JPH1098010A - Formation of compound semiconductor low-contact resistance electrode - Google Patents

Formation of compound semiconductor low-contact resistance electrode

Info

Publication number
JPH1098010A
JPH1098010A JP25043396A JP25043396A JPH1098010A JP H1098010 A JPH1098010 A JP H1098010A JP 25043396 A JP25043396 A JP 25043396A JP 25043396 A JP25043396 A JP 25043396A JP H1098010 A JPH1098010 A JP H1098010A
Authority
JP
Japan
Prior art keywords
temperature
metal
contact
semiconductor
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25043396A
Other languages
Japanese (ja)
Other versions
JP2929084B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Yutaka Koyama
裕 小山
Puotoka Pyotr
ピョートル・プヲトカ
Fumio Matsumoto
史夫 松本
Toru Kurabayashi
徹 倉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP25043396A priority Critical patent/JP2929084B2/en
Publication of JPH1098010A publication Critical patent/JPH1098010A/en
Application granted granted Critical
Publication of JP2929084B2 publication Critical patent/JP2929084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable forming a low-resistance ohmic contact, which is suitable for processing of a ultrahigh-speed semiconductor device using a compound semiconductor by a method, wherein the concentration of impurities, which are doped to a semiconductor contact layer coming into contact with a metal layer, is set at a concentration of a specified value or higher and a prescribed temperature or lower in a pretreatment process, prior to a deposition of the metal film set at the deposition temperature of the metal film. SOLUTION: A TEG, an AsH3 and a DETe are used by an MLE, Te is doped to a GaAs contact layer at a substrate temperature of 325 deg.C in an ultrahigh vacuum, to grow the GaAs contact layer of an impurity concentration of 1×10<19> /cc or higher on a substrate and thereafter, an Si3 N4 film is deposited on the contact layer by a plasma CVD method in the atmosphere. After the pattern of the Si3 F4 film has been formed on the contact layer, the substrate is heated up to a prescribed temperature of 300 to 480 deg.C, such as 380 deg.C, while the AsH3 is introduced in the substrate to remove a natural oxide film. After that, the temperature of the substrate is set at a prescribed metal deposition temperature, such as 380 deg.C, and an W (CO)6 is introduced in the substrate to deposit a W metal film. Thereby, a low-resistance ohmic contact can be formed on an ultrahigh-speed III-V compound semiconductor device, having a super thin multilayer structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体デバ
イス製造工程における低抵抗の金属と半導体接触を形成
する方法に利用し、特に、高濃度かつ急峻な濃度プロフ
ァイルの極薄多層構造を有する超高速III −V族化合物
半導体デバイスに極めて低い抵抗のオーミックコンタク
トを形成するための化合物半導体低接触抵抗電極の形成
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a semiconductor contact with a low-resistance metal in a manufacturing process of a compound semiconductor device, and particularly to an ultra-high-speed ultra-high-speed multilayer structure having a high concentration and a steep concentration profile. The present invention relates to a method for forming a compound semiconductor low contact resistance electrode for forming an ohmic contact with extremely low resistance in a III-V compound semiconductor device.

【0002】[0002]

【従来の技術】従来から高速半導体デバイスに広く用い
られてきたSiに比べ、GaAs或いはInGaAs等
のIII −V族化合物半導体は、電子移動度が大きく、超
高速半導体デバイスに適した半導体材料である。近年、
超高速化を図るために半導体デバイスの極微細化が推進
されてきたが、それに伴い種々の解決すべき課題も派生
してきた。それらの課題の一つが金属/半導体接触抵抗
電極、いわゆるオーミック電極の形成技術である。
2. Description of the Related Art Compared with Si which has been widely used for high-speed semiconductor devices, III-V compound semiconductors such as GaAs and InGaAs have high electron mobility and are suitable for ultra-high-speed semiconductor devices. . recent years,
Ultra miniaturization of semiconductor devices has been promoted in order to achieve ultra-high speed, but various problems to be solved have also been derived along with this. One of those issues is a technique for forming a metal / semiconductor contact resistance electrode, a so-called ohmic electrode.

【0003】一般に、一定のコンタクト抵抗率を持つ金
属/半導体接触であれば、半導体素子の寸法が1/k倍
になると、コンタクト抵抗はk2 倍に増加する。したが
って、超高速半導体デバイスには、コンタクト抵抗率の
極めて低い金属/半導体接触が要求される。また、半導
体デバイスの微細化に伴い、半導体層は高濃度不純物の
急峻な濃度プロファイルを有する極薄多層構造となり、
電極材金属の半導体層中への拡散の許容範囲は縦及び横
方向共に短く制限される。従来、用いられてきたAu/
Geを中心とした合金化オーミックコンタクトでは、コ
ンタクト抵抗率が1x10-6Ωcm2 以上と高く、合金
化熱処理により金属の拡散が100nm以上にもおよぶ
ことから問題となっている。このため、非合金化オーミ
ックコンタクトの開発が行われている。
Generally, if a metal / semiconductor contact with a fixed contact resistivity, the dimensions of the semiconductor device is 1 / k times, the contact resistance is increased to twice k. Therefore, ultra-high speed semiconductor devices require metal / semiconductor contacts with very low contact resistivity. In addition, with the miniaturization of semiconductor devices, the semiconductor layer has an extremely thin multilayer structure having a steep concentration profile of high-concentration impurities,
The allowable range of diffusion of the electrode material metal into the semiconductor layer is limited to be short in both the vertical and horizontal directions. Au /
The alloyed ohmic contact centered on Ge has a problem that the contact resistivity is as high as 1 × 10 −6 Ωcm 2 or more, and the diffusion of metal reaches 100 nm or more due to the alloying heat treatment. For this reason, non-alloyed ohmic contacts have been developed.

【0004】金属/半導体界面の電気伝導がトンネル機
構による場合、このコンタクト抵抗Rcを金属/半導体
障壁fb、ドーピング濃度Ndで表すと、Rc=A・e
xp{fb/(Nd)2 }となる。したがって、低抵抗
のオーミックコンタクトを形成するには、界面近傍の半
導体層に高濃度のドーピングを行うか、金属/半導体障
壁の低い金属を用いればよい。
When the electric conduction at the metal / semiconductor interface is based on a tunnel mechanism, the contact resistance Rc is represented by a metal / semiconductor barrier fb and a doping concentration Nd.
xp {fb / (Nd) 2 }. Therefore, in order to form a low-resistance ohmic contact, high-concentration doping may be performed on the semiconductor layer near the interface or a metal having a low metal / semiconductor barrier may be used.

【0005】ところが、障壁高さが低い金属/半導体界
面を再現性よく得るのは非常に困難であり、例えばn型
GaAsの場合、通常の方法で形成された金属/半導体
界面の障壁高さは良く知られているように、ピニングと
呼ばれる現象のため、ほぼ一定の0.8eV程度の値を
示す。そのため、GaAs半導体層への高濃度ドーピン
グ技術が低抵抗のオーミックコンタクトを実現するのに
極めて重要となる。近年の分子層エピタキシ(以下、
「MLE」と記す。)或いは分子線エピタキシ(以下、
「MBE」と記す。)の目覚ましい技術開発により、1
x1019/cc以上のドーピングも可能になってきた。
MBEにより、Si不純物を表面の極く近傍に約1x1
20/ccドーピングしたn型GaAs層で、MBEを
行った直後にその場で金属を蒸着することにより、1x
10-6Ωcm2 のコンタクト抵抗が得られている(アプ
ライド・フィジックス・レターズ、1985年47巻p
26参照)。
However, it is very difficult to obtain a metal / semiconductor interface having a low barrier height with good reproducibility. For example, in the case of n-type GaAs, the barrier height of the metal / semiconductor interface formed by a usual method is small. As is well known, due to a phenomenon called pinning, it shows a substantially constant value of about 0.8 eV. Therefore, a high concentration doping technique for the GaAs semiconductor layer is extremely important for realizing a low-resistance ohmic contact. Recent molecular layer epitaxy (hereafter,
It is described as "MLE". ) Or molecular beam epitaxy (hereinafter,
Indicated as "MBE". ) By remarkable technology development,
Doping at x10 19 / cc or more has also become possible.
By MBE, an Si impurity was added to a surface of about 1 × 1
In the n-type GaAs layer doped with 0 20 / cc, the metal is vapor-deposited in situ immediately after the MBE is performed.
A contact resistance of 10 -6 Ωcm 2 has been obtained (Applied Physics Letters, 1985, vol. 47, p.
26).

【0006】しかし、このような高濃度不純物を含む半
導体層を用いても、MBE後にいったん空気中にさらす
と、自然酸化膜がGaAs表面に形成され、それによっ
て高不純物濃度層が酸化されて自然酸化膜となるため、
得られるコンタクト抵抗率は一桁以上も大きいものにな
ってしまっていた。コンタクト層を成長後、その場で金
属膜を形成する方法では、コンタクト抵抗を最小化する
には優れているが、デバイス作製プロセスの自由度を狭
めることになる。
However, even if such a semiconductor layer containing high-concentration impurities is used, once it is exposed to air after MBE, a natural oxide film is formed on the GaAs surface, whereby the high-impurity concentration layer is oxidized and spontaneously oxidized. Because it becomes an oxide film,
The resulting contact resistivity was more than an order of magnitude higher. The method of forming a metal film in situ after growing a contact layer is excellent in minimizing contact resistance, but reduces the degree of freedom in the device fabrication process.

【0007】また、金属/半導体界面の熱的安定性を得
るため、W(タングステン),Ti(チタン)などの高
融点金属や、WNx ,WSix ,TiSix などの合金
が好んで用いられるが、これらの金属膜は概して加工が
困難で、予めパターンを形成して金属膜を形成するプロ
セスが必要となり、自然酸化膜形成の問題は避けられな
い。
[0007] To obtain the thermal stability of the metal / semiconductor interface, W (tungsten), or high-melting metal such as Ti (titanium), used WN x, WSi x, preferred by alloys such as TiSi x However, these metal films are generally difficult to process and require a process of forming a metal film by forming a pattern in advance, and the problem of forming a natural oxide film is inevitable.

【0008】一方、自然酸化膜に対する保護膜として、
低温成長(以下、「LTG」と記す。)GaAsが提案
されている(アプライド・フィジックス・レターズ、1
995年66巻p1412参照)。これは、高濃度のS
i不純物を含むGaAs層のMBE直後にノンドープL
TG−GaAs層を低温(〜250℃)で2〜5nm成
長させ、その後、一旦大気に曝したのち、MBEチャン
バー内で砒素ビームを照射しながら超高真空中で加熱し
て、最表面LTG−GaAs層にとどまる自然酸化膜を
除去し、その後金属膜を蒸着することにより、低抵抗金
属・半導体接触を形成するものである。なお、このLT
G−GaAs層は非晶質であり、超高真空中での加熱に
よって、自然酸化膜とともに蒸発していると考えられて
いる。このLTG−GaAsでは、除去される自然酸化
膜層がLTG−GaAs層内に留まり、高濃度Si不純
物を含むGaAs層に及ばないため、コンタクト抵抗率
は最小のもので3x10-7Ωcm2 が得られている。
On the other hand, as a protective film for a natural oxide film,
Low temperature growth (hereinafter referred to as “LTG”) GaAs has been proposed (Applied Physics Letters, 1).
995, 66, p1412). This is because high concentrations of S
Immediately after the MBE of the GaAs layer containing
A TG-GaAs layer is grown at a low temperature (up to 250 ° C.) at a temperature of 2 to 5 nm, and is then exposed to the atmosphere. A low-resistance metal / semiconductor contact is formed by removing a native oxide film remaining in the GaAs layer and thereafter depositing a metal film. Note that this LT
It is considered that the G-GaAs layer is amorphous, and evaporates together with the natural oxide film by heating in an ultra-high vacuum. In this LTG-GaAs, the natural oxide film layer to be removed remains in the LTG-GaAs layer and does not reach the GaAs layer containing high-concentration Si impurities. Therefore, the contact resistivity is 3 × 10 −7 Ωcm 2 at the minimum. Have been.

【0009】しかし、自然酸化膜の形成は、よく知られ
ているように大気中では極めて短時間のうちに生じるた
め、通常の化学処理では自然酸化膜を完全に除去するこ
とができない。そこで、従来は酸化種を含まない雰囲気
中で、例えば超高真空中或いは水素雰囲気中で、Asを
供給しながら、500〜600℃に加熱して結晶成長が
行われていた。
However, as is well known, the formation of a natural oxide film occurs in an extremely short time in the air, so that the natural chemical film cannot be completely removed by ordinary chemical treatment. Therefore, conventionally, crystal growth has been performed by heating to 500 to 600 ° C. while supplying As in an atmosphere containing no oxidizing species, for example, in an ultra-high vacuum or a hydrogen atmosphere.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、自然酸
化膜除去における温度は、上記したように高濃度不純物
の急峻な濃度プロファイルの極薄多層構造を有する超高
速デバイス半導体層には高すぎるばかりか、高不純物濃
度のコンタクト層の不純物の再分布を引き起こし、オー
ミックコンタクトの低抵抗化には適用できない。上記L
TGの温度は250℃と極めて低く、膜形成に問題はな
いが、自然酸化膜除去について、通常の化学処理では完
全に除去できないという解決すべき課題がある。さら
に、MBE成長後のプロセスにより形成される自然酸化
膜の厚さは制御不可能で、LTG保護膜の最適な厚さは
プロセスごとに相違し、一意的に決まらないという解決
すべき課題がある。このように、従来の500〜600
℃に加熱する高温の酸化膜除去工程では、高濃度不純物
を含むコンタクト層の表面近傍が劣化し、良好な低抵抗
のオーミックコンタクトを再現性よく得ることが困難で
あった。
However, the temperature in removing the natural oxide film is not only too high for the ultra-high-speed device semiconductor layer having an ultra-thin multilayer structure having a steep concentration profile of high-concentration impurities as described above, This causes redistribution of impurities in the contact layer having a high impurity concentration, and cannot be applied to lowering the ohmic contact resistance. L above
The temperature of TG is extremely low at 250 ° C., and there is no problem in film formation. However, there is a problem to be solved in that natural oxide film cannot be completely removed by ordinary chemical treatment. Furthermore, there is a problem to be solved that the thickness of the natural oxide film formed by the process after MBE growth cannot be controlled, and the optimum thickness of the LTG protective film differs for each process and is not uniquely determined. . Thus, the conventional 500 to 600
In the high-temperature oxide film removal step of heating to ° C., the vicinity of the surface of the contact layer containing high-concentration impurities deteriorated, and it was difficult to obtain a good low-resistance ohmic contact with good reproducibility.

【0011】上記の課題に鑑み、本発明は化合物半導体
を用いた超高速半導体デバイスのプロセスに適した低抵
抗オーミックコンタクトを実現できる化合物半導体低接
触抵抗電極の形成方法を提供することを目的とするもの
である。
In view of the above problems, an object of the present invention is to provide a method for forming a compound semiconductor low contact resistance electrode capable of realizing a low resistance ohmic contact suitable for an ultra-high speed semiconductor device process using a compound semiconductor. Things.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の化合物半導体低接触抵抗電極の形成方法
は、半導体基板上に所定の半導体コンタクト層を形成す
る工程と、コンタクト層が形成された半導体基板上に所
定のパターンを形成する工程と、半導体基板上に原料ガ
スを導入し所定の金属膜を堆積させて低接触抵抗電極を
形成する際に、金属膜に接する半導体コンタクト層に添
加する不純物を1x1019/ cc以上とするとともに、
金属膜を堆積する前の前処理工程の温度を300℃から
480℃の範囲にある所定温度とし、前処理工程の所定
温度或いはその所定温度以下を金属膜の堆積温度と設定
する構成とした。また、上記構成に加え、金属膜を堆積
する前の前処理工程中に、化合物半導体の結晶原料の水
素化ガスを低圧で導入する構成を採り得る。さらに、金
属膜の堆積温度がコンタクト層の不純物を活性化する温
度範囲とする構成を採り得る。
In order to achieve the above object, a method for forming a compound semiconductor low contact resistance electrode according to the present invention comprises a step of forming a predetermined semiconductor contact layer on a semiconductor substrate, and a step of forming a contact layer. A step of forming a predetermined pattern on the semiconductor substrate, and a step of forming a low contact resistance electrode by introducing a source gas onto the semiconductor substrate and depositing a predetermined metal film on the semiconductor contact layer. The impurities to be added should be 1 × 10 19 / cc or more,
The temperature of the pre-processing step before depositing the metal film is set to a predetermined temperature in the range of 300 ° C. to 480 ° C., and the predetermined temperature of the pre-processing step or lower than the predetermined temperature is set as the metal film deposition temperature. Further, in addition to the above configuration, a configuration may be adopted in which a hydride gas as a crystal raw material of a compound semiconductor is introduced at a low pressure during a pretreatment step before depositing a metal film. Further, a configuration may be adopted in which the deposition temperature of the metal film is set to a temperature range that activates impurities in the contact layer.

【0013】このような構成により、十分に低温で各プ
ロセスが行われるため、高濃度かつ急峻なプロファイル
の極薄多層構造を有する超高速III −V族化合物半導体
デバイスに、極めて低い抵抗のオーミックコンタクトを
形成することができる。
With such a configuration, each process is performed at a sufficiently low temperature. Therefore, an ultra-high-speed III-V compound semiconductor device having an ultra-thin multilayer structure having a high concentration and a steep profile can be connected to an ohmic contact having an extremely low resistance. Can be formed.

【0014】[0014]

【発明の実施の形態】以下、本実施形態では、III −V
族化合物半導体としてGaAs、添加するn型不純物と
してTe(テルル)及びオーミック金属として高融点金
属のW(タングステン)を用いる。なお、本発明はGa
Asの他のIII −V族化合物半導体にも適用することが
でき、不純物はn型又はp型を問わず、オーミック金属
はいずれの金属又は合金であってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, in the present embodiment, III-V
GaAs is used as a group III compound semiconductor, Te (tellurium) is used as an n-type impurity to be added, and high melting point metal W (tungsten) is used as an ohmic metal. It should be noted that the present invention
The invention can be applied to other group III-V compound semiconductors of As, and the ohmic metal may be any metal or alloy regardless of whether the impurity is n-type or p-type.

【0015】GaAsの他のIII −V族化合物半導体と
して、InGaAs,AlGaAs,GaP,InP,
InGaP,InGaAlP,InAsP等がある。ま
た、金属又は合金として、極薄In/W二層構造,M
o,極薄In/Mo二層構造,極薄Ti/W二層構造,
極薄Ti/Mo二層構造,極薄Cs/W二層構造,極薄
Cs/Mo二層構造,極薄Hf/W二層構造,極薄Hf
/Mo二層構造などがある。ここで、「/」は積層した
二層構造であることを示す。
As other III-V compound semiconductors of GaAs, InGaAs, AlGaAs, GaP, InP,
There are InGaP, InGaAlP, InAsP and the like. Further, as a metal or alloy, an ultra-thin In / W two-layer structure, M
o, ultra-thin In / Mo bilayer structure, ultrathin Ti / W bilayer structure,
Ultra-thin Ti / Mo bilayer structure, ultrathin Cs / W bilayer structure, ultrathin Cs / Mo bilayer structure, ultrathin Hf / W bilayer structure, ultrathin Hf
/ Mo two-layer structure. Here, “/” indicates that it has a laminated two-layer structure.

【0016】本発明によって作製される超高速半導体デ
バイスは、高濃度かつ急峻なプロファイルの極薄多層構
造を有するため、通常デバイス構造の最上層に形成され
るコンタクト層の成長は必然的に低温でなければならな
い。そのため、このような構造に最も適した分子層エピ
タキシ成長法(MLE)を用いる。なお、低温成長であ
って、分子層単位の結晶成長が可能な他の成長方法にお
いても、本発明を適用できる。
Since the ultra-high-speed semiconductor device manufactured according to the present invention has an ultra-thin multilayer structure having a high concentration and a steep profile, the growth of the contact layer usually formed on the uppermost layer of the device structure necessarily involves a low temperature. There must be. Therefore, a molecular layer epitaxy (MLE) method most suitable for such a structure is used. Note that the present invention can be applied to other growth methods that are low-temperature growth and that allow crystal growth in units of molecular layers.

【0017】本発明の化合物半導体低接触抵抗電極の形
成方法は、先ずMLEによりトリエチルガリウム(以
下、「TEG」と記す。)、アルシン(AsH3 )及び
ジエチルテルル(以下、「DETe」と記す。)を用
い、超高真空中において基板温度325℃でTeをドー
プして、1〜2x1019/ccのGaAsコンタクト層
を基板上に成長させた後、基板を一旦大気中に取り出
し、この基板のGaAsコンタクト層上にプラズマCV
Dによりシリコン窒化膜(Si3 4 )を250℃で堆
積させる。なお、不純物密度が1x1019/cc以上の
場合は、トンネル注入及び添加した不純物による欠陥を
介したトンネル伝導機構が主となることから、Teの不
純物密度を1〜2x1019/ccに決定している。
In the method of forming a compound semiconductor low contact resistance electrode of the present invention, triethyl gallium (hereinafter, referred to as “TEG”), arsine (AsH 3 ), and diethyl tellurium (hereinafter, referred to as “DETe”) are first set by MLE. ), Doping Te at a substrate temperature of 325 ° C. in an ultra-high vacuum to grow a GaAs contact layer of 1 to 2 × 10 19 / cc on the substrate. Plasma CV on GaAs contact layer
D is used to deposit a silicon nitride film (Si 3 N 4 ) at 250 ° C. In the case where the impurity density is 1 × 10 19 / cc or more, since the tunnel conduction mechanism through tunnel injection and defects caused by the added impurities is mainly used, the impurity density of Te is determined to be 1 to 2 × 10 19 / cc. I have.

【0018】次に、通常のフォトリソグラフィ法により
所定のパターンを形成後、金属堆積装置に装着する。こ
の金属堆積装置はMLEと同様の構成からなる装置でよ
い。AsH3 を1x10-3Torr の圧力で導入しなが
ら、上記基板を300℃〜480℃の所定の温度、例え
ば380℃まで昇温し、30分間保持して自然酸化膜の
除去を施す。その後、所定の金属堆積温度、例えば38
0℃に設定し、タングステンヘキサカルボニル(W( C
O)6)を20mTorr の圧力で導入し、100〜200
オングストロームの厚さのW金属の堆積を行う。ここ
で、半導体低接触抵抗電極を形成するためには、金属膜
の堆積温度が自然酸化膜除去温度と同じか或いはその酸
化膜除去温度以下である方がよく、堆積時間は10〜3
0分程度である。
Next, after a predetermined pattern is formed by a usual photolithography method, the device is mounted on a metal deposition apparatus. This metal deposition apparatus may be an apparatus having the same configuration as the MLE. While introducing AsH 3 at a pressure of 1 × 10 −3 Torr, the substrate is heated to a predetermined temperature of 300 ° C. to 480 ° C., for example, 380 ° C., and held for 30 minutes to remove a natural oxide film. Thereafter, a predetermined metal deposition temperature, for example, 38
Set to 0 ° C and use tungsten hexacarbonyl (W (C
O) 6 ) is introduced at a pressure of 20 mTorr,
Angstrom thick W metal is deposited. Here, in order to form a semiconductor low contact resistance electrode, the deposition temperature of the metal film is preferably equal to or lower than the natural oxide film removal temperature, and the deposition time is 10 to 3 times.
It takes about 0 minutes.

【0019】この金属膜の堆積温度は、低抵抗金属・半
導体接触を得るために、コンタクト層中の添加不純物プ
ロファイルを実質的に再配置させず、かつ、コンタクト
層を形成するデバイス構造の不純物プロファイルをも実
質的に変化させない低温であることが必要であり、48
0℃以下にしておく必要がある。
The deposition temperature of the metal film is set so that the impurity profile of the added impurity in the contact layer is not substantially rearranged in order to obtain a low-resistance metal-semiconductor contact. Needs to be a low temperature that does not substantially change
It is necessary to keep the temperature below 0 ° C.

【0020】なお、本発明では所望の高密度添加と急峻
な不純物分布プロファイルが得られる最適なドーピング
温度を325℃としているが、このドーピングの後の自
然酸化膜除去工程の温度は、不純物プロファイルが変化
したり表面の化学量論的組成がずれて欠陥が導入されな
い温度、例えば380℃で表面処理を行うのが最適であ
る。
In the present invention, the optimum doping temperature at which a desired high-density addition and a steep impurity distribution profile can be obtained is 325 ° C. Optimally, the surface treatment is performed at a temperature at which no defects are introduced due to a change or a stoichiometric composition of the surface being shifted.

【0021】さらに、添加された不純物原子が活性化す
ることによって金属半導体接触界面の空乏層の厚さが極
めて薄くなり、トンネル伝導機構が向上するから、金属
膜の堆積温度は、自然酸化膜除去温度以下でドーパント
を活性化する温度、例えば380℃が好ましい。
Further, the activation of the added impurity atoms makes the thickness of the depletion layer at the metal-semiconductor contact interface extremely thin and improves the tunnel conduction mechanism. A temperature at which the dopant is activated below the temperature, for example, 380 ° C. is preferred.

【0022】本実施形態では、自然酸化膜除去のために
AsH3 中で加熱処理を施したが、AsH3 の導入はコ
ンタクト層表面からのAsの飛散を防止し、高抵抗層の
発生を押さえるためのものであり、AsH3 の導入圧力
が低いとAs飛散防止の効果は少なく、十分なAsの飛
散防止を得るには、導入圧力を1x10-4Torr にする
のが望ましい。As飛散防止には、結晶原料の水素化ガ
スであるAsH3 を導入する他に、As2 又はAs4
導入してもよい。
In this embodiment, the heat treatment is performed in AsH 3 to remove the natural oxide film. However, the introduction of AsH 3 prevents the scattering of As from the contact layer surface and suppresses the formation of a high resistance layer. When the introduction pressure of AsH 3 is low, the effect of preventing the scattering of As is small, and in order to sufficiently prevent the scattering of As, the introduction pressure is desirably set to 1 × 10 −4 Torr. As scattered is prevented, in addition to introducing the AsH 3 is hydrogen gases crystalline material, it may be introduced As 2 or As 4.

【0023】これはIII −V族化合物半導体としてGa
Asを使用した場合であり、InPの場合はPH3 を導
入しつつ加熱処理する。すなわち、このようなIII −V
族化合物半導体の結晶原料の水素化ガス又は結晶原料ガ
スを低圧で導入しながら、300℃〜480℃の温度範
囲で自然酸化膜を除去するのが望ましい。このような温
度範囲では、高蒸気圧成分元素の解離が顕著でなく、コ
ンタクト層やデバイス構造の不純物プロファイルが実質
的に変化せず、かつ、AsH3 或いはPH3 の表面反応
が実質的に進行する。
This is because Ga is used as a III-V compound semiconductor.
This is the case where As is used. In the case of InP, heat treatment is performed while introducing PH 3 . That is, such a III-V
It is desirable to remove the natural oxide film in a temperature range of 300 ° C. to 480 ° C. while introducing a hydrogenation gas or a crystal raw material gas of a crystal raw material of the group III compound semiconductor at a low pressure. In such a temperature range, the dissociation of the high vapor pressure component element is not remarkable, the impurity profile of the contact layer or the device structure does not substantially change, and the surface reaction of AsH 3 or PH 3 substantially proceeds. I do.

【0024】上記のように構成された化合物半導体低接
触抵抗電極の形成方法は、十分に低温で自然酸化膜を除
去し、高濃度かつ急峻な濃度プロファイルの極薄多層構
造を有する超高速III −V族化合物半導体デバイスに、
極めて低い抵抗のオーミックコンタクトを形成する。
The method of forming the compound semiconductor low contact resistance electrode configured as described above removes the natural oxide film at a sufficiently low temperature, and has an ultra-high speed III− having an ultrathin multilayer structure having a high concentration and a steep concentration profile. Group V compound semiconductor devices
Form ohmic contacts with very low resistance.

【0025】ところで、金属と半導体の接触抵抗に対す
るAsH3 導入圧力依存性があることから、同一の表面
処理温度及び金属堆積温度において、自然酸化膜除去工
程におけるAsH3 の導入は表面の化学量論的組成の制
御に極めて重要である。表面の良好な化学量論的組成の
制御は、金属半導体接触界面におけるトンネル伝導機構
の向上に作用し、良好な低抵抗金属半導体接触を形成す
ることができる。金属半導体接触界面におけるトンネル
伝導機構の向上に関して、表面の化学量論的組成の制御
が金属半導体接触界面近傍における特定の準位の形成或
いは界面近傍の高純度不純物添加層の不純物置換の位置
制御を最適にする。したがって、特定の準位の形成は準
位を介したトンネル伝導機構を向上させ、さらに不純物
置換位置制御は界面の極薄トンネル障壁層の厚さの減少
によるトンネル伝導機構の向上をもたらし、化合物半導
体の極めて良好な低接触抵抗電極が形成される。
Since the contact resistance between metal and semiconductor depends on the pressure at which AsH 3 is introduced, at the same surface treatment temperature and metal deposition temperature, the introduction of AsH 3 in the natural oxide film removing step is stoichiometric on the surface. It is extremely important for controlling the composition. Good control of the stoichiometric composition of the surface acts to improve the tunnel conduction mechanism at the metal-semiconductor contact interface, and can form a good low-resistance metal-semiconductor contact. Regarding the improvement of the tunnel conduction mechanism at the metal-semiconductor contact interface, controlling the stoichiometric composition of the surface involves controlling the formation of a specific level near the metal-semiconductor contact interface or the position control of impurity substitution in the high-purity impurity-added layer near the interface. Make it optimal. Therefore, the formation of a specific level enhances the tunnel conduction mechanism via the level, and the control of the impurity substitution position leads to the improvement of the tunnel conduction mechanism by reducing the thickness of the ultra-thin tunnel barrier layer at the interface. , A very good low contact resistance electrode is formed.

【0026】[0026]

【実施例】次に、本発明の化合物半導体低接触抵抗電極
の形成方法のコンタクト抵抗を測定するために、上記実
施形態の構成において自然酸化膜除去後の金属膜の堆積
に次いで第二の金属としてアルミニウム(Al)を蒸着
し、フォトリソグラフィ法により金属のエッチングを行
い、金属電極を形成した。このようにして作製した試料
のコンタクト抵抗の測定を行った。
EXAMPLE Next, in order to measure the contact resistance in the method of forming a compound semiconductor low contact resistance electrode of the present invention, a second metal layer was deposited after removing the native oxide film in the configuration of the above embodiment. Aluminum (Al) was vapor-deposited, and the metal was etched by a photolithography method to form a metal electrode. The contact resistance of the sample thus manufactured was measured.

【0027】図1はコンタクト抵抗率の自然酸化膜除去
のためのAsH3 処理温度に対する依存性を示してい
る。図1に明らかに示されているように、480℃以下
のAsH3 処理温度で、コンタクト抵抗率は急激に減少
し、400℃以下でコンタクト抵抗率は再現性よく約5
x10-7Ω・cm2 となる。480℃以上の温度では、
自然酸化膜除去は効率良く行えるが、GaAs中の不純
物の拡散が活発になり、デバイス構造が破壊されてしま
う。Teを高濃度でドープしたコンタクト層の熱処理実
験でも、480℃以上でキャリア濃度が急激に減少する
ことが判明し、480℃以上の自然酸化膜除去のための
AsH3 処理は不適である。
FIG. 1 shows the dependence of the contact resistivity on the temperature of the AsH 3 treatment for removing the native oxide film. As clearly shown in FIG. 1, at AsH 3 treatment temperature of 480 ° C. or less, the contact resistivity sharply decreases, and at 400 ° C. or less, the contact resistivity reproducibly becomes about 5
x10 −7 Ω · cm 2 . At temperatures above 480 ° C,
Although the natural oxide film can be efficiently removed, the diffusion of impurities in GaAs becomes active and the device structure is destroyed. In a heat treatment experiment of a contact layer doped with Te at a high concentration, it was also found that the carrier concentration sharply decreased at 480 ° C. or higher, and the AsH 3 treatment for removing a natural oxide film at 480 ° C. or higher was inappropriate.

【0028】なお、自然酸化膜除去のためのAsH3
理を行わず、通常の電子ビーム蒸着法を用いて、Au/
Ti金属を堆積して同様の測定を行ったところ、コンタ
クト抵抗率は約3x10-6Ω・cm2 となった。また、
自然酸化膜を除去するために、AsH3 処理温度を30
0℃以下で成長させると、GaAs表面の自然酸化膜の
脱離が起こらないため、コンタクト抵抗率は高くなる。
したがって、III −V族化合物半導体の結晶原料を含む
水素化ガスであるAsH3 を導入しながら、金属膜を堆
積する前の前処理温度を300℃〜480℃の範囲とす
ると、極めて低いコンタクト抵抗を形成できる。
It should be noted that, without performing the AsH 3 treatment for removing the native oxide film, Au /
When the same measurement was performed with Ti metal deposited, the contact resistivity was about 3 × 10 −6 Ω · cm 2 . Also,
In order to remove the natural oxide film, the AsH 3 treatment temperature is set to 30.
When grown at 0 ° C. or lower, the natural oxide film on the GaAs surface does not desorb, and the contact resistivity increases.
Therefore, if the pretreatment temperature before depositing the metal film is in the range of 300 ° C. to 480 ° C. while introducing AsH 3 , which is a hydrogenation gas containing the crystal raw material of the III-V compound semiconductor, the contact resistance is extremely low. Can be formed.

【0029】[0029]

【発明の効果】以上の説明から理解されるように、本発
明の化合物半導体低接触抵抗電極の形成方法では、十分
に低温で各プロセスが行われるため、高濃度かつ急峻な
プロファイルの極薄多層構造を有する超高速化合物半導
体デバイスに対して、極めて低い抵抗のオーミックコン
タクトを形成することができるという効果を有する。
As will be understood from the above description, in the method of forming a compound semiconductor low contact resistance electrode according to the present invention, since each process is performed at a sufficiently low temperature, an extremely thin multilayer having a high concentration and a steep profile is obtained. It has an effect that an ohmic contact with extremely low resistance can be formed for an ultrahigh-speed compound semiconductor device having a structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コンタクト抵抗率の自然酸化膜除去のためのA
sH3 処理温度依存性を示すグラフである。
FIG. 1 shows A for removing a natural oxide film having a contact resistivity.
is a graph showing the sH 3 treatment temperature dependence.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に所定の半導体コンタクト
層を形成する工程と、上記コンタクト層が形成された半
導体基板上に所定のパターンを形成する工程と、この半
導体基板上に原料ガスを導入し所定の金属膜を堆積する
工程と、を含む化合物半導体の低接触抵抗電極の形成方
法において、 上記金属膜に接する半導体コンタクト層に添加する不純
物を1x1019/ cc以上とし、 上記金属膜を堆積する前の前処理工程の温度を300℃
から480℃の範囲にある所定温度とし、この前処理工
程の所定温度或いはその所定温度以下を金属膜の堆積温
度とすることを特徴とする化合物半導体低接触抵抗電極
の形成方法。
A step of forming a predetermined semiconductor contact layer on the semiconductor substrate; a step of forming a predetermined pattern on the semiconductor substrate on which the contact layer is formed; and introducing a source gas onto the semiconductor substrate. Depositing a predetermined metal film, comprising: depositing the metal film with an impurity added to the semiconductor contact layer in contact with the metal film at 1 × 10 19 / cc or more. The temperature of the previous pretreatment process is 300 ° C
A predetermined temperature in the range of from about 480 ° C. to 480 ° C., and a predetermined temperature in the pretreatment step or a temperature lower than the predetermined temperature is a deposition temperature of the metal film.
【請求項2】 前記金属膜を堆積する前の前処理工程中
に化合物半導体の結晶原料の水素化ガスを低圧で導入す
ることを特徴とする請求項1に記載の化合物半導体低接
触抵抗電極の形成方法。
2. The compound semiconductor low contact resistance electrode according to claim 1, wherein a hydrogenation gas as a crystal raw material of the compound semiconductor is introduced at a low pressure during a pretreatment step before depositing the metal film. Forming method.
【請求項3】 前記金属膜の堆積温度が前記コンタクト
層の不純物を活性化する温度範囲であることを特徴とす
る請求項1に記載の化合物半導体低接触抵抗電極の形成
方法。
3. The method according to claim 1, wherein the deposition temperature of the metal film is within a temperature range for activating impurities in the contact layer.
JP25043396A 1996-09-20 1996-09-20 Method of forming compound semiconductor low contact resistance electrode Expired - Lifetime JP2929084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25043396A JP2929084B2 (en) 1996-09-20 1996-09-20 Method of forming compound semiconductor low contact resistance electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25043396A JP2929084B2 (en) 1996-09-20 1996-09-20 Method of forming compound semiconductor low contact resistance electrode

Publications (2)

Publication Number Publication Date
JPH1098010A true JPH1098010A (en) 1998-04-14
JP2929084B2 JP2929084B2 (en) 1999-08-03

Family

ID=17207814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25043396A Expired - Lifetime JP2929084B2 (en) 1996-09-20 1996-09-20 Method of forming compound semiconductor low contact resistance electrode

Country Status (1)

Country Link
JP (1) JP2929084B2 (en)

Also Published As

Publication number Publication date
JP2929084B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JPH05129206A (en) Method of controlling interface oxide on polycrystalline/single crystalline silicon interface and device introduced from said method
CA2105342C (en) Method of forming silicon carbide
US4714948A (en) HEMT with epitaxial narrow bandgap source/drain contacts isolated from wide bandgap layer
FR2779572A1 (en) LOW NOISE VERTICAL BIPOLAR TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME
EP0962985A1 (en) Vertical bipolar transistor with base region having low roughness and fabrication process thereof
US5317190A (en) Oxygen assisted ohmic contact formation to N-type gallium arsenide
US5587326A (en) Method of forming bipolar junction transistor of epitaxial planar type
US4692991A (en) Method of controlling forward voltage across Schottky diode
JPH0139206B2 (en)
JP3843884B2 (en) Bipolar transistor manufacturing method
US4939102A (en) Method of growing III-V semiconductor layers with high effective hole concentration
JP2929084B2 (en) Method of forming compound semiconductor low contact resistance electrode
US5374481A (en) Polyemitter structure with improved interface control
JPS60130825A (en) Manufacture of semiconductor device
KR19980024337A (en) Method for manufacturing a silicon thin film conductive element
JPH06326051A (en) Ohmic electrode and formation thereof
JP2746241B2 (en) Alloy ohmic contact electrode and method of forming the same
Paccagnella et al. GaAs surface plasma treatments for Schottky contacts
JPH11274168A (en) Manufacture of heterojuction bipolar transistor
JPH03236224A (en) Manufacture of semiconductor device
Theunissen et al. Experimental Study of Diffusion and Interface Segregation of P in an LPCVD Si‐Carbon Emitter Structure
JP2770586B2 (en) Method for manufacturing heterojunction bipolar transistor
CN115142126A (en) Preparation method of low background concentration gallium nitride epitaxial structure and epitaxial structure thereof
JP4725443B2 (en) Bipolar transistor manufacturing method
WO1992022094A1 (en) SHALLOW OHMIC CONTACTS TO n-AlxGa1-xAs

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

EXPY Cancellation because of completion of term