JPH1095606A - Production of silicon trichloride - Google Patents

Production of silicon trichloride

Info

Publication number
JPH1095606A
JPH1095606A JP24816996A JP24816996A JPH1095606A JP H1095606 A JPH1095606 A JP H1095606A JP 24816996 A JP24816996 A JP 24816996A JP 24816996 A JP24816996 A JP 24816996A JP H1095606 A JPH1095606 A JP H1095606A
Authority
JP
Japan
Prior art keywords
silicon
reaction
metallic
trichloride
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24816996A
Other languages
Japanese (ja)
Other versions
JP3707875B2 (en
Inventor
Kanji Sakata
勘治 坂田
Kenji Hirota
賢次 弘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP24816996A priority Critical patent/JP3707875B2/en
Priority to US08/931,760 priority patent/US5871705A/en
Priority to DE19740923A priority patent/DE19740923B4/en
Priority to CN97121455A priority patent/CN1180660A/en
Priority to KR1019970047522A priority patent/KR19980024696A/en
Publication of JPH1095606A publication Critical patent/JPH1095606A/en
Application granted granted Critical
Publication of JP3707875B2 publication Critical patent/JP3707875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly selectively produce silicon trichloride without forming a large amount of silicon tetrachloride as a by-product by reacting metallic silicon with hydrogen chloride in the coexistence of a catalyst component and an alkali metallic compound. SOLUTION: (a) Metallic silicon is reacted with hydrogen chloride in the coexistence of (b) a metal of a group VIII element of the periodic table such as iron, cobalt, nickel, palladium or platinum or a chloride thereof and other catalyst components having catalyst activities in producing silicon trichloride therefrom in an amount of 0.05-40wt.%, expressed in terms of metallic element and based on the metallic silicon and (c) an alkali metallic compound such as a chloride, a sulfate or a nitrate of the alkali metal in an amount of 0.01-5wt.%, expressed in terms of metallic element and based on the metallic silicon at 250-300 deg.C to suppress the formation of silicon tetrachloride as a by- product and highly selectively produce the silicon trichloride.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三塩化珪素の製造
方法に関する。詳しくは、多結晶シリコンの製造原料等
として有用な三塩化珪素を、金属珪素と塩化水素との接
触反応によって高選択的に製造する方法に関する。
[0001] The present invention relates to a method for producing silicon trichloride. More specifically, the present invention relates to a method for producing silicon trichloride, which is useful as a raw material for producing polycrystalline silicon, by a selective reaction between metallic silicon and hydrogen chloride.

【0002】[0002]

【従来の技術】一般に、三塩化珪素は金属珪素と塩化水
素とを、触媒成分存在下に接触反応させる方法によって
製造される。触媒活性成分としては、例えば特公昭61
−4768号公報に記載されている様に、鉄化合物が有
効である。但し、反応原料として使用する金属珪素種
が、鉄元素成分を触媒活性が発現する程に十分に含有す
るある種の冶金製金属珪素や珪素鉄の場合は、金属珪素
と塩化水素との反応系に、新たに鉄化合物等の触媒活性
成分を添加する必要はなく、通常はこれらの金属珪素種
を用い、触媒成分の添加なしに塩化水素との反応が実施
されている。また、反応原料である金属珪素と塩化水素
との気固接触の反応効率を高める為に、通常、流動層反
応方式が用いられている。
2. Description of the Related Art Generally, silicon trichloride is produced by a method in which metallic silicon and hydrogen chloride are contacted and reacted in the presence of a catalyst component. As the catalytically active component, for example,
As described in JP-A-4768, iron compounds are effective. However, when the metal silicon species used as the reaction raw material is a metallurgical metal silicon or silicon iron containing a sufficient amount of an iron element component to exhibit catalytic activity, the reaction system between the metal silicon and hydrogen chloride is used. In addition, it is not necessary to newly add a catalytically active component such as an iron compound, and the reaction with hydrogen chloride is usually carried out using these metallic silicon species without adding a catalytic component. Further, in order to increase the reaction efficiency of gas-solid contact between metal silicon as a reaction raw material and hydrogen chloride, a fluidized bed reaction system is usually used.

【0003】これら金属珪素と塩化水素との反応におい
て、反応温度が約400℃の温度以下では、三塩化珪素
が主に生成するものの、その他に四塩化珪素や微量の二
塩化珪素が副生する。
[0003] In the reaction between metallic silicon and hydrogen chloride, when the reaction temperature is lower than about 400 ° C, silicon trichloride is mainly produced, but in addition, silicon tetrachloride and a trace amount of silicon dichloride are by-produced. .

【0004】[0004]

【発明が解決しようとする課題】三塩化珪素を製造する
目的において、四塩化珪素や二塩化珪素の副生を抑え、
三塩化珪素をより選択的に製造する方法が生産性の点で
望ましい。しかし、本発明者らの知見によれば、反応の
進行と共に反応系内の鉄化合物等の触媒成分が増加する
と、四塩化珪素を生成する副反応が更に進行して三塩化
珪素の生成割合、即ち選択率が低下して、三塩化珪素の
製造収率を低下させることが判明した。
For the purpose of producing silicon trichloride, by-products of silicon tetrachloride and silicon dichloride are suppressed,
A method for selectively producing silicon trichloride is desirable in terms of productivity. However, according to the findings of the present inventors, when the amount of catalyst components such as iron compounds in the reaction system increases with the progress of the reaction, the side reaction for producing silicon tetrachloride further proceeds, and the production ratio of silicon trichloride, That is, it has been found that the selectivity is reduced and the production yield of silicon trichloride is reduced.

【0005】また、金属珪素と塩化水素の反応が大きな
発熱を伴う為に、反応の進行と共に反応層温度が急激に
上昇し、四塩化珪素を生成する副反応が優勢となって三
塩化珪素の選択性が低下することがわかった。
Further, since the reaction between metallic silicon and hydrogen chloride involves a large amount of heat, the temperature of the reaction layer rises rapidly with the progress of the reaction, and the side reaction for producing silicon tetrachloride becomes dominant, and It was found that the selectivity was reduced.

【0006】従って、金属珪素と塩化水素との反応にお
いて、四塩化珪素の多量な副生を生じることなく、三塩
化珪素を高選択的に製造する方法を開発することが大き
な課題であった。
Therefore, it has been a major problem to develop a method for producing silicon trichloride in a highly selective manner without producing a large amount of silicon tetrachloride by-product in the reaction between metallic silicon and hydrogen chloride.

【0007】[0007]

【課題を解決するための手段】本発明者等は上記課題を
解決する為に、鋭意研究を進めた結果、金属珪素と塩化
水素との反応において、鉄化合物等の触媒成分の他に、
反応系内にリチウム、ナトリウム、カリウム、ルビジウ
ム、セシウム等のアルカリ金属元素の化合物を共存させ
ることをよって、三塩化珪素が選択的に生成することを
見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, in the reaction between metallic silicon and hydrogen chloride, in addition to a catalyst component such as an iron compound,
The inventors have found that silicon trichloride is selectively produced by coexisting a compound of an alkali metal element such as lithium, sodium, potassium, rubidium, and cesium in the reaction system, and completed the present invention.

【0008】即ち、本発明は、金属珪素と塩化水素と
を、これらから三塩化珪素を生成する触媒活性を有する
触媒成分及びアルカリ金属化合物の共存下に反応させる
ことを特徴とする三塩化珪素の製造方法である。
That is, the present invention provides a method for producing silicon trichloride comprising reacting metallic silicon and hydrogen chloride in the presence of a catalyst component having catalytic activity for producing silicon trichloride and an alkali metal compound. It is a manufacturing method.

【0009】本発明において、金属珪素と塩化水素とか
ら三塩化珪素を生成する触媒活性を有する触媒成分とし
ては、上記作用を有する公知のものが何ら制限なく使用
される。例えば鉄、コバルト、ニッケル、パラジウム、
白金等の第VIII族元素の金属や塩化物等の化合物、そ
の他には、アルミニウム、銅、チタン等の金属や塩化物
が挙げられる。
In the present invention, as the catalyst component having the catalytic activity of producing silicon trichloride from metal silicon and hydrogen chloride, known catalyst components having the above-mentioned actions can be used without any limitation. For example, iron, cobalt, nickel, palladium,
Compounds such as metals and chlorides of Group VIII elements such as platinum, and other metals and chlorides such as aluminum, copper, and titanium are exemplified.

【0010】これらの触媒成分の使用量は、金属元素に
換算して金属珪素に対して0.05〜40重量%、好適
には0.1〜5重量%が好ましい。
The use amount of these catalyst components is preferably 0.05 to 40% by weight, and more preferably 0.1 to 5% by weight, based on the metal silicon, based on the metal element.

【0011】これらの触媒成分は、反応系内に添加する
ことで存在させても良いが、使用する金属珪素に、不純
物として前記鉄化合物等の触媒成分が含有されている場
合には、このものを該触媒成分として有効に利用するこ
とができる。無論、触媒成分を不純物として含有する金
属珪素を使用する場合でも、金属珪素と塩化水素の反応
性を高める為に、触媒成分を更に反応系内に添加しても
何ら問題はない。
These catalyst components may be present by being added to the reaction system. However, when the metal silicon used contains the catalyst components such as the iron compound as impurities as impurities, these catalyst components may be used. Can be effectively used as the catalyst component. Of course, even when metal silicon containing a catalyst component as an impurity is used, there is no problem if the catalyst component is further added to the reaction system in order to increase the reactivity between the metal silicon and hydrogen chloride.

【0012】ここで、金属珪素としては、冶金製金属珪
素や珪素鉄、或いは多結晶ポリシリコン等の金属状態の
珪素元素を含む固体物質で、公知のものが何ら制限なく
使用される。また、それら金属珪素に含まれる鉄化合物
等の不純物についても、その成分や含有量において特に
制限はない。
Here, as the metallic silicon, a known solid substance containing metallic silicon such as metallurgical metallic silicon, silicon iron, or polycrystalline polysilicon is used without any limitation. Further, there is no particular limitation on the components and contents of impurities such as iron compounds contained in the metallic silicon.

【0013】また、本発明において、使用される塩化水
素は、窒素や水素等が混入していても何ら制限なく使用
される。但し、三塩化珪素や四塩化珪素或い二塩化珪素
のクロロシラン化合物は、加水分解性が高い為に水分と
反応して、生成した三塩化珪素の収率を下げることが予
想される。従って、本発明で使用する塩化水素は乾燥状
態にあることが好ましい。塩化水素の供給速度は、反応
速度に関わる点で反応温度の設定にも依るが、反応器の
空塔速度として0.5〜50cm/秒であることが好ま
しい。
In the present invention, the hydrogen chloride to be used is used without any restriction even if nitrogen, hydrogen or the like is mixed therein. However, chlorosilane compounds of silicon trichloride, silicon tetrachloride or silicon dichloride are expected to react with moisture due to high hydrolyzability, thereby lowering the yield of silicon trichloride produced. Accordingly, the hydrogen chloride used in the present invention is preferably in a dry state. The supply rate of hydrogen chloride depends on the setting of the reaction temperature in terms of the reaction rate, but is preferably 0.5 to 50 cm / sec as the superficial velocity of the reactor.

【0014】本発明では、上記触媒成分の存在下での金
属珪素と塩化水素との反応に際し、さらに反応系内にア
ルカリ金属化合物を共存させる。これらアルカリ金属化
合物は、金属珪素と塩化水素との反応において必ずしも
前記鉄化合物等の触媒成分と同様の触媒作用を有するも
のではなく単独では反応活性を示さない。ところが、金
属珪素と塩化水素との反応において、四塩化珪素を生成
する副反応を抑え、三塩化珪素を高選択的に生成するた
めの副次的な触媒作用を有し、結果として本発明では、
上記構成により三塩化珪素を極めて効率的に製造するこ
とが可能になる。
In the present invention, an alkali metal compound is allowed to coexist in the reaction system in the reaction between metallic silicon and hydrogen chloride in the presence of the catalyst component. These alkali metal compounds do not necessarily have the same catalytic activity as the above-mentioned catalyst components such as the iron compound in the reaction between metallic silicon and hydrogen chloride, and do not show the reaction activity alone. However, in the reaction between metallic silicon and hydrogen chloride, a side reaction for producing silicon tetrachloride is suppressed, and the secondary catalyst has a secondary catalytic action for producing silicon trichloride with high selectivity. ,
With the above configuration, silicon trichloride can be produced very efficiently.

【0015】本発明において、アルカリ金属化合物は、
リチウム、ナトリウム、カリウム、ルビジウム、セシウ
ム等の周期律表第I族に分類される元素から選ばれる少
なくとも1種以上の元素の化合物である。これら化合物
は、混合添加して使用しても何ら問題はない。また、そ
れらアルカリ金属化合物の化合物形態は、特に制限され
るものではないが、取扱いのし易さの点で塩化物や硫酸
塩、硝酸塩等の塩類が好適である。具体的には、塩化リ
チウム、塩化ナトリウム、塩化カリウム、塩化セシウ
ム、硫酸ナトリウム、硫酸カリウム、硝酸ナトリウム、
硝酸カリウム等が挙げられる。
In the present invention, the alkali metal compound is
It is a compound of at least one element selected from elements classified into Group I of the periodic table, such as lithium, sodium, potassium, rubidium, and cesium. There is no problem even if these compounds are mixed and used. The compound form of the alkali metal compound is not particularly limited, but salts such as chlorides, sulfates, and nitrates are preferable from the viewpoint of easy handling. Specifically, lithium chloride, sodium chloride, potassium chloride, cesium chloride, sodium sulfate, potassium sulfate, sodium nitrate,
Potassium nitrate and the like can be mentioned.

【0016】本発明において、これらアルカリ金属化合
物の反応系内における存在量は、特に制限されるもので
はないが、三塩化珪素生成の選択率の良さを勘案する
と、金属珪素に対して金属元素に換算して0.01〜5
重量%、好適には0.1〜3重量%の範囲が好適であ
る。なお、上記範囲以上の場合でも、特に金属珪素と塩
化水素との反応を阻害する現象はないが、三塩化珪素生
成の選択率に対してそれ以上の向上効果は認めらず効率
的でない。
In the present invention, the amount of these alkali metal compounds present in the reaction system is not particularly limited, but in consideration of the good selectivity of silicon trichloride formation, the amount of the alkali metal compound is reduced to the metal element relative to the metal silicon. Converted to 0.01 to 5
% By weight, preferably in the range of 0.1 to 3% by weight. In addition, even when the amount is in the above range, there is no phenomenon that particularly inhibits the reaction between the metal silicon and hydrogen chloride, but no further improvement effect on the selectivity of silicon trichloride generation is recognized and the efficiency is not efficient.

【0017】次に、本発明において、アルカリ金属化合
物の反応系への添加、或いは前記触媒成分を新たに反応
系へ添加する場合における該成分の具体的添加方法は、
通常、各成分とも予め金属珪素と混合して反応系に投入
するのが好ましい。一方、三塩化珪素の連続的な製造を
想定した場合、或いは流動床式反応器の使用を想定した
場合は、金属珪素の反応残渣を反応系外へに取り出す際
に、或いは三塩化珪素等の反応生成物ガスに同伴し、ア
ルカリ金属化合物、或いは触媒成分が反応系外に逸散し
て、反応系内におけるアルカリ金属化合物、或いは触媒
成分の含量が減少することが予想される。そこで、反応
原料の金属珪素を反応系に投入する際に、アルカリ金属
化合物、或いはさらに触媒成分を予め金属珪素と混合
し、反応系内におけるこれらの成分の量を上記範囲内に
調整することが好ましい。
Next, in the present invention, when an alkali metal compound is added to a reaction system or when the above-mentioned catalyst component is newly added to a reaction system, a specific method of adding the catalyst component is as follows.
Usually, it is preferable that each component is mixed with metal silicon in advance and charged into the reaction system. On the other hand, when assuming continuous production of silicon trichloride, or assuming the use of a fluidized bed reactor, when taking out the reaction residue of metallic silicon out of the reaction system, or when removing silicon trichloride or the like, It is expected that the alkali metal compound or the catalyst component escapes out of the reaction system accompanying the reaction product gas, and the content of the alkali metal compound or the catalyst component in the reaction system decreases. Therefore, when metal silicon as a reaction raw material is charged into the reaction system, an alkali metal compound or a catalyst component is preliminarily mixed with metal silicon, and the amounts of these components in the reaction system are adjusted within the above range. preferable.

【0018】本発明において、金属珪素と塩化水素との
接触方式に関連して、使用される反応器は、固定床式或
いは流動床式等の公知のものが何ら制限なく使用され
る。下記の実施例に示す様に、固定床式反応器において
も本発明のアルカリ金属化合物は、金属珪素と塩化水素
との接触反応において、三塩化珪素の生成に高い選択性
を付与する。一方、金属珪素と塩化水素との接触反応を
継続して実施し連続的に三塩化珪素を製造する場合に
は、固体の金属珪素を連続的或いは断続的に反応器に投
入して塩化水素ガスと接触させる必要がある。この場
合、前記触媒成分、アルカリ金属化合物、金属珪素、及
び塩化水素とをより効率的に接触させる為には、流動床
式の反応器が好ましい。また、本反応が発熱反応である
為、反応熱の除熱効果を高める点でも流動床式反応器を
使用することが好ましい。
In the present invention, a known reactor such as a fixed-bed type or a fluidized-bed type is used without any limitation in relation to the contact system between metallic silicon and hydrogen chloride. As shown in the following examples, even in a fixed bed reactor, the alkali metal compound of the present invention imparts high selectivity to the production of silicon trichloride in the contact reaction between metallic silicon and hydrogen chloride. On the other hand, in the case of continuously producing silicon trichloride by continuously carrying out the contact reaction between metallic silicon and hydrogen chloride, solid metallic silicon is continuously or intermittently charged into the reactor and hydrogen chloride gas is supplied. Need to be in contact with In this case, a fluidized bed reactor is preferable for more efficiently bringing the catalyst component, alkali metal compound, metal silicon, and hydrogen chloride into contact with each other. In addition, since this reaction is an exothermic reaction, it is preferable to use a fluidized bed reactor in order to enhance the heat removal effect of reaction heat.

【0019】反応温度は、三塩化珪素生成の選択率が反
応温度が高い程に低下する傾向が認められることや、本
反応が発熱反応であることから、反応制御や反応器材質
の観点から250〜500℃の範囲、好適には250〜
400℃の範囲が好ましい。
The reaction temperature is determined from the viewpoints of reaction control and reactor material from the viewpoints of reaction control and reactor material, because the selectivity of silicon trichloride formation tends to decrease as the reaction temperature increases, and the reaction is exothermic. ~ 500 ° C, preferably 250 ~
A range of 400 ° C. is preferred.

【0020】[0020]

【発明の効果】本発明では、金属珪素と塩化水素との反
応において、反応系内に鉄化合物等の触媒成分とアルカ
リ金属化合物とを共存させることによって、該金属珪素
と塩化水素との反応を阻害することなく、触媒成分の系
内含有量の増加や反応熱の蓄熱等によって進行する、四
塩化珪素が生成する副反応を抑え、三塩化珪素生成の選
択率(生成割合)を高める効果が発現される。
According to the present invention, in the reaction between metal silicon and hydrogen chloride, the reaction between the metal silicon and hydrogen chloride is carried out by coexisting a catalyst component such as an iron compound and an alkali metal compound in the reaction system. Without inhibiting, the effect of suppressing the side reaction of silicon tetrachloride generation, which proceeds due to the increase in the content of the catalyst component in the system and the heat storage of the reaction heat, and the like, increases the selectivity (generation ratio) of silicon trichloride generation. Is expressed.

【0021】また、本発明によると、四塩化珪素の生成
を抑える為に反応系中の鉄等の触媒成分の濃度を特定範
囲に厳密に調製する必要がなくなることや、四塩化珪素
の生成が抑えられた結果として反応温度制御の許容温度
範囲が広まることから、三塩化珪素を安定的に製造する
ことが可能になる。更に、反応原料の金属珪素中の鉄等
の成分濃度を特に限定する必要もないことから、種々の
金属珪素を反応原料として制限なく使用できる点も本発
明の効果である。
Further, according to the present invention, it is not necessary to strictly adjust the concentration of a catalyst component such as iron in the reaction system to a specific range in order to suppress the formation of silicon tetrachloride. As a result, the permissible temperature range of the reaction temperature control is widened, so that it is possible to stably produce silicon trichloride. Furthermore, the effect of the present invention is that various metal silicons can be used without limitation as the reaction raw material since there is no need to particularly limit the concentration of components such as iron in the metal silicon as the reaction raw material.

【0022】[0022]

【実施例】以下に、本発明を具体的に説明するための実
施例を掲げるが、本発明はこれら実施例に限定されるも
のではない。
The present invention will be described in more detail with reference to the following Examples, which by no means limit the scope of the present invention.

【0023】実施例1、比較例1 内径4mmの石英ガラス管反応器に金属珪素(鉄 0.
15重量%を含有する)の1gにアルカリ金属化合物と
して塩化ナトリウムの25mg(ナトリウムの元素換算
で金属珪素の約1重量%に相当)を混合して充填し、反
応器を350℃に保持した後、塩化水素ガスと窒素ガス
の各20ml/minから成る混合ガスを連続的に反応
器に供給した。反応器出口におけるガス組成をガスクロ
マトグラフで分析して、塩化水素ガスの減少量から反応
転化率(%)、そして、三塩化珪素や四塩化珪素等の生
成するクロロシラン類中の三塩化珪素の割合を三塩化珪
素選択率(%)として計算した。なお、反応は塩化水素
と窒素の混合ガスの反応器への供給を開始した20分後
にはほぼ定常的な状態に達し、反応転化率は100%、
三塩化珪素選択率は92%であった。
Example 1 and Comparative Example 1 In a quartz glass tube reactor having an inner diameter of 4 mm, metal silicon (iron 0.
After mixing and filling 25 g of sodium chloride as an alkali metal compound (corresponding to about 1% by weight of metallic silicon in terms of sodium element) into 1 g of the resulting mixture, the reactor was kept at 350 ° C. And a mixed gas of hydrogen chloride gas and nitrogen gas at a rate of 20 ml / min was continuously supplied to the reactor. The gas composition at the outlet of the reactor is analyzed by gas chromatography, and the reaction conversion (%) is calculated based on the amount of hydrogen chloride gas reduced, and the ratio of silicon trichloride in chlorosilanes formed such as silicon trichloride and silicon tetrachloride. Was calculated as silicon trichloride selectivity (%). The reaction reached a nearly steady state 20 minutes after the supply of the mixed gas of hydrogen chloride and nitrogen to the reactor was started, and the reaction conversion was 100%.
The selectivity for silicon trichloride was 92%.

【0024】また、比較の為に比較例1として、実施例
1において金属珪素に何も添加しない以外は実施例1と
同様の方法を実施した。この金属珪素と塩化水素との接
触反応において、反応転化率は100%、三塩化珪素選
択率は86%であった。
For comparison, as Comparative Example 1, the same method as in Example 1 was carried out except that nothing was added to metallic silicon. In this contact reaction between metallic silicon and hydrogen chloride, the reaction conversion was 100%, and the selectivity to silicon trichloride was 86%.

【0025】なお、以下に示す実施例と比較例の何れに
おいても、塩化水素の反応転化率は略100%であっ
た。従って、各表では反応結果として、三塩化珪素の生
成選択率のみを示した。
In each of the following Examples and Comparative Examples, the reaction conversion of hydrogen chloride was approximately 100%. Therefore, in each table, only the formation selectivity of silicon trichloride was shown as the reaction result.

【0026】実施例2〜10、比較例2 実施例1において、金属珪素(鉄 0.15重量%を含
有する)に第一塩化鉄の225mg(元素換算で金属珪
素10重量%)を添加混合し、更に表1に示す塩化ナト
リウム等のアルカリ金属化合物を、金属珪素に対して同
じく表1に示す元素換算した量を添加混合した以外は、
実施例1と同様にして金属珪素と塩化水素の接触反応を
実施した。結果を表1に併せて示した。
Examples 2 to 10 and Comparative Example 2 In Example 1, 225 mg of ferrous chloride (containing 10% by weight of metallic silicon in terms of element) was added to metallic silicon (containing 0.15% by weight of iron). Then, except that an alkali metal compound such as sodium chloride shown in Table 1 was added and mixed with metal silicon in the same amount as the element shown in Table 1,
A contact reaction between metallic silicon and hydrogen chloride was carried out in the same manner as in Example 1. The results are shown in Table 1.

【0027】なお、比較例2として、実施例1の金属珪
素に第一塩化鉄の225mg(元素換算で金属珪素10
重量%)を添加混合した以外は何も添加せずに実施例1
と同様の方法を実施した。
As Comparative Example 2, 225 mg of ferrous chloride (metallic silicon 10
% By weight) except for adding and mixing.
The same method as described above was performed.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例11〜13 実施例1において、反応温度を400℃に上げ、金属珪
素(鉄 0.15重量%を含有する)に第一塩化鉄の2
25mg(元素換算で金属珪素10重量%)を添加混合
し、更に表2に示す塩化ナトリウム等のアルカリ金属化
合物を、金属珪素に対して同じく表2に示す元素換算し
た量を添加混合した以外は、実施例1と同様にして金属
珪素と塩化水素の接触反応を実施した。結果を表2に併
せて示した。
Examples 11 to 13 In Example 1, the reaction temperature was raised to 400 ° C., and metal silicon (containing 0.15% by weight of iron) was replaced with ferrous iron chloride.
25 mg (10% by weight of metal silicon in terms of element) was added and mixed, and an alkali metal compound such as sodium chloride shown in Table 2 was further added to and mixed with metal silicon in the same element conversion amount shown in Table 2. A contact reaction between metallic silicon and hydrogen chloride was carried out in the same manner as in Example 1. The results are shown in Table 2.

【0030】なお、比較例3として、実施例1の金属珪
素に第一塩化鉄の225mg(元素換算で金属珪素10
重量%)を添加混合した以外は何も添加せずに実施例1
1と同様の方法を実施した。
As Comparative Example 3, 225 mg of ferrous chloride (metallic silicon 10
% By weight) except for adding and mixing.
A method similar to 1 was performed.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例14 実施例1において、使用した金属珪素(鉄 0.15重
量%を含有する)の代わりに高純度の金属珪素(純度9
9.999%以上)を使用して、触媒成分としてニッケ
ル金属粉、そしてアルカリ金属化合物として塩化ナトリ
ウムを、金属珪素に対して元素換算で各0.2重量%添
加混合した以外は、実施例1と同様にして金属珪素と塩
化水素の接触反応を実施した。その結果、反応転化率は
100%、三塩化珪素選択率は82%であった。
Example 14 In Example 1, high-purity metallic silicon (purity 9%) was used in place of the metallic silicon (containing 0.15% by weight of iron) used.
Example 1 except that nickel metal powder as a catalyst component and sodium chloride as an alkali metal compound were added and mixed in an amount of 0.2% by weight with respect to silicon metal. The contact reaction between metallic silicon and hydrogen chloride was carried out in the same manner as described above. As a result, the reaction conversion was 100%, and the selectivity to silicon trichloride was 82%.

【0033】比較例4 実施例14において、金属珪素にニッケル金属粉を添加
混合した以外は何も添加せずに実施例1と同様の方法を
実施した。その結果、反応転化率は100%、三塩化珪
素選択率は70%であった。
Comparative Example 4 A method similar to that of Example 1 was carried out without adding anything except that the nickel metal powder was added to and mixed with metallic silicon. As a result, the reaction conversion was 100%, and the silicon trichloride selectivity was 70%.

【0034】比較例5 実施例14において、金属珪素に何も添加しない以外は
実施例1と同様の方法を実施した。その結果、塩化水素
の反応転化率はほぼ0%で、三塩化珪素は全く生成しな
かった。
Comparative Example 5 The procedure of Example 14 was repeated, except that nothing was added to the metallic silicon. As a result, the reaction conversion of hydrogen chloride was almost 0%, and no silicon trichloride was produced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属珪素と塩化水素とを、これらから三塩
化珪素を生成する触媒活性を有する触媒成分及びアルカ
リ金属化合物の共存下に反応させることを特徴とする三
塩化珪素の製造方法。
1. A process for producing silicon trichloride, comprising reacting metallic silicon and hydrogen chloride in the presence of a catalyst component having catalytic activity for producing silicon trichloride and an alkali metal compound therefrom.
JP24816996A 1996-09-19 1996-09-19 Method for producing silicon trichloride Expired - Fee Related JP3707875B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24816996A JP3707875B2 (en) 1996-09-19 1996-09-19 Method for producing silicon trichloride
US08/931,760 US5871705A (en) 1996-09-19 1997-09-16 Process for producing trichlorosilane
DE19740923A DE19740923B4 (en) 1996-09-19 1997-09-17 Process for the preparation of trichlorosilane
CN97121455A CN1180660A (en) 1996-09-19 1997-09-18 Processes for producing silicon trichloride
KR1019970047522A KR19980024696A (en) 1996-09-19 1997-09-18 Method for producing silicon trichloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24816996A JP3707875B2 (en) 1996-09-19 1996-09-19 Method for producing silicon trichloride

Publications (2)

Publication Number Publication Date
JPH1095606A true JPH1095606A (en) 1998-04-14
JP3707875B2 JP3707875B2 (en) 2005-10-19

Family

ID=17174246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24816996A Expired - Fee Related JP3707875B2 (en) 1996-09-19 1996-09-19 Method for producing silicon trichloride

Country Status (1)

Country Link
JP (1) JP3707875B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020536039A (en) * 2017-10-05 2020-12-10 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for producing chlorosilane using a catalyst selected from the group of CO, MO and W

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020536039A (en) * 2017-10-05 2020-12-10 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for producing chlorosilane using a catalyst selected from the group of CO, MO and W

Also Published As

Publication number Publication date
JP3707875B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
EP0191502B1 (en) Tin containing activated silicon for the direct reaction
JP4813545B2 (en) Method for producing hydrochlorosilane
US5871705A (en) Process for producing trichlorosilane
JP3324922B2 (en) Method for producing silicon trichloride
JPS62431A (en) Manufacture of 1,2-dichloroethane
JP2003531007A (en) Manufacturing method of contact body
JP3707875B2 (en) Method for producing silicon trichloride
JP3272689B2 (en) Direct synthesis of methylchlorosilane
JP3553469B2 (en) A continuous method for the direct synthesis of methylchlorosilane.
JP2001226382A (en) Method for producing organohalosilane
JP3026371B2 (en) Method for producing alkoxysilane
JPS5811408B2 (en) Production method of trichlorethylene
JP3676515B2 (en) Method for producing silicon trichloride
JP2613262B2 (en) Method for producing trichlorosilane
US3109014A (en) Method for preparing monomethyldichlorosilane
JP2613261B2 (en) Method for producing trichlorosilane
JP3821922B2 (en) Method for producing silicon tetrachloride
JP3746109B2 (en) Method for producing silicon tetrachloride
JP2613260B2 (en) Method for producing trichlorosilane
JP2653700B2 (en) Method for producing trimethoxysilane
JPS5969416A (en) Manufacture of dichlorosilane
JP2523123B2 (en) Silane gas manufacturing method
JPH01313318A (en) Production of trichlorosilane
JPH0131454B2 (en)
JPH0829927B2 (en) Silane gas manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050802

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees