【図4】図3の測定素子部を示す拡大図である。FIG. 4 is an enlarged view showing a measuring element unit of FIG. 3;

【図5】図4のB−B’断面を示す図である。FIG. 5 is a view showing a B-B ′ section of FIG. 4;

【図6】図4のC−C’断面を示す図である。FIG. 6 is a view showing a cross section taken along line C-C ′ of FIG. 4;

【図7】本発明による一実施例の熱式空気流量計を示す
回路構成図である。
FIG. 7 is a circuit diagram showing a thermal air flow meter according to an embodiment of the present invention.

【図8】本発明による他の実施例の熱式空気流量計を示
す回路構成図である。
FIG. 8 is a circuit diagram showing a thermal air flow meter according to another embodiment of the present invention.

【図9】図1の測定素子のA−A’断面および動作原理
を示す図である。
9 is a diagram showing an AA ′ cross section and an operation principle of the measuring element of FIG. 1;

【図10】従来の熱式空気流量計の測定素子を説明する
平面図である。
FIG. 10 is a plan view illustrating a measuring element of a conventional thermal air flow meter.

【図11】従来の他の熱式空気流量計の測定素子を説明
する平面図である。
FIG. 11 is a plan view illustrating a measuring element of another conventional thermal air flow meter.

【符号の説明】[Explanation of symbols]

1…測定素子、2…半導体基板、3…空洞、3a…開口
部、4…測温抵抗体、5,6…発熱抵抗体、7…空気温
度測温抵抗体、8,15…端子電極、9…空気流、10
a,10b…電気絶縁膜、11…吸気通路、12…副通
路、13,13a,13b…支持体、14…外部回路、
16…金線、17a,17b,17c,17d…差動増
幅器、18…トランジスタ、19…電源、20…切り替
え回路、21…除算回路、22a,22b,22c…抵
DESCRIPTION OF SYMBOLS 1 ... Measurement element, 2 ... Semiconductor substrate, 3 ... Cavity, 3a ... Opening part, 4 ... Temperature measuring resistor, 5,6 ... Heat-generating resistor, 7 ... Air temperature measuring resistor, 8,15 ... Terminal electrode, 9 ... air flow, 10
a, 10b: electric insulating film, 11: intake passage, 12: sub passage, 13, 13a, 13b: support, 14: external circuit,
16: gold wire, 17a, 17b, 17c, 17d: differential amplifier, 18: transistor, 19: power supply, 20: switching circuit, 21: division circuit, 22a, 22b, 22c: resistor

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年7月1日[Submission date] July 1, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 熱式空気流量計[Title of the Invention] Thermal air flow meter

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱式空気流量計に
係り、特に内燃機関の吸入空気量を測定するのに好適な
熱式空気流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal air flow meter, and more particularly to a thermal air flow meter suitable for measuring an intake air amount of an internal combustion engine.

【0002】[0002]

【従来の技術】従来より自動車などの内燃機関の電子制
御燃料噴射装置に設けられ吸入空気量を測定する空気流
量計として、熱式のものが質量空気量を直接検知できる
ことから主流となってきている。この中で、半導体マイ
クロマシニング技術により製造された空気流量計が、コ
ストが低減でき且つ低電力で駆動することが出来ること
から特に注目されてきた。このような従来の半導体基板
を用いた熱式空気流量計が、例えば、特開昭60−14
2268号公報および特開平7−174600号公報等
に開示されている。上記公報に記載の技術は、製造コス
トはある程度低減されているが、吸入空気量の測定に際
して、流量計測レンジが狭い、ノイズが大きい、耐塵埃
信頼性が十分でない等の問題があった。
2. Description of the Related Art Conventionally, as an air flow meter which is provided in an electronically controlled fuel injection device of an internal combustion engine of an automobile or the like and measures an intake air amount, a thermal air flow meter has become mainstream since it can directly detect a mass air amount. I have. Among them, an air flow meter manufactured by a semiconductor micromachining technique has been particularly noted because it can reduce the cost and can be driven with low power. Such a conventional thermal air flow meter using a semiconductor substrate is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-14 / 1985.
No. 2,268, and JP-A-7-174600. Although the technology described in the above-mentioned publication reduces manufacturing costs to some extent, it has problems such as a narrow flow rate measurement range, large noise, and insufficient dust resistance reliability when measuring the amount of intake air.

【0003】[0003]

【発明が解決しようとする課題】従来技術には、次のよ
うな課題がある。上記特開昭60−142268号公報
に記載の従来技術を図10を参照し説明する。図10は
従来の熱式空気流量計の測定素子の平面図であり、該公
報に記載の第2図である。図において、1が熱式空気流
量計の測定素子で、シリコン等の半導体基板を異方性エ
ッチングにより形成した空洞(23a,b,c)を架橋す
る電気絶縁膜からなる2本の橋24a,24bを有し、
空気の流れの上流側が橋24a、下流側が橋24bとな
っている。2本の橋24a,24bとの間の開口した空
洞23cを挟んで発熱抵抗体5を配置しこれらの橋24
a,24bには発熱抵抗体5の側部に各々測温抵抗体4
a、4bが配置され、更に、電気絶縁膜の空洞23aの
上流側の一部に空気温度を測定する空気温度測温抵抗体
7を配設している。また、空洞23a,23b及び23
cは、電気絶縁膜の開口部を利用して半導体基板を異方
性エッチングすることから電気絶縁膜の橋24a,24
b下で連続した一体の空洞となっている。
The prior art has the following problems. The prior art described in Japanese Patent Application Laid-Open No. Sho 60-142268 will be described with reference to FIG. FIG. 10 is a plan view of a measuring element of a conventional thermal air flow meter, and is a second diagram described in the publication. In the figure, reference numeral 1 denotes a measuring element of a thermal air flow meter, and two bridges 24a, 24a, made of an electrically insulating film bridging a cavity (23a, b, c) formed by anisotropically etching a semiconductor substrate such as silicon. 24b,
The upstream side of the air flow is the bridge 24a, and the downstream side is the bridge 24b. The heating resistor 5 is arranged with the open cavity 23c between the two bridges 24a and 24b, and these bridges 24
a and 24b are provided on the side of the heating resistor 5 respectively.
a and 4b are arranged, and an air temperature measuring resistor 7 for measuring the air temperature is arranged in a part of the electrical insulating film on the upstream side of the cavity 23a. Also, the cavities 23a, 23b and 23
c is anisotropic etching of the semiconductor substrate using the opening of the electric insulating film, so that the bridges 24a and 24 of the electric insulating film are formed.
It is a continuous integral cavity below b.

【0004】この空気流量計では、空気温度測温抵抗体
7により定められる空気温度よりも一定温度高い温度と
なるように、発熱抵抗体5が加熱駆動される。空気流量
は、空気の熱運搬効果を利用して、流路の上流側測温体
4bと下流側測温体4aとの間に生じる温度差から計測
される。
In this air flow meter, the heating resistor 5 is driven to be heated to a temperature that is higher than the air temperature determined by the air temperature measuring resistor 7 by a certain temperature. The air flow rate is measured from the temperature difference generated between the upstream temperature measuring element 4b and the downstream temperature measuring element 4a of the flow channel by utilizing the heat transport effect of air.

【0005】図11は、従来の熱式空気流量計の他の例
を説明するための図であり、上記特開平7−17460
0号公報の図1記載の測定素子の平面図となっている。
測定素子1は、前記の従来例と同じように半導体基板2
上に電気絶縁膜10を形成し公知のホトリソグラフィ技
術により電気絶縁体10の23d,23eの部分をエッ
チングし、更に、この開口部23d,23eから半導体
基板2を異方性エッチングして空洞23d,23eを形
成する。この空洞23d,23eは、前記の従来例と同
じように電気絶縁膜の橋24下で連続した一体の空洞を
形成している。この従来例では、橋24上に発熱抵抗体
5とこれに近接して測温抵抗体4が空気流の上流側に配
設され、さらに、空気温度測温抵抗体7が測定素子1の
最上流に配設される。
FIG. 11 is a view for explaining another example of a conventional thermal air flow meter.
FIG. 2 is a plan view of the measuring element described in FIG.
The measuring element 1 includes a semiconductor substrate 2 as in the above-described conventional example.
An electric insulating film 10 is formed thereon, the portions 23d and 23e of the electric insulator 10 are etched by a known photolithography technique, and the semiconductor substrate 2 is further anisotropically etched from the openings 23d and 23e to form a cavity 23d. , 23e. These cavities 23d and 23e form continuous and continuous cavities under the bridge 24 of the electric insulating film, as in the above-described conventional example. In this conventional example, a heating resistor 5 and a temperature measuring resistor 4 close to the heating resistor 5 are arranged on the bridge 24 on the upstream side of the air flow. Installed upstream.

【0006】この空気流量計では、空気温度測温抵抗体
7で検知される空気温度より測温抵抗体4が一定温度高
くなるように発熱抵抗体5を加熱(傍熱)駆動する。空気
流量は、空気の流量が増加するに従い冷却される測温抵
抗体4を傍熱する発熱抵抗体5に流す加熱電流から計測
する。
In this air flow meter, the heating resistor 5 is heated (indirectly heated) so that the temperature of the temperature measuring resistor 4 becomes higher than the air temperature detected by the air temperature measuring resistor 7 by a certain temperature. The air flow rate is measured from a heating current flowing through a heating resistor 5 that indirectly heats the temperature measuring resistor 4 that is cooled as the air flow rate increases.

【0007】このように構成された従来例では、例えば
図10の測定素子では、前記特開平7−174600号
公報の明細書の項目(0012)に記載されているよう
に、空気流量が大流速域で出力変化が小さく、直線性が
悪くなり、計測可能な流速レンジが狭くなる問題があ
る。これを改善したのが図11に示した測定素子だが、
この従来例においては、空気の流れの方向が検知出来な
いという問題がある。更に、図10、図11の両方の従
来例に共通する問題として、空気流量を計測する上で重
要な空気流と接する検出有効面積(この従来例では測温
抵抗体4,4a,4bおよび発熱抵抗体5の空気流に接
する面積)が小さいことにより出力ノイズが大きいこ
と、 また、空気流に接する測定素子の表面に 空洞23
a,23b,23c,23d,23eが開口しており、
自動車等の過酷な条件で使用される場合、上記開口部に
塵埃等が蓄積し長期間に渡って信頼性の高い計測が出来
ない等がある。
In the conventional example configured as described above, for example, in the measuring element of FIG. 10, as described in the item (0012) of the specification of Japanese Patent Application Laid-Open No. 7-174600, the air flow rate is large. There is a problem that the output change is small in the range, the linearity is deteriorated, and the measurable flow velocity range is narrowed. The measurement element shown in Fig. 11 improved this.
In this conventional example, there is a problem that the direction of the air flow cannot be detected. Further, as a problem common to both of the conventional examples shown in FIGS. 10 and 11, there is a detection effective area in contact with an air flow which is important for measuring the air flow rate (in this conventional example, the resistance temperature detectors 4, 4a, 4b and the heat generation). The output noise is large due to the small area of the resistor 5 in contact with the air flow, and the cavity 23 is formed on the surface of the measuring element in contact with the air flow.
a, 23b, 23c, 23d, 23e are open,
When used under severe conditions, such as in an automobile, dust and the like accumulate in the opening, and highly reliable measurement cannot be performed over a long period of time.

【0008】従って、本発明の目的は、従来技術の課題
を解決し、流量計測のダイナミックレンジが広く、ノイ
ズが小さく、さらには、耐塵埃信頼性の高い熱式空気流
量計を提供することにある。
Accordingly, it is an object of the present invention to solve the problems of the prior art, and to provide a thermal air flow meter having a wide dynamic range of flow measurement, small noise, and high dust resistance and reliability. is there.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する熱式
空気流量計は、上面を電気絶縁膜で塞がれて下面に開口
している空洞を有する半導体基板と、前記空洞上の部位
の前記電気絶縁膜上に形成された測温抵抗体および該測
温抵抗体を中に被測定流体の上下流側に振り分けられて
いる一対の発熱抵抗体と、前記空洞部上以外の部位の前
記電気絶縁膜上に形成された流体温度測温抵抗体とを有
する測定素子と、前記測温抵抗体と前記流体温度測温抵
抗体の温度差を一定に保つように前記各発熱抵抗体に加
熱電流を流す加熱制御手段と、前記各発熱抵抗体の温度
差に基づいて前記被測定流体の流れ方向を検知する方向
検知手段と、前記各発熱抵抗体の温度差または前記各発
熱抵抗体に流す電流値に基づいて前記被測定流体の流量
を検知する流量検知手段とから構成するものである。
A thermal air flow meter which achieves the above object has a semiconductor substrate having a cavity whose upper surface is closed by an electrical insulating film and which is open at the lower surface, and a portion of the cavity above the cavity. A temperature measuring resistor formed on the electric insulating film and a pair of heating resistors distributed to the upstream and downstream sides of the fluid to be measured in the temperature measuring resistor, and a portion other than on the cavity portion; A measuring element having a fluid temperature measuring resistor formed on an electric insulating film; and heating the heating resistors so as to keep a temperature difference between the temperature measuring resistor and the fluid temperature measuring resistor constant. Heating control means for flowing an electric current, direction detecting means for detecting a flow direction of the fluid to be measured based on a temperature difference between the heating resistors, and a temperature difference between the heating resistors or flowing to the heating resistors. A flow rate detector for detecting a flow rate of the fluid to be measured based on a current value. And it constitutes and means.

【0010】本発明によれば、一個の測温抵抗体を一対
の発熱抵抗体で挟み、該測温抵抗体の温度を基準温度と
して一対の発熱抵抗体が成す温度差を大きく検出できる
ようにしたので、流量計測時のダイナミックレンジ及び
対ノイズの改善が図られる。
According to the present invention, one temperature measuring resistor is sandwiched between a pair of heating resistors so that a large temperature difference between the pair of heating resistors can be detected using the temperature of the temperature measuring resistor as a reference temperature. Therefore, the dynamic range and noise immunity at the time of flow rate measurement are improved.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。図1は、本発明による一
実施例の測定素子(熱式空気流量計用)を示す平面図であ
る。熱式空気流量計に用いられる測定素子を示してい
る。図2は、図1のA−A’断面を示す図である。図
1,2において、測定素子1は、シリコン等からなる半
導体基板2と、半導体基板2の上面に被膜形成されて後
述する空洞3の上面側を塞いでいる形になっている電気
絶縁膜10aと、電気絶縁膜10a上に形成された、測
温抵抗体4,該測温抵抗体4を中に挟みかつ近傍に隣接
して空気流9に対する上流側と下流側とに振り分けられ
て配置形成された一対の発熱抵抗体5及び6,空気温度
を計測するための空気温度測温抵抗体7,測定素子1と
しての各抵抗体からの信号を外部回路に引き出すための
端子電極8と、各抵抗体や端子電極8等を保護するため
に被覆形成されている電気絶縁膜10bと、測温抵抗体
4と発熱抵抗体5及び6とが形成されている部位を、半
導体基板2の下面側(開口部3a)より異方性エッチング
により電気絶縁膜10aの境界面まで穿ち半導体基板2
に設けられた空洞3とから構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing a measuring element (for a thermal air flow meter) of one embodiment according to the present invention. 2 shows a measuring element used in a thermal air flow meter. FIG. 2 is a diagram showing a cross section taken along line AA ′ of FIG. 1 and 2, a measuring element 1 includes a semiconductor substrate 2 made of silicon or the like, and an electric insulating film 10a formed on the upper surface of the semiconductor substrate 2 so as to cover the upper surface side of a cavity 3 described later. And the temperature measuring resistor 4 formed on the electric insulating film 10a and arranged between the upstream side and the downstream side of the airflow 9 with the temperature measuring resistor 4 interposed therebetween and adjacent to the vicinity thereof. A pair of heating resistors 5 and 6, an air temperature measuring resistor 7 for measuring air temperature, a terminal electrode 8 for extracting a signal from each resistor as the measuring element 1 to an external circuit, The portion where the temperature measuring resistor 4 and the heating resistors 5 and 6 are formed to protect the resistor, the terminal electrode 8 and the like, and the portion where the temperature measuring resistor 4 and the heating resistors 5 and 6 are formed (Opening 3a) Electrical insulation by anisotropic etching The semiconductor substrate 2 is bored to a boundary surface of 10a
And the cavity 3 provided in the first position.

【0012】ここで、一対の発熱抵抗体5,6は、電気
絶縁膜10a上で電気的に直列に接続されて引き出され
た2つの端子電極8(,)と、中間接続点Mから引き
出された中間端子電極としての端子電極8()とを有す
る。すなわち、図1では、発熱抵抗体5,6を直列で接
続し、途中(中間接続点M)から端子電極8()を引き出
している。しかし、場合によっては、端子電極8が1個
増えて多くなる繁雑さはあるが、それぞれ独立に端子電
極8を取り出し外部回路にて直列接続することも可能で
ある。
Here, the pair of heating resistors 5 and 6 are electrically connected in series on the electrical insulating film 10a and are drawn out from the two terminal electrodes 8 (,) and the intermediate connection point M. And a terminal electrode 8 () as an intermediate terminal electrode. That is, in FIG. 1, the heating resistors 5 and 6 are connected in series, and the terminal electrode 8 () is drawn out from the middle (middle connection point M). However, depending on the case, although there is the complexity that one terminal electrode 8 increases by one, it is also possible to take out the terminal electrodes 8 independently and connect them in series by an external circuit.

【0013】そして、空気流9に接する面積(検出有効
面積)が広い電気絶縁膜10a上に形成された、一対の
発熱抵抗体5,6には、測温抵抗体4の温度が空気流9
の流路先端に配置された空気温度測温抵抗体7の温度よ
り一定温度高くなるように、加熱(傍熱)電流が流されて
いる。
The temperature of the temperature measuring resistor 4 is applied to the pair of heating resistors 5 and 6 formed on the electric insulating film 10a having a large area (effective detection area) in contact with the air flow 9.
The heating (indirect heat) current is passed so that the temperature becomes higher than the temperature of the air temperature measuring resistor 7 arranged at the end of the flow path.

【0014】また、空気流9の方向は、空洞3上の部位
にあって電気絶縁膜10a上のほぼ中央の位置に形成さ
れた測温抵抗体4を中にして、被測定流体の上下流側に
振り分けられている、望ましくは、測温抵抗体4に対し
て対称に形成されている発熱抵抗体5および6の、各温
度(温度に対応した各抵抗値)を比較することにより検知
される。つまり、発熱抵抗体5,6は、被測定流体の空
気流が零のときは、測温抵抗体4の温度とほぼ同じ温度
を示し、温度差が生じない。
Further, the direction of the air flow 9 is set such that the temperature measuring resistor 4 formed at a position on the cavity 3 and substantially at the center on the electric insulating film 10a is located in the upstream and downstream of the fluid to be measured. It is detected by comparing each temperature (each resistance value corresponding to the temperature) of the heating resistors 5 and 6 desirably symmetrically arranged with respect to the temperature measuring resistor 4 distributed to the side. You. That is, when the airflow of the fluid to be measured is zero, the heating resistors 5 and 6 exhibit substantially the same temperature as the temperature of the temperature measuring resistor 4, and no temperature difference occurs.

【0015】空気流がある場合、図1の空気流9の方向
(順流)では、主に上流側に配置された発熱抵抗体5の方
が、下流側に配置された発熱抵抗体6より、空気流9に
よる冷却効果が大きいことから、加えて、発熱抵抗体
5,6は直列接続であり同じ加熱電流が流れて両方の発
熱量がほぼ同一であることから、上流側の発熱抵抗体5
の温度が発熱抵抗体6の温度より低い値となる。また、
空気流が図1の矢印方向と反対(逆流)のときには、今度
は下流側の発熱抵抗体6の温度方が上流側の発熱抵抗体
5の温度より低くなる。このように、発熱抵抗体5,6
の各温度(各抵抗値)を比較することにより空気流9の方
向が検知できる。
If there is an air flow, the direction of the air flow 9 in FIG.
In (forward flow), the heating resistor 5 arranged mainly on the upstream side has a greater cooling effect by the airflow 9 than the heating resistor 6 arranged on the downstream side. 5 and 6 are connected in series, and since the same heating current flows and both calorific values are almost the same, the heating resistor 5 on the upstream side
Is lower than the temperature of the heating resistor 6. Also,
When the airflow is opposite to the direction of the arrow in FIG. 1 (reverse flow), the temperature of the heating resistor 6 on the downstream side is lower than the temperature of the heating resistor 5 on the upstream side. Thus, the heating resistors 5, 6
By comparing each temperature (each resistance value), the direction of the air flow 9 can be detected.

【0016】一方、空気流量の計測は、上記の発熱抵抗
体5,6の温度差が空気流量の増大に対して大きくなる
ことを利用して、温度差より空気流の方向と空気流量を
同時に計測する。あるいは、測温抵抗体4を空気温度測
温抵抗体7より一定温度高く制御するために、発熱抵抗
体5,6に流す加熱(傍熱)電流値が、空気流量の増大に
ともない増加することを利用して計測する。
On the other hand, the measurement of the air flow rate utilizes the fact that the temperature difference between the heating resistors 5 and 6 increases with an increase in the air flow rate. measure. Alternatively, in order to control the temperature measuring resistor 4 to be higher than the air temperature measuring resistor 7 by a certain temperature, the heating (indirect heat) current value flowing through the heating resistors 5 and 6 increases with an increase in the air flow rate. Measure using.

【0017】ところで、発熱抵抗体5,6は、空洞3上
の電気絶縁膜10a上に形成されており、本実施例の発
熱抵抗体面積(2個の発熱抵抗体の面積)は、従来例の発
熱抵抗体面積(1個の発熱抵抗体の面積)に比較して広い
(検出有効面積が広い)構成とすることになるので、空気
流量信号が大きく取り出せて、ダイナミックレンジが広
く取れる。かつ、空気流の局所的な乱れに対して平均的
な出力になる、換言すれば出力に対するノイズ比(N/
S)が小さくなることから、ノイズに強い構成となって
いる。
The heating resistors 5 and 6 are formed on the electric insulating film 10a above the cavity 3, and the area of the heating resistor (the area of the two heating resistors) of the present embodiment is smaller than that of the conventional example. Larger than the heating resistor area (area of one heating resistor)
Since the configuration is such that the detection effective area is large, a large air flow rate signal can be taken out and a wide dynamic range can be obtained. In addition, an average output is obtained with respect to local turbulence of the air flow, in other words, a noise ratio (N /
Since S) is small, the configuration is strong against noise.

【0018】更に、図1に示すように、空気温度測温抵
抗体7は基板2の先端に位置し、空気流9の流路に突き
出て配置されており、空気流9が順流または逆流のいず
れの場合においても、発熱抵抗体5,6の加熱された空
気流の影響を受けない位置に配設されており、精度の高
い空気流量の計測が可能となっている。
Further, as shown in FIG. 1, the air temperature measuring resistor 7 is located at the tip of the substrate 2 and is arranged so as to protrude into the flow path of the air flow 9 so that the air flow 9 is directed in the forward or reverse flow. In any case, the heating resistors 5 and 6 are provided at positions not affected by the heated airflow, and the measurement of the airflow can be performed with high accuracy.

【0019】図3は、図1の測定素子を実装した本発明
による一実施例の熱式空気流量計を示す断面図である。
例えば、自動車等の内燃機関の吸気通路に実装した熱式
空気流量計の実施例を示す断面図である。熱式空気流量
計は、図のように、測定素子1と支持体13と外部回路
14とを含み構成される。そして吸気通路11の内部に
ある副通路12に測定素子1が配置される。外部回路1
4は支持体13を介して測定素子1の端子電極8に電気
的に接続されている。ここで、通常では被測定流体とし
ての吸入空気は空気流9で示された方向に流れており、
ある内燃機関の条件によって空気流9とは逆の方向(逆
流)に吸入空気が流れる。
FIG. 3 is a sectional view showing a thermal air flow meter according to an embodiment of the present invention, on which the measuring element of FIG. 1 is mounted.
For example, it is a cross-sectional view showing an embodiment of a thermal air flow meter mounted in an intake passage of an internal combustion engine such as an automobile. As shown in the figure, the thermal air flow meter includes a measuring element 1, a support 13, and an external circuit 14. Then, the measuring element 1 is arranged in the sub-passage 12 inside the intake passage 11. External circuit 1
4 is electrically connected to the terminal electrode 8 of the measuring element 1 via the support 13. Here, normally, the intake air as the fluid to be measured flows in the direction indicated by the airflow 9,
Depending on the conditions of a certain internal combustion engine, the intake air flows in the direction opposite to the air flow 9 (reverse flow).

【0020】図4は、図3の測定素子部を示す拡大図で
ある。図3の測定素子1および支持体13の拡大図であ
る。図5は、図4のB−B’断面を示す図である。図6
は、図4のC−C’断面を示す図である。図4〜図6に
おいて、測定素子1は、空気温度測温抵抗体7の表裏面
が空気流9に直接晒されるように支持体13b上に固定
され、更に、端子電極15および信号処理回路を有しア
ルミナ等の電気絶縁基板上に形成された外部回路14
が、同じく支持体13b上に固定されている。
FIG. 4 is an enlarged view showing the measuring element section of FIG. FIG. 4 is an enlarged view of a measuring element 1 and a support 13 of FIG. 3. FIG. 5 is a view showing a BB ′ section of FIG. 4. FIG.
FIG. 5 is a view showing a cross section taken along line CC ′ of FIG. 4. 4 to 6, the measuring element 1 is fixed on a support 13b such that the front and back surfaces of the air temperature measuring resistor 7 are directly exposed to the air flow 9, and further includes a terminal electrode 15 and a signal processing circuit. External circuit 14 formed on an electrically insulating substrate such as alumina
Are also fixed on the support 13b.

【0021】この測定素子1と外部回路14は、端子電
極8および15間を金線16等でワイヤボンディングに
より電気的に接続された後、前記の金線16、電極端子
8、15や外部回路14を保護するために支持体13a
により密封保護される。このように実装された測定素子
1では、図4〜6に示すように、空洞3は、下面が支持
体13bにより大部分が塞がれており、また上面が電気
絶縁膜10により、空気流9に対してほぼ隔離(閉塞)さ
れている。従って、上記したような本実施例を採用すれ
ば、従来例のように空洞3が空気流9に対して開口して
いる部分がなくなるので、自動車等の内燃機関の空気流
量を計測する際に問題となる塵埃等が、空洞部あるいは
開口部に蓄積することがなく信頼性の高い計測が可能と
なる。
After the measuring element 1 and the external circuit 14 are electrically connected between the terminal electrodes 8 and 15 by wire bonding with a gold wire 16 or the like, the gold wire 16, the electrode terminals 8, 15 and the external circuit 14 are connected. 14 to protect 14
Is sealed and protected. In the measuring element 1 mounted as described above, as shown in FIGS. 4 to 6, the lower surface of the cavity 3 is mostly closed by the support 13 b, and the upper surface is 9 is almost isolated (closed). Therefore, when the present embodiment as described above is employed, there is no portion where the cavity 3 is open to the air flow 9 as in the conventional example, and therefore, when measuring the air flow rate of the internal combustion engine of an automobile or the like, Dust and the like that cause a problem do not accumulate in the cavity or the opening, and highly reliable measurement can be performed.

【0022】また、自動車等の内燃機関では、内燃機関
の熱により図3に示す吸気通路11および支持体13の
温度が上昇し、さらに、この熱が測定素子1に伝わり、
空気流量の計測に誤差を生じさせ温度特性を悪くするこ
とがある。これに対して、本実施例では、図4に示すよ
うに、空気温度測温抵抗体7は、支持体13より最も遠
い場所に配設され、更に、支持体13から突き出して配
置されている。このように配設するにとにより、空気流
9により表裏面ともに晒され放熱が十分されることか
ら、上記吸気通路11および支持体13の温度上昇によ
る影響を殆ど受けない温度特性の優れた構成となってい
る。
In an internal combustion engine of an automobile or the like, the temperature of the intake passage 11 and the support 13 shown in FIG. 3 rises due to heat of the internal combustion engine.
An error may occur in the measurement of the air flow rate and the temperature characteristics may be deteriorated. On the other hand, in the present embodiment, as shown in FIG. 4, the air temperature measuring resistor 7 is provided at a position farthest from the support 13 and further protrudes from the support 13. . With this arrangement, both the front and back surfaces are exposed by the air flow 9 and sufficient heat radiation is achieved, so that the configuration having excellent temperature characteristics which is hardly affected by the rise in temperature of the intake passage 11 and the support 13 is provided. It has become.

【0023】更には、図5のB−B’断面図に示したよ
うに、空気流9に対して支持体13bの先端形状を流線
型にしたことにより、空気流9が測定素子1に至った位
置においても、空気流の乱れがなく一様に流れることか
ら、更にノイズの少ない計測が可能となる。
Further, as shown in the cross-sectional view taken along the line BB 'of FIG. 5, the tip of the support 13b is made streamlined with respect to the air flow 9, so that the air flow 9 reaches the measuring element 1. Even at the position, since the air flow is uniform without any turbulence, measurement with less noise is possible.

【0024】次に、図7、図8および図9を参照し、本
発明による熱式空気流量計の動作について説明する。図
7は、本発明による一実施例の熱式空気流量計を示す回
路構成図である。図1に示す各抵抗体4,5,6,7な
どからなる測定素子1と、測定素子1からの信号を処理
するための外部回路14(加熱制御手段と方向検知手段
と流量検知手段としての回路)との構成を示したもので
ある。
Next, the operation of the thermal air flow meter according to the present invention will be described with reference to FIGS. 7, 8 and 9. FIG. 7 is a circuit diagram showing a thermal air flow meter according to an embodiment of the present invention. A measuring element 1 including resistors 4, 5, 6, and 7 shown in FIG. 1 and an external circuit 14 for processing a signal from the measuring element 1 (heating control means, direction detecting means, and flow rate detecting means). Circuit).

【0025】図中、17a,17b,17c,17dは
差動増幅噐、18は発熱抵抗体5,6に加熱(傍熱)電流
を流すためのトランジスタ、19は電源、22a,22
b,22cは抵抗、20は、発熱抵抗体5,6に流す加
熱電流に比例する抵抗22aの電位より得られた空気流
量に対応する信号出力Cから、差動増幅噐17dより得
られる空気流の方向信号Fに基づいて、プラス(順流)ま
たはマイナス(逆流)に変換した出力信号Gを得るため
の、切り替え回路である。
In the figure, 17a, 17b, 17c and 17d are differential amplifiers, 18 is a transistor for passing a heating (indirect heat) current to the heating resistors 5 and 6, 19 is a power supply, 22a and 22
b and 22c are resistors, 20 is an air flow obtained from the differential amplifier 17d from a signal output C corresponding to an air flow obtained from the potential of the resistor 22a proportional to the heating current flowing through the heating resistors 5 and 6. Is a switching circuit for obtaining an output signal G converted to plus (forward flow) or minus (reverse flow) based on the direction signal F.

【0026】ここで、測温抵抗体4、空気温度測温抵抗
体7、抵抗22b,22cよりなるブリッジ回路は、測
温抵抗体4の温度(抵抗値)が空気温度に対応する空気温
度測温抵抗体7の温度(抵抗値)よりある一定値(例えば
150℃)高くなるよう各抵抗値が設定される。測温抵
抗体4の温度が、設定値より低い場合にはブリッジ回路
の中点の電位HとI間に差が生じ、差動増幅噐17aの
出力Jによりトランジスタ18がオンし、発熱抵抗体
5,6に加熱電流が流れる。発熱抵抗体5,6により傍
熱された測温抵抗体4の温度が設定値に達すると、差動
増幅噐17aの出力Jによりトランジスタ18がオフ
し、加熱電流が遮断される。このように、測温抵抗体4
の温度が設定値に一定になるようにフィードバック制御
されており、このときの発熱抵抗体5,6に流す加熱電
流値(抵抗22aの電位Cに対応)が空気流量となる。
Here, a bridge circuit composed of the temperature measuring resistor 4, the air temperature measuring resistor 7, and the resistors 22b and 22c provides an air temperature measuring device in which the temperature (resistance value) of the temperature measuring resistor 4 corresponds to the air temperature. Each resistance value is set so as to be higher by a certain value (for example, 150 ° C.) than the temperature (resistance value) of the temperature resistor 7. If the temperature of the resistance bulb 4 is lower than the set value, a difference occurs between the potentials H and I at the middle point of the bridge circuit, and the transistor 18 is turned on by the output J of the differential amplifier 17a, and the heating resistor Heating current flows through 5,6. When the temperature of the resistance bulb 4 heated by the heating resistors 5 and 6 reaches the set value, the transistor 18 is turned off by the output J of the differential amplifier 17a and the heating current is cut off. Thus, the resistance temperature detector 4
The feedback current is controlled so that the temperature of the heating resistor becomes constant. The heating current value (corresponding to the potential C of the resistor 22a) flowing through the heating resistors 5 and 6 at this time becomes the air flow rate.

【0027】一方、空気流の方向は、発熱抵抗体5,6
の温度差より検出する。図9には、発熱抵抗体5,6と
測温抵抗体4の温度分布を、空気流が順流および逆流の
場合について摸式的に示している。図において、前記し
たように測温抵抗体4はある一定の基準温度に設定され
ている。発熱抵抗体5,6は直列接続されており同じ加
熱電流が流れる構成であることから、空気流が順流の場
合には、上流側の発熱抵抗体5がより空気流により熱を
奪われることから温度が低くなる。一方、空気流が逆流
の場合には、逆に発熱抵抗体6の温度が低くなる。つま
り、図9に示したように、発熱抵抗体5,6の温度(抵
抗値)を比較することにより、空気流の方向が検知でき
る。これについて、以下、さらに詳説する。
On the other hand, the direction of the air flow depends on the heating resistors 5 and 6.
Is detected from the temperature difference. FIG. 9 schematically shows the temperature distribution of the heating resistors 5 and 6 and the temperature measuring resistor 4 when the air flow is a forward flow and a reverse flow. In the figure, the resistance temperature detector 4 is set at a certain reference temperature as described above. Since the heating resistors 5 and 6 are connected in series and have a configuration in which the same heating current flows, when the airflow is a forward flow, the heating resistor 5 on the upstream side is more deprived of heat by the airflow. The temperature decreases. On the other hand, when the air flow is the reverse flow, the temperature of the heating resistor 6 decreases. That is, as shown in FIG. 9, the direction of the air flow can be detected by comparing the temperatures (resistance values) of the heating resistors 5 and 6. This will be described in more detail below.

【0028】図9は、図1の測定素子のA−A’断面お
よび動作原理を示す図である。図9に示したように、一
個の測温抵抗体4を一対の発熱抵抗体5,6で挟むよう
にし測温抵抗体4の温度を基準温度に設定する本発明の
構成にしたことにより、発熱抵抗体5および6が成す温
度差を十分に大きくして検出できる。これに対して、図
10に示した従来例では、逆に一個の発熱抵抗体を一対
の測温抵抗体で挟んでおり、中心の発熱抵抗体が基準温
度に設定される構成であることから、図9の従来例の温
度分布に示すように、一対の測温抵抗体の温度は基準温
度より共に低くなり、従って、温度差があまり大きくな
らない。本発明のように、温度差を大きく検出できるこ
とは、信号レベルが大きくなり、広いダイナミックレン
ジが得られ、かつ、対ノイズ特性に関して有利になる。
FIG. 9 is a view showing the AA ′ cross section and the operating principle of the measuring element of FIG. As shown in FIG. 9, by adopting a configuration of the present invention in which one temperature measuring resistor 4 is sandwiched between a pair of heating resistors 5 and 6 and the temperature of the temperature measuring resistor 4 is set to a reference temperature. The temperature difference between the heating resistors 5 and 6 can be sufficiently large to detect. On the other hand, in the conventional example shown in FIG. 10, on the contrary, one heating resistor is sandwiched between a pair of temperature measuring resistors, and the central heating resistor is set to the reference temperature. As shown in the temperature distribution of the conventional example in FIG. 9, the temperatures of the pair of resistance temperature detectors are both lower than the reference temperature, so that the temperature difference does not increase so much. The fact that a large temperature difference can be detected as in the present invention increases the signal level, provides a wide dynamic range, and is advantageous in terms of noise immunity.

【0029】図7に戻り、外部回路14では、発熱抵抗
体5,6の両温度(両抵抗値)の比較を、直列接続された
各抵抗体の両端の電位により行う。上流側の発熱抵抗体
5の温度に対応するのは図7のA−B点間の電位差であ
り、下流側の発熱抵抗体6の温度に対応するのはB−C
間の電位差である。従って、差動増幅噐17bの出力D
が発熱抵抗体5の温度に、差動増幅噐17cの出力Eが
発熱抵抗体6の温度に各々対応し、差動増幅器17dに
より出力DおよびEを比較することにより、空気流の方
向が出力Fとして検知できる。上記した空気流量に対応
した抵抗22aの出力信号Cと、空気流の方向信号であ
る差動増幅器17dの出力Fで作動する切り替え回路2
0とにより、空気流の方向を加味した空気流量信号G
(順流は正逆流は負)が出力される。
Returning to FIG. 7, in the external circuit 14, the two temperatures (both resistance values) of the heating resistors 5 and 6 are compared based on the potentials at both ends of each resistor connected in series. The potential difference between the points A and B in FIG. 7 corresponds to the temperature of the heating resistor 5 on the upstream side, and BC corresponds to the temperature of the heating resistor 6 on the downstream side.
Potential difference between the two. Therefore, the output D of the differential amplifier 17b
Corresponds to the temperature of the heating resistor 5, and the output E of the differential amplifier 17 c corresponds to the temperature of the heating resistor 6. By comparing the outputs D and E with the differential amplifier 17 d, the direction of the air flow is output. F can be detected. A switching circuit 2 that operates with an output signal C of the resistor 22a corresponding to the above-described air flow and an output F of the differential amplifier 17d, which is a direction signal of the air flow.
0, the air flow signal G taking into account the direction of the air flow
(Forward flow is negative for forward / reverse flow).

【0030】図8は、本発明による他の実施例の熱式空
気流量計を示す回路構成図である。別の方式の抵抗体
4,5,6,7と信号処理のための外部回路14を示し
たものである。図7の構成と異なるのは、切り替え回路
20の代わりに除算回路21を設けたことである。この
方式は、空気流の方向および流量として、発熱抵抗体
5,6の温度差そのものを出力しようとするものであ
る。図9に示したように、発熱抵抗体5,6の温度差
(ΔT)は、その正負により空気流の方向が検知できると
共に、絶対値は空気流量に対応するものである。従っ
て、発熱抵抗体5,6の温度差(ΔT)は抵抗値差(ΔR)
と同等なので、この抵抗値差(ΔR)が出力される構成に
すれば、空気流量が計測される。
FIG. 8 is a circuit diagram showing a thermal air flow meter according to another embodiment of the present invention. FIG. 5 shows another type of resistors 4, 5, 6, 7 and an external circuit 14 for signal processing. The difference from the configuration of FIG. 7 is that a division circuit 21 is provided instead of the switching circuit 20. In this method, the temperature difference between the heating resistors 5 and 6 is output as the direction and flow rate of the air flow. As shown in FIG. 9, the temperature difference between the heating resistors 5 and 6
(ΔT) is such that the direction of the air flow can be detected by its sign, and the absolute value corresponds to the air flow rate. Therefore, the temperature difference (ΔT) between the heating resistors 5 and 6 is equal to the resistance value difference (ΔR).
Therefore, if this resistance value difference (ΔR) is output, the air flow rate is measured.

【0031】即ち、図8において、差動増幅噐17dに
は、図7での動作と同じように発熱抵抗体5,6の両端
の電位が入力され、その電位差がFとして除算回路21
に出力される。電位差Fは、発熱抵抗体5,6の抵抗値
差(ΔR)と発熱抵抗体5,6に流れる加熱電流値の積と
なっているので、電位差Fを加熱電流値に対応する抵抗
22aの電位Cで除算することにより、抵抗値差(ΔR)
が除算回路21の出力Gとして得られる。この出力Gの
正負から空気流の方向が、そしてまた、出力Gの絶対値
から空気流量が計測される。
That is, in FIG. 8, the potentials at both ends of the heating resistors 5 and 6 are input to the differential amplifier 17d in the same manner as in the operation in FIG.
Is output to Since the potential difference F is the product of the resistance value difference (ΔR) between the heating resistors 5 and 6 and the heating current flowing through the heating resistors 5 and 6, the potential difference F is determined by the potential of the resistor 22a corresponding to the heating current value. By dividing by C, the resistance value difference (ΔR)
Is obtained as the output G of the division circuit 21. The direction of the air flow is measured from the sign of the output G, and the air flow rate is measured from the absolute value of the output G.

【0032】次に、本発明による熱式空気流量計の測定
素子の具体例について、図1,2を参照して説明する。
まず、シリコン半導体基板2上に電気絶縁体10aとし
て、熱酸化あるいはCVD等の方法で、約0.5ミクロ
ンの厚さの二酸化ケイ素、窒化ケイ素等を形成する、更
に、抵抗体4,5,6,7として、スパッタ等の方法
で、約0.2ミクロンの厚さの白金を形成する。その
後、公知のホトリソグラフィ技術により、所定の形状に
レジストを形成した後、イオンミリング等の方法により
白金をパターニングする。
Next, a specific example of the measuring element of the thermal air flow meter according to the present invention will be described with reference to FIGS.
First, silicon dioxide, silicon nitride, or the like having a thickness of about 0.5 μm is formed as an electrical insulator 10a on the silicon semiconductor substrate 2 by a method such as thermal oxidation or CVD. In Steps 6 and 7, platinum having a thickness of about 0.2 μm is formed by a method such as sputtering. Then, after a resist is formed in a predetermined shape by a known photolithography technique, platinum is patterned by a method such as ion milling.

【0033】次に、端子電極8を金メッキ等で形成した
後、端子電極8以外の部分を保護膜として、先と同様に
約0.5ミクロンの厚さの電気絶縁体10bを形成す
る。最後に、シリコン基板2の裏面より二酸化ケイ素等
をマスク材として、異方性エッチングすることにより空
洞3を形成し、チップに切断することにより、測定素子
1が得られる。
Next, after the terminal electrode 8 is formed by gold plating or the like, an electric insulator 10b having a thickness of about 0.5 μm is formed in the same manner as described above, using a portion other than the terminal electrode 8 as a protective film. Finally, the cavity 3 is formed by anisotropic etching from the back surface of the silicon substrate 2 using silicon dioxide or the like as a mask material, and cut into chips to obtain the measuring element 1.

【0034】ここで、空洞3上の電気絶縁膜10は、従
来例の検出有効面積(約0.2mm×1mm:特開平7
−174600号公報の明細書「0028」項に記載)に
対して、本実施例では1.5mm×1.5mmの検出有
効面積とし、従来例の約10倍の大きさにした。また、
測温抵抗体4を囲むように発熱抵抗体5,6を形成した
ことから、発熱抵抗体の占有面積が大きくとれる。
Here, the electric insulating film 10 on the cavity 3 has a detection effective area (about 0.2 mm × 1 mm:
In this example, the detection effective area was 1.5 mm × 1.5 mm, which was about 10 times larger than that of the conventional example. Also,
Since the heating resistors 5 and 6 are formed so as to surround the temperature measuring resistor 4, the occupied area of the heating resistor can be increased.

【0035】このことにより、空洞3上の発熱抵抗体
5,6の空気流量信号のダイナミックレンジおよび対ノ
イズが、従来例に比較して大幅に改善した。なお、空洞
3を大きくした場合でも、本実施例の測定素子1の大き
さは、約2.5mm×5mmであり、従来例(約3mm
×3mm:特開平7−174600号公報の明細書「0
028」項に記載)の約1.4倍に過ぎない。また、従来
例のように空気流9に晒される開口部がないことにより
耐塵埃信頼性が向上した。
As a result, the dynamic range and noise immunity of the air flow rate signals of the heating resistors 5 and 6 on the cavity 3 are greatly improved as compared with the conventional example. In addition, even when the cavity 3 is enlarged, the size of the measuring element 1 of the present embodiment is about 2.5 mm × 5 mm, and the conventional example (about 3 mm
× 3 mm: JP-A-7-174600, specification “0”
028 ”)). In addition, since there is no opening exposed to the airflow 9 as in the conventional example, the reliability of dust resistance is improved.

【0036】[0036]

【発明の効果】本発明によれば、測温抵抗体4の上下流
に一対の発熱抵抗体5,6を半導体基板に形成した検出
有効面積の大きい空洞3上の電気絶縁体10に形成し、
且つ、発熱抵抗体5,6を直列接続し上記発熱抵抗体
5,6の温度差および加熱電流から、空気流の方向と流
量を計測する構成としたことにより、空気流量の計測時
のダイナミックレンジおよび対ノイズの改善が図られ
る。
According to the present invention, a pair of heating resistors 5 and 6 are formed on the electrical insulator 10 above and below the temperature measuring resistor 4 on the cavity 3 having a large effective detection area formed on the semiconductor substrate. ,
In addition, since the heating resistors 5 and 6 are connected in series and the direction and the flow rate of the air flow are measured from the temperature difference and the heating current of the heating resistors 5 and 6, the dynamic range at the time of measuring the air flow rate is obtained. In addition, the noise immunity is improved.

【0037】また、空気流9に対して開口している所が
ない構成にすることから、耐塵埃信頼性が向上し、更に
は、空気温度測温抵抗体7を空気流に突き出す構成とす
ることにより、温度特性の改善を図った熱式空気流量計
が提供できる効果がある。
Further, since there is no opening for the air flow 9, the reliability of dust resistance is improved, and the air temperature measuring resistor 7 is projected into the air flow. Thus, there is an effect that a thermal air flowmeter with improved temperature characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例の測定素子(熱式空気流
量計用)を示す平面図である。
FIG. 1 is a plan view showing a measuring element (for a thermal air flow meter) of one embodiment according to the present invention.

【図2】図1のA−A’断面を示す図である。FIG. 2 is a diagram showing a cross section taken along line A-A 'of FIG.

【図3】図1の測定素子を実装した本発明による一実施
例の熱式空気流量計を示す断面図である。
FIG. 3 is a sectional view showing a thermal air flow meter according to an embodiment of the present invention, on which the measuring element of FIG. 1 is mounted.

【図4】図3の測定素子部を示す拡大図である。FIG. 4 is an enlarged view showing a measuring element unit of FIG. 3;

【図5】図4のB−B’断面を示す図である。FIG. 5 is a view showing a B-B ′ section of FIG. 4;

【図6】図4のC−C’断面を示す図である。FIG. 6 is a view showing a cross section taken along line C-C ′ of FIG. 4;

【図7】本発明による一実施例の熱式空気流量計を示す
回路構成図である。
FIG. 7 is a circuit diagram showing a thermal air flow meter according to an embodiment of the present invention.

【図8】本発明による他の実施例の熱式空気流量計を示
す回路構成図である。
FIG. 8 is a circuit diagram showing a thermal air flow meter according to another embodiment of the present invention.

【図9】図1の測定素子のA−A’断面および動作原理
を示す図である。
9 is a diagram showing an AA ′ cross section and an operation principle of the measuring element of FIG. 1;

【図10】従来の熱式空気流量計の測定素子を説明する
平面図である。
FIG. 10 is a plan view illustrating a measuring element of a conventional thermal air flow meter.

【図11】従来の他の熱式空気流量計の測定素子を説明
する平面図である。
FIG. 11 is a plan view illustrating a measuring element of another conventional thermal air flow meter.

【符号の説明】 1…測定素子、2…半導体基板、3…空洞、3a…開口
部、4…測温抵抗体、5,6…発熱抵抗体、7…空気温
度測温抵抗体、8,15…端子電極、9…空気流、10
a,10b…電気絶縁膜、11…吸気通路、12…副通
路、13,13a,13b…支持体、14…外部回路、
16…金線、17a,17b,17c,17d…差動増
幅器、18…トランジスタ、19…電源、20…切り替
え回路、21…除算回路、22a,22b,22c…抵
[Explanation of Symbols] 1 ... measuring element, 2 ... semiconductor substrate, 3 ... cavity, 3 a ... opening, 4 ... temperature measuring resistor, 5, 6 ... heating resistor, 7 ... air temperature measuring resistor, 8, 15 ... Terminal electrode, 9 ... Air flow, 10
a, 10b: electric insulating film, 11: intake passage, 12: sub passage, 13, 13a, 13b: support, 14: external circuit,
16: gold wire, 17a, 17b, 17c, 17d: differential amplifier, 18: transistor, 19: power supply, 20: switching circuit, 21: division circuit, 22a, 22b, 22c: resistor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】上面を電気絶縁膜で塞がれて下面に開口し
ている空洞を有する半導体基板と、前記空洞上の部位の
前記電気絶縁膜上に形成された測温抵抗体および該測温
抵抗体を中に被測定流体の上下流側に振り分けられてい
る一対の発熱抵抗体と、前記空洞部上以外の部位の前記
電気絶縁膜上に形成された流体温度測温抵抗体とを有す
る測定素子と、 前記測温抵抗体と前記流体温度測温抵抗体の温度差を一
定に保つように前記各発熱抵抗体に加熱電流を流す加熱
制御手段と、前記各発熱抵抗体の温度差に基づいて前記
被測定流体の流れ方向を検知する方向検知手段と、前記
各発熱抵抗体の温度差または前記各発熱抵抗体に流す電
流値に基づいて前記被測定流体の流量を検知する流量検
知手段とから構成することを特徴とする熱式空気流量
計。
1. A semiconductor substrate having a cavity whose upper surface is closed by an electric insulating film and opened to the lower surface, a temperature measuring resistor formed on the electric insulating film at a position on the cavity, and A pair of heating resistors distributed to the upstream and downstream sides of the fluid to be measured with the temperature resistor inside, and a fluid temperature measuring resistor formed on the electric insulating film in a portion other than on the cavity. A measuring element having: heating control means for supplying a heating current to each of the heating resistors so as to keep a temperature difference between the temperature measuring resistor and the fluid temperature measuring resistor constant; and a temperature difference between the heating resistors. Direction detecting means for detecting the flow direction of the fluid to be measured based on the flow rate, and flow rate detection for detecting the flow rate of the fluid to be measured based on the temperature difference between the respective heating resistors or the current value flowing through each of the heating resistors. And a thermal air flow meter.
【請求項2】請求項1において、前記一対の発熱抵抗体
は、前記電気絶縁膜上で電気的に直列に接続されて引き
出された2つの端子電極と、中間接続点から引き出され
た中間端子電極とを有することを特徴とする熱式空気流
量計。
2. The terminal according to claim 1, wherein said pair of heating resistors are two terminal electrodes which are electrically connected in series on said electric insulating film and are drawn out, and an intermediate terminal which is drawn out from an intermediate connection point. A thermal air flow meter comprising: an electrode;
JP16431996A 1996-06-25 1996-06-25 Thermal air flow meter Expired - Lifetime JP3193872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16431996A JP3193872B2 (en) 1996-06-25 1996-06-25 Thermal air flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16431996A JP3193872B2 (en) 1996-06-25 1996-06-25 Thermal air flow meter

Publications (2)

Publication Number Publication Date
JPH109924A true JPH109924A (en) 1998-01-16
JP3193872B2 JP3193872B2 (en) 2001-07-30

Family

ID=15790899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16431996A Expired - Lifetime JP3193872B2 (en) 1996-06-25 1996-06-25 Thermal air flow meter

Country Status (1)

Country Link
JP (1) JP3193872B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275075A (en) * 1999-03-23 2000-10-06 Mitsubishi Electric Corp Thermal flow sensor
KR100515422B1 (en) * 1995-07-29 2005-11-21 로베르트 보쉬 게엠베하 Mass flow sensor
JP2007101561A (en) * 1999-06-14 2007-04-19 Yamatake Corp Flow rate detector
KR100849011B1 (en) 2006-05-15 2008-07-30 미쓰비시덴키 가부시키가이샤 Flow detector element of thermosensible flow sensor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660365B1 (en) 1998-12-21 2003-12-09 Cardinal Cg Company Soil-resistant coating for glass surfaces
US7989094B2 (en) 2006-04-19 2011-08-02 Cardinal Cg Company Opposed functional coatings having comparable single surface reflectances
EP2261186B1 (en) 2007-09-14 2017-11-22 Cardinal CG Company Low maintenance coating technology
CN101975870B (en) * 2010-09-29 2012-05-23 东南大学 Rectangular silicon-film two-dimensional wind speed and direction sensor
JP5680178B1 (en) * 2013-12-26 2015-03-04 三菱電機株式会社 Flow sensor and control system for internal combustion engine
CN106829850B (en) * 2017-01-18 2019-03-05 东南大学 Hot temperature difference type air velocity transducer and preparation method thereof and detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515422B1 (en) * 1995-07-29 2005-11-21 로베르트 보쉬 게엠베하 Mass flow sensor
JP2000275075A (en) * 1999-03-23 2000-10-06 Mitsubishi Electric Corp Thermal flow sensor
JP2007101561A (en) * 1999-06-14 2007-04-19 Yamatake Corp Flow rate detector
KR100849011B1 (en) 2006-05-15 2008-07-30 미쓰비시덴키 가부시키가이샤 Flow detector element of thermosensible flow sensor

Also Published As

Publication number Publication date
JP3193872B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
JP3366818B2 (en) Thermal air flow meter
JP3335860B2 (en) Measuring element for thermal air flow meter and thermal air flow meter
EP2339334B1 (en) Thermal gas sensor
US6935172B2 (en) Thermal type flow measuring device
US6470742B1 (en) Flow sensor
JPH1123338A (en) Thermosensitive flow-rate detecting element and flow-rate sensor using the same
US20040045352A1 (en) Flow sensor
JP3193872B2 (en) Thermal air flow meter
EP1870681B1 (en) Thermal type flow rate measuring apparatus
JPH0625684B2 (en) Fluid flow rate detection sensor
JPH102773A (en) Thermal air flowmeter
JPH04230808A (en) Diaphragm sensor
JP3655593B2 (en) Flow sensor
JPH1062220A (en) Thermal air-flowemeter
JP3668921B2 (en) Flow detection element
US6250150B1 (en) Sensor employing heating element with low density at the center and high density at the end thereof
US20040261521A1 (en) Flow sensor having two heating resistors
JPH07174600A (en) Flow-velocity sensor and flow-velocity measuring apparatus
JPH0643906B2 (en) Flow sensor
JPH08278323A (en) Flow velocity sensor
JP2002310762A (en) Flow sensor
JP2550435B2 (en) Flow sensor
JP3766290B2 (en) Flow sensor
JPH0812097B2 (en) Flow sensor
JP3766289B2 (en) Flow sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

EXPY Cancellation because of completion of term