JPH1096052A - Slab for high strength cold rolled steel sheet excellent in workability or hot-dip plated steel sheet, and its production - Google Patents

Slab for high strength cold rolled steel sheet excellent in workability or hot-dip plated steel sheet, and its production

Info

Publication number
JPH1096052A
JPH1096052A JP27149396A JP27149396A JPH1096052A JP H1096052 A JPH1096052 A JP H1096052A JP 27149396 A JP27149396 A JP 27149396A JP 27149396 A JP27149396 A JP 27149396A JP H1096052 A JPH1096052 A JP H1096052A
Authority
JP
Japan
Prior art keywords
slab
steel sheet
hot
weight
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27149396A
Other languages
Japanese (ja)
Inventor
Takashi Matsumoto
孝 松元
Seiichi Hamanaka
征一 浜中
Yuichi Higo
裕一 肥後
Teruo Tanaka
照夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP27149396A priority Critical patent/JPH1096052A/en
Publication of JPH1096052A publication Critical patent/JPH1096052A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a slab, used for high strength cold rolled steel sheet excellent in workability and hot-dip plated steel sheet, with high productivity. SOLUTION: This slab has a composition consisting of 0.01-0.07% C, <=1.0% Si, 0.5-3.0% Mn, 0.05-0.2% P, 0.0005-0.02% S, 0.005-0.10% Al, <=0.010% N, and the balance essentially Fe and further containing, if necessary, 0.03-0.5% Cu and 0.03-0.5% Ni. Moreover, in the mixing proportion between pseudo-bainite structure and polygonal ferrite structure, pseudo-bainite structure comprises <=40%. This slab can further contain 0.03-0.5% Cu and 0.03-0.5% Ni. At the time of production, the slab is cooled at <=50 deg.C/sec cooling rate while the slab after solidification is in the temp. region of 950-750 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高度の加工性が要求さ
れる自動車の車体部品等に適した高強度冷延鋼板又は溶
融めっき鋼板用のスラブ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slab for a high-strength cold-rolled steel sheet or a hot-dip coated steel sheet which is suitable for a body part of an automobile requiring a high degree of workability, and a method for producing the same.

【0002】[0002]

【従来の技術】地球環境保護の運動が高まる中で、自動
車に関して排ガス対策,省エネルギー等を狙って燃費の
低減が従来以上に強く求められている。燃費低減の有力
な方策の一つに車体の軽量化があり、各種の高強度鋼板
が提案されている。高強度鋼板は、車体の安全性を向上
させる上でも有効な材料である。なかでも、自動車車体
の構造部品に使用される冷延鋼板は、深絞り成形を主体
とする過酷な成形が施され、しかも製品そのものは重要
な保安部品としての高い部品強度が必要とされる。その
ため、自動車車体部品においては、従来よりも格段に優
れた加工性をもち、しかも従来以上の高強度を呈する冷
延鋼板や溶融めっき鋼板が望まれている。
2. Description of the Related Art With the growing movement to protect the global environment, there has been a stronger demand than ever before for automobiles to reduce fuel consumption in order to reduce emissions and save energy. One of the leading measures for reducing fuel consumption is to reduce the weight of the vehicle body, and various high-strength steel sheets have been proposed. A high-strength steel sheet is an effective material for improving the safety of a vehicle body. Above all, cold-rolled steel sheets used for structural components of automobile bodies are subjected to severe forming mainly by deep drawing, and the products themselves require high component strength as important safety components. Therefore, there is a demand for a cold rolled steel sheet or a hot-dip coated steel sheet which has much more excellent workability than the conventional one and has higher strength than the conventional one.

【0003】高加工性及び高強度の要求に応えるものと
して、連続焼鈍用の低炭素Alキルド鋼をベースとして
Si,Mn,P等の固溶強化元素を多量に含有させたス
ラブを使用し、各種の加工性に優れた自動車用高強度冷
延鋼板がこれまで製造されてきた。しかも、自動車車体
の構造部品は、重要保安部品としての価値が高いことか
ら、年々その需要が増大し、少量生産から通常材同様の
大量生産といえる状況にまで発展してきている。
In order to meet the demand for high workability and high strength, a slab containing a large amount of solid solution strengthening elements such as Si, Mn, and P based on a low-carbon Al-killed steel for continuous annealing is used. High-strength cold-rolled steel sheets for automobiles with excellent workability have been manufactured. Moreover, structural parts of automobile bodies have high value as important security parts, and their demands are increasing year by year, and the situation is growing from small-quantity production to mass production like ordinary materials.

【0004】[0004]

【発明が解決しようとする課題】高強度化のため従来以
上にSi,Mn,P等の固溶強化元素を多量に添加し、
しかも生産性向上のために連続鋳造時に冷却速度を上げ
て製造したスラブでは、従来みられなかった硬質の擬ベ
イナイト組織が生成するようになる。硬質の擬ベイナイ
ト組織は、表面割れ等の欠陥を多数発生させる原因であ
り、結果として製品歩留りを低下させる。そのため、大
量生産を狙ったものの、逆に大幅な製造コストの上昇を
招くことになる。本発明は、このような問題を解消すべ
く案出されたものであり、スラブの組成及び鋳造組織を
特定することにより、生産性の阻害や製造コストの上昇
を招くことなく、加工性に優れた高強度冷延鋼板及び溶
融めっき鋼板を提供することを目的とする。
In order to increase the strength, more solid solution strengthening elements such as Si, Mn, and P are added than before,
Moreover, in a slab manufactured by increasing the cooling rate during continuous casting in order to improve productivity, a hard pseudo-bainite structure, which has not been seen before, comes to be generated. The hard pseudo-bainite structure causes many defects such as surface cracks, and as a result, reduces the product yield. Therefore, although mass production is aimed at, on the contrary, a large increase in manufacturing cost is caused. The present invention has been devised in order to solve such a problem, and by specifying the composition of the slab and the cast structure, excellent workability can be achieved without inducing productivity or increasing the production cost. It is an object to provide a high-strength cold-rolled steel sheet and a hot-dip coated steel sheet.

【0005】[0005]

【課題を解決するための手段】本発明の高強度冷延鋼板
又は溶融めっき鋼板用スラブは、その目的を達成するた
め、C:0.01〜0.07重量%,Si:1.0重量
%以下,Mn:0.5〜3.0重量%,P:0.05〜
0.2重量%,S:0.0005〜0.02重量%,A
l:0.005〜0.10重量%,N:0.010重量
%以下を含み、残部が実質的にFeからなる組成をも
ち、擬ベイナイト組織−ポリゴナルフェライト組織の混
合比率で擬ベイナイト組織が40%以下である鋳造組織
をもつことを特徴とする。このスラブは、更にCu:
0.03〜0.5重量%及びNi:0.03〜0.5重
量%を含むことができる。製造に際しては、凝固後のス
ラブが950〜750℃の温度域にあるとき、50℃/
秒以下の冷却速度でスラブを冷却することが必要であ
る。
The slab for a high-strength cold-rolled steel sheet or hot-dip steel sheet according to the present invention has a C content of 0.01 to 0.07% by weight and a Si content of 1.0% in order to achieve the object. %, Mn: 0.5 to 3.0% by weight, P: 0.05 to
0.2% by weight, S: 0.0005 to 0.02% by weight, A
1: 0.005 to 0.10% by weight, N: 0.010% by weight or less, the balance being substantially composed of Fe, and a pseudo bainite structure at a mixing ratio of pseudo bainite structure-polygonal ferrite structure. Is 40% or less. This slab further comprises Cu:
0.03 to 0.5% by weight and Ni: 0.03 to 0.5% by weight. At the time of manufacture, when the slab after solidification is in a temperature range of 950 to 750 ° C.,
It is necessary to cool the slab at a sub-second cooling rate.

【0006】[0006]

【実施の形態】本発明者等は、冷延鋼板及び溶融めっき
鋼板の強度や耐食性に応じて設定される成分・組成をも
つスラブにおいて、連続鋳造されたスラブの鋳造組織が
冷延鋼板及び溶融めっき鋼板の特性に及ぼす影響を種々
調査・研究した。その結果、スラブのミクロ組織におけ
る擬ベイナイト組織を40%以下に規制するとき、生産
性の阻害及び製造コストの上昇を招くことなく、加工性
に優れた高強度冷延鋼板及び溶融めっき鋼板を製造でき
ることを見い出した。強度向上のためにSi,Mn,P
等の固溶強化元素を多量に添加した鋼材を連続鋳造する
と、擬ベイナイトが生成し易い。擬ベイナイトは、凝固
後のスラブの冷却速度が遅くなるほど生成量が少なくな
るが、過度に遅い冷却速度では生産性が阻害される。本
発明者等の研究によるとき、950〜750℃の温度域
における冷却速度を50℃/秒以下にすると、擬ベイナ
イト組織の混合比率が40%以下に規制され、擬ベイナ
イトに起因する表面割れが抑制され、生産性を低下させ
ることなく加工性に優れた高強度冷延鋼板及び溶融めっ
き鋼板用のスラブが得られることが判った。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have found that, in a slab having components and compositions set according to the strength and corrosion resistance of a cold-rolled steel sheet and a hot-dip coated steel sheet, the cast structure of the continuously cast slab is such that The effects on the properties of galvanized steel sheets were investigated and studied. As a result, when the pseudo-bainite structure in the slab microstructure is regulated to 40% or less, a high-strength cold-rolled steel sheet and a hot-dip coated steel sheet with excellent workability can be manufactured without inducing productivity and increasing manufacturing costs. I found what I could do. Si, Mn, P to improve strength
Pseudo-bainite is liable to be produced when a steel material containing a large amount of a solid solution strengthening element such as is continuously cast. The amount of pseudo-bainite produced decreases as the cooling rate of the solidified slab decreases, but productivity is impaired at an excessively slow cooling rate. According to the study of the present inventors, when the cooling rate in the temperature range of 950 to 750 ° C. is set to 50 ° C./second or less, the mixing ratio of the pseudo bainite structure is regulated to 40% or less, and surface cracks caused by pseudo bainite are reduced. It has been found that a slab for a high-strength cold-rolled steel sheet and a hot-dip coated steel sheet which is suppressed and has excellent workability without lowering the productivity can be obtained.

【0007】以下、本発明で規定した合金成分,含有
量,製造条件等について説明する。 C:0.01〜0.07重量% 熱間圧延工程で高温巻取りするとき、Fe3 C等の炭化
物を形成し、ランクフォード値や伸びを改善する作用を
呈する。このような作用は、0.01重量%以上のC含
有量で顕著になる。しかし、0.07重量%を超える多
量のCが含まれると、ランクフォード値や伸びの改善効
果が飽和する。 Si:1.0重量%以下 鋼材を強化する作用を呈し、必要とする強度に応じて添
加量が決定される。しかし、Si含有量が1.0重量%
を超えると、化成処理性,めっき性等が低下する傾向が
みられる。
Hereinafter, alloy components, contents, manufacturing conditions, and the like specified in the present invention will be described. C: 0.01 to 0.07% by weight At the time of high-temperature winding in the hot rolling step, carbides such as Fe 3 C are formed, and an effect of improving the Rankford value and elongation is exhibited. Such an effect becomes remarkable at a C content of 0.01% by weight or more. However, when a large amount of C exceeding 0.07% by weight is contained, the effect of improving the Rankford value and elongation is saturated. Si: 1.0% by weight or less The effect of strengthening the steel material is exhibited, and the amount of addition is determined according to the required strength. However, the Si content is 1.0% by weight.
If the ratio exceeds the range, the chemical conversion property, the plating property and the like tend to decrease.

【0008】Mn:0.5〜3.0重量% Siと同様に鋼材を強化する作用を呈し、必要とする強
度に応じて添加量が決定される。鋼材を強化する作用
は、0.5重量%以上のMn含有量で顕著になる。しか
し、3.0重量%を超える多量のMnが含まれると、A
3 変態点が急激に低下し、再結晶焼鈍がγ域になり、
ランクフォード値や伸びが低下しやすい。 P:0.05〜0.2重量% Siと同様に鋼材を強化する作用を呈し、目標強度に応
じて必要量が添加される。しかし、0.05重量%未満
のP添加では、鋼材を強化する作用が不十分である。逆
に0.2重量%を超える多量のPが添加されると、加工
性,耐二次加工性,めっき性等が劣化する。
Mn: 0.5 to 3.0% by weight Similar to Si, it has the effect of strengthening the steel material, and the amount of addition is determined according to the required strength. The effect of strengthening the steel material becomes remarkable at a Mn content of 0.5% by weight or more. However, when a large amount of Mn exceeding 3.0% by weight is contained, A
The r 3 transformation point drops sharply, the recrystallization annealing becomes in the γ range,
Rankford value and growth are likely to decrease. P: 0.05 to 0.2% by weight Similar to Si, it has the effect of strengthening steel, and a necessary amount is added according to the target strength. However, if less than 0.05% by weight of P is added, the effect of strengthening the steel is insufficient. Conversely, if a large amount of P exceeding 0.2% by weight is added, workability, secondary workability, plating property, etc., deteriorate.

【0009】S:0.0005〜0.02重量% Mn等と硫化物を形成し、炭化物系析出物の生成に影響
を及ぼし、ランクフォード値を向上させる作用を呈す
る。しかし、熱間加工時の割れを誘発させる成分である
ため、上限を0.02重量%に規制した。また、S含有
量を過度に低減することは、製鋼工程で脱硫精錬に多大
なコストがかかることから、S含有量の下限を0.00
05重量%に設定した。 Al:0.005〜0.10重量% 脱酸剤として添加されると共に、Nを固定する作用を呈
する。このような作用は、0.005重量%以上のAl
含有量で顕著になる。しかし、0.10重量%を超える
多量のAlが含まれると、酸化物系介在物が増加し、加
工性,表面性状等が劣化する。
S: 0.0005-0.02% by weight Mn forms a sulfide with Mn and the like, affects the formation of carbide-based precipitates, and has the effect of improving the Rankford value. However, since it is a component that induces cracking during hot working, the upper limit is restricted to 0.02% by weight. Further, excessively reducing the S content requires a large cost for desulfurization and refining in the steel making process.
It was set to 05% by weight. Al: 0.005 to 0.10% by weight It is added as a deoxidizing agent and has an effect of fixing N. Such an effect is obtained when the Al content is 0.005% by weight or more.
It becomes remarkable in the content. However, when a large amount of Al exceeding 0.10% by weight is contained, the amount of oxide-based inclusions increases, and workability, surface properties, and the like deteriorate.

【0010】N:0.010重量%以下 不可避的に含まれる成分であり、Al等で固定される。
しかし、0.010重量%を超える多量のNが含まれる
と、Nの固定に必要なAlの添加量を多くすることが要
求され、析出物の増加に起因して加工性が劣化する。 Cu:0.03〜0.5重量% 必要に応じて添加される合金成分であり、耐食性を改善
する作用を呈する。Cuの添加効果は、0.03重量%
以上の含有量で顕著になり、0.5重量%で飽和する。 Ni:0.03〜0.5重量% Cuに起因した熱間脆性を防止する作用を呈することか
ら、耐食性を改善するためにCuを添加した系で有効な
合金成分である。このような作用を得るためには、Cu
含有量とほぼ同量のNi含有量にすることが好ましく、
そのためNiを添加する場合にはその範囲を0.03〜
0.5重量%に設定する。
N: 0.010% by weight or less N is an unavoidable component and is fixed with Al or the like.
However, when a large amount of N exceeding 0.010% by weight is contained, it is required to increase the amount of Al necessary for fixing N, and the workability is deteriorated due to an increase in precipitates. Cu: 0.03 to 0.5% by weight An alloy component added as necessary, and has an effect of improving corrosion resistance. The effect of adding Cu is 0.03% by weight.
It becomes remarkable at the above content and becomes saturated at 0.5% by weight. Ni: 0.03 to 0.5% by weight Since it has an action of preventing hot brittleness caused by Cu, it is an effective alloy component in a system to which Cu is added in order to improve corrosion resistance. In order to obtain such an effect, Cu
Preferably, the Ni content is approximately the same as the Ni content,
Therefore, when adding Ni, the range is set to 0.03 to
Set to 0.5% by weight.

【0011】鋳造組織:擬ベイナイト組織が40%以下
の擬ベイナイト −ポリゴナルフェライトの混合組織 以上のように成分・組成が調整された溶鋼を連続鋳造
し、スラブとする。得られるスラブは、冷却速度に応じ
て低温変態生成物の一つである擬ベイナイト組織やポリ
ゴナルフェライト組織等に変化するミクロ組織を持って
いる。擬ベイナイト組織は、特に転移密度が高く硬質で
あり、スラブに表面割れ等の欠陥を発生させる原因とな
る。他方、ポリゴナルフェライト組織は、転移密度が小
さく軟質であり、表面割れに対する抵抗力が大きい。表
面割れに及ぼす擬ベイナイト組織及びポリゴナルフェラ
イト組織の影響を調査・研究した結果、擬ベイナイト組
織−ポリゴナルフェライト組織の混合比率で擬ベイナイ
ト組織を40%以下に規制すると、擬ベイナイト組織の
影響が抑制され、スラブに表面割れ等の欠陥が全く発生
しないことを解明した。この理由については必ずしも明
確ではないが、軟質のポリゴナルフェライト組織が支配
的になっていることに原因があるものと推察される。
Cast structure: Mixed structure of pseudo-bainite-polygonal ferrite having a pseudo-bainite structure of 40% or less A molten steel having the components and compositions adjusted as described above is continuously cast into a slab. The obtained slab has a microstructure that changes to a pseudo bainite structure, a polygonal ferrite structure, or the like, which is one of the low-temperature transformation products, according to the cooling rate. The pseudo-bainite structure has a particularly high transition density and is hard, and may cause defects such as surface cracks in the slab. On the other hand, the polygonal ferrite structure has a low transition density and is soft, and has a high resistance to surface cracking. As a result of investigating and studying the effects of pseudo-bainite structure and polygonal ferrite structure on surface cracking, if the pseudo-bainite structure is restricted to 40% or less by a mixing ratio of pseudo-bainite structure-polygonal ferrite structure, the effect of pseudo-bainite structure is reduced. It was clarified that the slab was suppressed and no defects such as surface cracks were generated. Although the reason for this is not necessarily clear, it is presumed that the cause is that the soft polygonal ferrite structure is dominant.

【0012】スラブの冷却条件:950〜750℃の温
度域を50℃/秒以下の冷却速度 擬ベイナイト組織が40%以下のミクロ組織を得るため
には、凝固後のスラブが950〜750℃の温度域にあ
るとき、50℃/秒以下の冷却速度でスラブを冷却する
ことが必要である。この温度域は、フェライトとオース
テナイトの2相域にあり、γ相からポリゴナルフェライ
ト組織又は擬ベイナイト組織を生成させる上で有効であ
る。温度域が特定条件を外れると、擬ベイナイト相40
%以下の組織が得られない。また、50℃/秒を超える
冷却速度では、何れの鋼成分においても擬ベイナイト相
40%以下の組織が得られない。ただし、過度に遅い冷
却速度は生産性を低下させる要因となるので、冷却速度
の下限を5℃/秒に設定することが好ましい。本発明に
従って組成及び組織が調整されたスラブは、熱間圧延,
酸洗,冷間圧延工程を経て、再結晶焼鈍された高強度冷
延鋼板、或いは再結晶焼鈍後に溶融めっきされた溶融め
っき鋼板として使用される。
Cooling conditions for slab: Cooling rate of 950 to 750 ° C. at a cooling rate of 50 ° C./sec or less In order to obtain a microstructure with a pseudo bainite structure of 40% or less, the slab after solidification must be 950 to 750 ° C. When in the temperature range, it is necessary to cool the slab at a cooling rate of 50 ° C./sec or less. This temperature range is in the two-phase range of ferrite and austenite, and is effective in generating a polygonal ferrite structure or a pseudo-bainite structure from the γ phase. When the temperature range deviates from specific conditions, the pseudo bainite phase 40
% Or less tissue cannot be obtained. At a cooling rate exceeding 50 ° C./sec, a structure having a pseudo bainite phase of 40% or less cannot be obtained in any steel component. However, since an excessively slow cooling rate causes a decrease in productivity, it is preferable to set the lower limit of the cooling rate to 5 ° C./sec. The slab having the composition and structure adjusted according to the present invention is hot-rolled,
It is used as a high-strength cold-rolled steel sheet that has been subjected to pickling and cold rolling processes and then recrystallized and annealed, or as a hot-dip coated steel sheet that has been hot-dip after recrystallization annealing.

【0013】熱間圧延では、加熱温度1000〜120
0℃の低温加熱を使用し、仕上げ温度Ar3 変態点以
上,600℃以上の高温巻取りを採用することが好まし
い。低温加熱及び高温巻取りは、鋼中に侵入型として固
溶しているC及びNをFe3 C,AlN等の炭化物,窒
化物,炭窒化物として固定し、加工性を改善する上で有
効である。また、Ar3 変態点に達しない仕上げ温度で
熱延すると、加工性劣化の原因となる熱延集合組織が形
成される。熱延コイルは、酸洗により脱スケール処理さ
れた後、冷間圧延される。冷間圧延では、十分な深絞り
性を得るために、圧下率を60%以上に設定することが
好ましい。冷間圧延後の再結晶焼鈍は、連続焼鈍工程、
又はZn,Al等の溶融めっきを施す場合には溶融めっ
き設備内の還元焼鈍炉で施される。なお、めっき条件は
特に規制されるものではなく、工業的に通常採用されて
いる条件が選定される。また、焼鈍後の冷延鋼板及び溶
融めっき後の溶融めっき鋼板に対しては、5%以下の調
質圧延を施すこともできる。
[0013] In the hot rolling, a heating temperature of 1000 to 120
It is preferable to use a low-temperature heating of 0 ° C. and employ a high-temperature winding of 600 ° C. or higher, which is higher than the Ar 3 transformation point of the finishing temperature. Low-temperature heating and high-temperature winding are effective in fixing C and N solidly dissolved in steel as carbides, nitrides, and carbonitrides such as Fe 3 C and AlN to improve workability. It is. When hot rolling is performed at a finishing temperature that does not reach the Ar 3 transformation point, a hot rolled texture that causes deterioration in workability is formed. The hot-rolled coil is subjected to descaling by pickling and then cold-rolled. In cold rolling, the rolling reduction is preferably set to 60% or more in order to obtain sufficient deep drawability. Recrystallization annealing after cold rolling is a continuous annealing process,
Alternatively, when hot-dip plating of Zn, Al, or the like is performed, the hot-dip plating is performed in a reduction annealing furnace in a hot-dip plating facility. The plating conditions are not particularly limited, and conditions generally used industrially are selected. Further, the cold-rolled steel sheet after annealing and the hot-dip coated steel sheet after hot-dip coating can be subjected to temper rolling of 5% or less.

【0014】[0014]

【実施例】溶解炉で溶鋼を表1の組成に調整した後、連
鋳鋳型に注入し、凝固後の冷却過程で950〜750℃
の温度域における冷却速度を10〜120℃/秒の範囲
で変化させて鋳造し、50kgの鋼塊を製造した。
EXAMPLE After the molten steel was adjusted to the composition shown in Table 1 in a melting furnace, it was poured into a continuous casting mold, and was cooled at 950 to 750 ° C. in a cooling process after solidification.
The casting was performed by changing the cooling rate in the temperature range of 10 to 120 ° C./sec to produce a 50 kg steel ingot.

【0015】 [0015]

【0016】得られた鋼塊の表面を肉眼で観察し、表面
割れの有無を調査した。引き続き、磁粉探傷試験で表面
割れの個数をカウントした。また、光学顕微鏡を用いて
鋼塊のミクロ組織を観察した。調査結果を表2に示すよ
うに、本発明に従って鋼塊の冷却速度を50℃/秒以下
に規制するとき、擬ベイナイトの組織比率が40%以下
に抑えられ、表面割れが発生ないことが判った。これに
対し、鋼塊の冷却速度を50℃/秒を超える試験番号
5,7の比較例では、擬ベイナイトの組織比率が40%
を大きく超え、表面割れが多発した。また、表面割れの
発生及びミクロ組織と鋳造時の冷却速度との関係を調査
したところ、両者の間に図1に示す関係が成立してい
た。すなわち、ミクロ組織において擬ベイナイト組織−
ポリゴナルフェライト組織の混合比率で擬ベイナイト組
織が40%以下の場合及び凝固後950〜750℃の温
度領域を50℃/秒以下の冷却速度で冷却して鋳造する
場合には、何れも表面割れの発生が全く観察されず、良
好なスラブが得られることが判る。
The surface of the obtained steel ingot was observed with the naked eye, and the presence or absence of surface cracks was examined. Subsequently, the number of surface cracks was counted in a magnetic particle flaw detection test. Moreover, the microstructure of the steel ingot was observed using an optical microscope. As shown in Table 2, when the cooling rate of the steel ingot is regulated to 50 ° C./sec or less according to the present invention, the structure ratio of pseudo bainite is suppressed to 40% or less, and no surface cracking occurs. Was. On the other hand, in the comparative examples of Test Nos. 5 and 7 in which the cooling rate of the steel ingot exceeded 50 ° C./sec, the structure ratio of pseudo bainite was 40%.
And the surface cracks occurred frequently. Further, when the relationship between the occurrence of surface cracks and the microstructure and the cooling rate during casting was investigated, the relationship shown in FIG. 1 was established between the two. That is, the pseudo bainite structure in the microstructure
In the case where the pseudo bainite structure is 40% or less in the mixing ratio of the polygonal ferrite structure, and when the casting is performed by cooling the temperature range of 950 to 750 ° C. at a cooling rate of 50 ° C./sec or less after solidification, the surface cracks are generated. No generation was observed, indicating that a good slab was obtained.

【0017】 [0017]

【0018】表面割れのない鋼塊を厚さ35mmの鋼片
に熱間鍛造した後、1150℃に加熱し、熱間圧延し
た。熱間圧延の仕上げ温度は、860〜900℃で且つ
Ar3変態点以上に設定した。仕上げ板厚は、後続する
冷間圧延での圧延率を考慮し、5mmに設定した。熱延
仕上げ後、650〜680℃に加熱したソルトバス中に
鋼帯を装入して所定温度に加熱し、約2時間保持するこ
とにより、熱延鋼帯の巻取りに相当する処理を施した。
引き続き、脱スケール酸洗し、圧延率80%の冷間圧延
により板厚1.0mmの冷延鋼板とした。この冷延鋼板
を、再結晶温度以上の温度800℃で連続焼鈍した。
A steel ingot having no surface cracks was hot forged into a 35 mm thick steel slab, then heated to 1150 ° C. and hot rolled. The finishing temperature of the hot rolling was set at 860 to 900 ° C. and higher than the Ar 3 transformation point. The finished plate thickness was set to 5 mm in consideration of the rolling reduction in the subsequent cold rolling. After finishing the hot rolling, the steel strip is charged into a salt bath heated to 650 to 680 ° C., heated to a predetermined temperature, and held for about 2 hours to perform a process corresponding to the winding of the hot rolled steel strip. did.
Subsequently, descaling pickling was performed, and a cold-rolled steel sheet having a thickness of 1.0 mm was formed by cold rolling at a rolling reduction of 80%. This cold-rolled steel sheet was continuously annealed at a temperature of 800 ° C. or higher than the recrystallization temperature.

【0019】得られた冷延鋼板の機械的性質を、JIS
5号引張試験片を使用して測定した。ランクフォード
値は、15%の引張予歪みを与えた後、3点法で測定
し、L方向(圧延方向),D方向(圧延方向に45度方
向)及びC方向(圧延方向に直交する方向)の平均値
[(rL +2rD +rC )/4]として求めた。また、
直径90mmに打ち抜いたブランクを用いて絞り比2.
7の三段階絞りで直径33mmの平底円筒カップを成形
した後、液体窒素及び有機溶剤からなる各種温度の冷媒
に浸漬しながら、先端角60度のポンチを円筒上部から
押し込み、脆性割れが発生しない最低温度を測定した。
この測定温度を、二次加工割れ発生温度とした。調査結
果を表3に示すように、本発明に従って冷却速度が規制
された鋼塊から製造された冷延鋼帯では、0.2%耐
力,引張強さ,伸び共に優れ、ランクフォード値が1.
2以上,二次加工割れ脆化温度が−100℃以下と加工
性に優れていることが判る。これに対し、スラブの冷却
速度が本発明で規定した50℃/秒以下であっても、組
成に関する条件を満足しない試験番号15では、ランク
フォード値が低く、二次加工割れ脆化温度も高いことか
ら、二次加工割れが発生し易い材料であった。
The mechanical properties of the obtained cold rolled steel sheet were measured according to JIS.
It measured using the No. 5 tensile test piece. The Rankford value was measured by a three-point method after 15% tensile prestrain was applied, and the L direction (rolling direction), the D direction (45 degrees in the rolling direction), and the C direction (direction perpendicular to the rolling direction). )] ((R L + 2r D + r C ) / 4). Also,
1. Drawing ratio using a blank punched to 90 mm in diameter
After forming a flat-bottom cylindrical cup with a diameter of 33 mm by three-stage drawing of 7, a punch with a tip angle of 60 degrees is pushed in from the upper part of the cylinder while being immersed in a refrigerant of various temperatures composed of liquid nitrogen and an organic solvent, so that brittle cracks do not occur. The lowest temperature was measured.
This measurement temperature was defined as a secondary working crack generation temperature. As shown in Table 3, the cold rolled steel strip manufactured from the steel ingot of which the cooling rate is controlled according to the present invention has excellent 0.2% proof stress, tensile strength and elongation, and has a Rankford value of 1 as shown in Table 3. .
It can be seen that the workability is excellent when the embrittlement temperature for secondary working cracks is -100 ° C or less. On the other hand, even when the cooling rate of the slab is 50 ° C./sec or less as specified in the present invention, in Test No. 15 which does not satisfy the conditions regarding the composition, the Rankford value is low and the secondary working crack embrittlement temperature is high. Therefore, the material was liable to cause secondary working cracks.

【0020】 [0020]

【0021】実施例2:表4に示す組成をもつ溶鋼を転
炉及び脱ガス炉で精錬し、連続鋳造時の引抜き速度,冷
却水量等を調節してスラブの冷却速度を変化させながら
厚み250mm,単重13トンのスラブを製造した。
Example 2 Molten steel having the composition shown in Table 4 was refined in a converter and a degassing furnace, and the thickness was 250 mm while changing the cooling speed of the slab by adjusting the drawing speed and the amount of cooling water during continuous casting. A slab with a unit weight of 13 tons was manufactured.

【0022】 [0022]

【0023】得られたスラブについて、表面割れ,ミク
ロ組織等を実施例1と同様に調査した。表5の調査結果
にみられるように、本発明に従って鋼塊の冷却速度を5
0℃/秒以下に規制するとき、擬ベイナイトの組織比率
が40%以下に抑えられ、表面割れが発生しないことが
判った。これに対し、鋼塊の冷却速度を50℃/秒を超
える試験番号20,25の比較例では、擬ベイナイトの
組織比率が40%を大きく超え、表面割れが多発した。
The obtained slab was examined for surface cracks, microstructure, etc. in the same manner as in Example 1. As can be seen from the survey results in Table 5, the cooling rate of the steel
When the temperature was regulated to 0 ° C./second or less, it was found that the structure ratio of pseudo bainite was suppressed to 40% or less, and no surface cracking occurred. On the other hand, in the comparative examples of Test Nos. 20 and 25 in which the cooling rate of the steel ingot exceeded 50 ° C./sec, the structure ratio of pseudo bainite greatly exceeded 40%, and surface cracks occurred frequently.

【0024】 [0024]

【0025】スラブ段階で表面割れの発生した比較例で
は、熱間圧延以降の工程通板ができなかったので、表面
割れのないスラブのみを加熱炉で1150℃に加熱し、
熱間圧延した。熱間圧延の仕上げ温度を860〜900
℃で且つAr3 変態点以上に、仕上げ板厚を5mmに、
巻取り温度を650〜680℃に設定した。熱延鋼帯を
塩酸系酸洗液槽を備えた連続酸洗ラインに通板して脱ス
ケールした後、冷間圧延機に送り、冷延率80%で冷間
圧延した。得られた板厚1.0mmの冷延鋼板を焼鈍工
程に送り、再結晶温度以上で焼鈍し、冷延鋼板の製品と
した。一部の鋼帯については、再結晶温度以上で還元焼
鈍を施し、めっき浴温を450℃とした連続溶融めっき
ラインに通板し、溶融亜鉛めっき鋼板の製品とした。得
られた各製品の機械的性質を実施例1と同様に調査し
た。表6の調査結果にみられるように、何れの製品鋼帯
も0.2%耐力,引張強さ等の機械的特性に優れ、高い
伸び,ランクフォード値及び低い二次加工割れ脆化温度
を示すことから良好な加工性をもつことが判る。
In the comparative example in which the surface cracks occurred in the slab stage, since the process passing after the hot rolling could not be performed, only the slab having no surface cracks was heated to 1150 ° C. in a heating furnace.
Hot rolled. Finishing temperature of hot rolling is 860-900
° C and above the Ar 3 transformation point, the finished plate thickness to 5 mm,
The winding temperature was set at 650-680 ° C. The hot-rolled steel strip was passed through a continuous pickling line equipped with a hydrochloric acid-based pickling solution tank, descaled, sent to a cold rolling mill, and cold-rolled at a cold rolling rate of 80%. The obtained cold-rolled steel sheet having a thickness of 1.0 mm was sent to an annealing step and annealed at a recrystallization temperature or higher to obtain a product of a cold-rolled steel sheet. Some steel strips were subjected to reduction annealing at a recrystallization temperature or higher and passed through a continuous hot-dip galvanizing line with a plating bath temperature of 450 ° C. to obtain products of hot-dip galvanized steel sheets. The mechanical properties of each of the obtained products were examined in the same manner as in Example 1. As can be seen from the survey results in Table 6, each of the product steel strips has excellent mechanical properties such as 0.2% proof stress and tensile strength, and has high elongation, Rankford value and low secondary work cracking embrittlement temperature. From the results, it can be seen that it has good workability.

【0026】 [0026]

【0027】[0027]

【発明の効果】以上に説明したように、本発明において
は、組成が特定された鋼材を使用し、鋳造スラブのミク
ロ組織及び連続鋳造時の冷却速度を制御することによ
り、生産性の阻害及び製造コストの上昇を招くことな
く、深絞り製に優れた高強度冷延鋼板及び溶融めっき鋼
板が製造される。
As described above, in the present invention, by using a steel material having a specified composition and controlling the microstructure of a cast slab and the cooling rate during continuous casting, productivity is reduced and A high-strength cold-rolled steel sheet and a hot-dip coated steel sheet excellent in deep drawing can be produced without increasing the production cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ミクロ組織及び表面割れの発生に及ぼす鋳造
時の冷却速度の影響
Fig. 1 Effect of cooling rate during casting on microstructure and occurrence of surface cracks

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 照夫 広島県呉市昭和町11番1号 日新製鋼株式 会社技術研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Teruo Tanaka 11-1 Showa-cho, Kure-shi, Hiroshima Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.01〜0.07重量%,Si:
1.0重量%以下,Mn:0.5〜3.0重量%,P:
0.05〜0.2重量%,S:0.0005〜0.02
重量%,Al:0.005〜0.10重量%,N:0.
010重量%以下を含み、残部が実質的にFeからなる
組成をもち、擬ベイナイト組織−ポリゴナルフェライト
組織の混合比率で擬ベイナイト組織が40%以下である
鋳造組織をもつ加工性に優れた高強度冷延鋼板又は溶融
めっき鋼板用スラブ。
C: 0.01 to 0.07% by weight, Si:
1.0% by weight or less, Mn: 0.5 to 3.0% by weight, P:
0.05-0.2% by weight, S: 0.0005-0.02
Wt%, Al: 0.005 to 0.10 wt%, N: 0.
010% by weight or less, with the balance substantially consisting of Fe, and a cast structure having a pseudo bainite structure-polygonal ferrite structure in a mixed ratio of 40% or less by pseudo-bainite structure. Slab for high strength cold rolled steel sheet or hot-dip coated steel sheet.
【請求項2】 更にCu:0.03〜0.5重量%及び
Ni:0.03〜0.5重量%を含む組成をもつ請求項
1記載の高強度冷延鋼板又は溶融めっき鋼板用スラブ。
2. The slab for a high-strength cold-rolled steel sheet or hot-dip coated steel sheet according to claim 1, further having a composition containing 0.03 to 0.5% by weight of Cu and 0.03 to 0.5% by weight of Ni. .
【請求項3】 凝固後のスラブが950〜750℃の温
度域にあるとき、50℃/秒以下の冷却速度でスラブを
冷却する請求項1又は2記載の加工性に優れた高強度冷
延鋼板又は溶融めっき鋼板用スラブの製造方法。
3. The high-strength cold-rolling according to claim 1, wherein the slab is cooled at a cooling rate of 50 ° C./second or less when the slab after solidification is in a temperature range of 950 to 750 ° C. A method for producing a slab for a steel sheet or a hot-dip coated steel sheet.
JP27149396A 1996-09-20 1996-09-20 Slab for high strength cold rolled steel sheet excellent in workability or hot-dip plated steel sheet, and its production Withdrawn JPH1096052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27149396A JPH1096052A (en) 1996-09-20 1996-09-20 Slab for high strength cold rolled steel sheet excellent in workability or hot-dip plated steel sheet, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27149396A JPH1096052A (en) 1996-09-20 1996-09-20 Slab for high strength cold rolled steel sheet excellent in workability or hot-dip plated steel sheet, and its production

Publications (1)

Publication Number Publication Date
JPH1096052A true JPH1096052A (en) 1998-04-14

Family

ID=17500829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27149396A Withdrawn JPH1096052A (en) 1996-09-20 1996-09-20 Slab for high strength cold rolled steel sheet excellent in workability or hot-dip plated steel sheet, and its production

Country Status (1)

Country Link
JP (1) JPH1096052A (en)

Similar Documents

Publication Publication Date Title
KR101949628B1 (en) High-strength steel sheet and method for manufacturing same
JP5068688B2 (en) Hot-rolled steel sheet with excellent hole expansion
JP5720208B2 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet
KR101900963B1 (en) Method of producing an austenitic steel
JP5136182B2 (en) High-strength steel sheet with less characteristic deterioration after cutting and method for producing the same
US20140120371A1 (en) Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate
KR20170072322A (en) High-strength steel sheet and method for manufacturing same
JP2006199979A (en) Bake hardenable hot rolled steel sheet with excellent workability, and its manufacturing method
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
US20220056549A1 (en) Steel sheet, member, and methods for producing them
WO2017169562A1 (en) Thin steel plate, galvanized steel plate, hot rolled steel plate production method, cold rolled full hard steel plate production method, heat treated plate production method, thin steel plate production method, and galvanized steel plate production method
JP2008255442A (en) High-tensile-strength hot-dip galvanized steel sheet and manufacturing method therefor
US20220090247A1 (en) Steel sheet, member, and methods for producing them
WO2016157257A1 (en) High-strength steel sheet and production method therefor
KR20220105650A (en) Manufacturing method and steel strip for cold forming high strength steel strip
JP6683291B2 (en) Steel plate and method for manufacturing steel plate
JP6683292B2 (en) Steel plate and method for manufacturing steel plate
JP3912181B2 (en) Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
JP3773604B2 (en) High-strength cold-rolled steel sheet or hot-dip galvanized steel slab excellent in deep drawability and method for producing the same
JP2001303178A (en) High tension galvanized steel sheet excellent in formability and its producing method
CN116018416A (en) Steel sheet and method for producing same
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JPH1096052A (en) Slab for high strength cold rolled steel sheet excellent in workability or hot-dip plated steel sheet, and its production
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JPH01184227A (en) Production of alloyed and galvanized steel sheet for drawing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202