JPH1092477A - Organic coloring matter intensified type oxide semi-conductor electrode and solar cell including the same - Google Patents

Organic coloring matter intensified type oxide semi-conductor electrode and solar cell including the same

Info

Publication number
JPH1092477A
JPH1092477A JP8241487A JP24148796A JPH1092477A JP H1092477 A JPH1092477 A JP H1092477A JP 8241487 A JP8241487 A JP 8241487A JP 24148796 A JP24148796 A JP 24148796A JP H1092477 A JPH1092477 A JP H1092477A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
electrode
organic dye
rhodamine
oxide semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8241487A
Other languages
Japanese (ja)
Other versions
JP2955646B2 (en
Inventor
Kazuhiro Sayama
和弘 佐山
Hironori Arakawa
裕則 荒川
Hideki Sugihara
秀樹 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8241487A priority Critical patent/JP2955646B2/en
Publication of JPH1092477A publication Critical patent/JPH1092477A/en
Application granted granted Critical
Publication of JP2955646B2 publication Critical patent/JP2955646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Hybrid Cells (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the solar cell including an electrode giving a practical current/voltage curve in an organic coloring matter intensified type oxide semi- conductor electrode. SOLUTION: An organic coloring matter intensified type oxide semi-conductor electrode is formed out of a transparent base provided with a conductive surface, an oxide semi-conductor film formed over the aforesaid conductive surface, and of organic coloring matter adsorbed by the surface of the oxide semi-conductor film, the aforesaid oxide semi-conductor film is formed out of the baked substance of aggrege of oxide semi-conductor fine particles, is thin as at least 10nm, concurrently, the ratio of actual surface area to its apparent surface area is more than 10, and the aforesaid organic coloring pigment is coloring pigment having 9-phenyl xanthene skeletons. The solar cell is formed out of the aforesaid oxide semi-conductor electrode, its opposite electrode, and of redox electrolyte coming in contact with these electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機色素増感型酸
化物半導体電極及びこれを含む太陽電池に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic dye-sensitized oxide semiconductor electrode and a solar cell including the same.

【0002】[0002]

【従来の技術】有機色素で増感された酸化物半導体電極
を含む太陽電池は知られている。Nature,261
(1976)P402によれば、酸化亜鉛粉末を圧縮成
形し、1300℃で1時間焼結して形成した焼結体ディ
スク表面に有機色素としてローズベンガルを吸着させた
酸化物半導体電極を用いた太陽電池が提案されている。
しかしながら、この太陽電池の電流/電圧曲線によれ
ば、0.2Vの起電圧時の電流値は約25μA程度と非
常に低いものであり、従って、この太陽電池は、その電
流/電圧曲線から見れば、その実用化は殆ど不可能と判
断されるものであった。一方、前記太陽電池をその材料
の点から評価すると、それに用いられる酸化物半導体及
び有機色素はいずれも大量生産されている比較的安価な
ものであることから、非常に有利であることは明らかで
ある。
2. Description of the Related Art A solar cell including an oxide semiconductor electrode sensitized with an organic dye is known. Nature, 261
(1976) According to P402, a zinc oxide powder is compression-molded and sintered at 1300 ° C. for one hour to form a solar disk using an oxide semiconductor electrode having rose bengal as an organic dye adsorbed on the surface of a sintered disk. Batteries have been proposed.
However, according to the current / voltage curve of this solar cell, the current value at the time of an electromotive voltage of 0.2 V is as low as about 25 μA, and therefore, this solar cell cannot be seen from the current / voltage curve. If so, it was judged that practical application was almost impossible. On the other hand, when the solar cell is evaluated in terms of its material, it is clear that the oxide semiconductor and the organic dye used for the solar cell are very advantageous because both are mass-produced and relatively inexpensive. is there.

【0003】[0003]

【発明が解決しようとする課題】本発明は、有機色素増
感型酸化物半導体電極において、実用性ある電流/電圧
曲線を与える電極及びそれを含む太陽電池を提供するこ
とをその課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide, in an organic dye-sensitized oxide semiconductor electrode, an electrode giving a practical current / voltage curve and a solar cell including the electrode.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、導電性表面を有する
透明基板とその導電性表面に形成された酸化物半導体膜
と、その酸化物半導体膜の表面に吸着された有機色素か
らなり、該酸化物半導体膜は、酸化物半導体微粒子集合
体の焼成物から形成され、少なくとも10nmの厚さを
有するとともに、その見かけ表面積に対する実表面積の
比が10以上であり、かつ前記有機色素は9−フェニル
キサンテン骨格を有する色素であることを特徴とする酸
化物半導体電極が提供される。また、本発明によれば、
前記酸化物半導体電極とその対極とそれらの電極に接触
するレドックス電解質とから構成される太陽電池が提供
される。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, a transparent substrate having a conductive surface, an oxide semiconductor film formed on the conductive surface, and an organic dye adsorbed on the surface of the oxide semiconductor film are provided. The film is formed from a baked product of an aggregate of oxide semiconductor fine particles, has a thickness of at least 10 nm, has a ratio of an actual surface area to an apparent surface area of 10 or more, and the organic dye has a 9-phenylxanthene skeleton. An oxide semiconductor electrode is provided which is a dye having the same. According to the present invention,
There is provided a solar cell including the oxide semiconductor electrode, a counter electrode thereof, and a redox electrolyte contacting the electrodes.

【0005】[0005]

【発明の実施の形態】本発明で用いる酸化物半導体に
は、従来公知の観種のものが包含される。このようなも
のとしては、Ti、Nb、Zn、Sn、Zr、Y、L
a、Ta等の遷移金属の酸化物の他、SrTiO3、C
aTiO3等のペロブスカイト系酸化物等が挙げられ
る。この酸化物半導体粉末は、できるだけ微粒子である
ことが好ましく、その平均粒径は5000nm以下、好
ましくは50nm以下である。また、その比表面積は、
5m2/g以上、好ましくは10m2/g以上である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The oxide semiconductor used in the present invention includes conventionally known oxide semiconductors. Such materials include Ti, Nb, Zn, Sn, Zr, Y, L
a, Ta and other transition metal oxides, SrTiO 3 , C
a perovskite-based oxide such as aTiO 3 ; This oxide semiconductor powder is preferably as fine as possible, and has an average particle size of 5000 nm or less, preferably 50 nm or less. The specific surface area is
It is at least 5 m 2 / g, preferably at least 10 m 2 / g.

【0006】本発明で用いる有機色素は、下記式で表さ
れる9−フェニルキサンテン骨格を有する色素である
The organic dye used in the present invention is a dye having a 9-phenylxanthene skeleton represented by the following formula:

【化1】 前記9−フェニルキサンテン骨格を有する色素は、その
9−フェニルキサンテン骨格に、カルボキシル基や、ス
ルホン酸基、水酸基、アミノ基、ハロゲン原子、NO2
等の極性基が1つ又は複数結合したものである。カルボ
キシル基やスルホン酸基、水酸基等の酸性基又はその水
溶性塩を有するものは、酸化物半導体に対する吸着性に
すぐれている。このような有機色素は従来良く知られた
ものであり、その具体例としては、例えば、以下のもの
を挙げることができる。
Embedded image The dye having a 9-phenylxanthene skeleton has a carboxyl group, a sulfonic acid group, a hydroxyl group, an amino group, a halogen atom, NO 2
And one or more polar groups are bonded. Those having an acidic group such as a carboxyl group, a sulfonic acid group or a hydroxyl group or a water-soluble salt thereof have excellent adsorptivity to an oxide semiconductor. Such organic dyes are well known in the art, and specific examples thereof include the following.

【0007】(1)ローズベンガル(Ro)(1) Rose Bengal (Ro)

【化2】 (2)ローダミンB(Rh)Embedded image (2) Rhodamine B (Rh)

【化3】 (3)エオシンB(EB)Embedded image (3) Eosin B (EB)

【化4】 (4)ジブロモフルオレセイン(DB)Embedded image (4) Dibromofluorescein (DB)

【化5】 (5)エリスロシンB(Er)Embedded image (5) Erythrosin B (Er)

【化6】 (6)エオシンY(EY)Embedded image (6) Eosin Y (EY)

【化7】 (7)ジクロロフルオレセイン(DC)Embedded image (7) Dichlorofluorescein (DC)

【化8】 (8)ピロガロール(Py)Embedded image (8) Pyrogallol (Py)

【化9】 (9)フルオレセイン(FI)Embedded image (9) Fluorescein (FI)

【化10】 (10)フロキシン(Ph)Embedded image (10) Phloxine (Ph)

【化11】 (11)アミノピロガロール(AP)Embedded image (11) Aminopyrogallol (AP)

【化12】 (12)フルオレシン(Fn)Embedded image (12) Fluorescin (Fn)

【化13】 (13)ウラニン(Ur)Embedded image (13) Uranine (Ur)

【化14】 (14)4,5,6,7−テトラクロロフルオレセイン
(Tf)
Embedded image (14) 4,5,6,7-tetrachlorofluorescein (Tf)

【化15】 (15)フルオレセインアミンI(I1)Embedded image (15) Fluoresceinamine I (I1)

【化16】 (16)フルオレセインアミンII(I2)Embedded image (16) Fluoresceinamine II (I2)

【化17】 (17)ローダミン123(R3)Embedded image (17) Rhodamine 123 (R3)

【化18】 (18)ローダミン6G(R6)Embedded image (18) Rhodamine 6G (R6)

【化19】 Embedded image

【0008】本発明の酸化物半導体電極を製造するに
は、先ず、酸化物半導体の微粉末を含む塗布液を作る。
この酸化物半導体微粉末は、その1次粒子径が微細な程
好ましく、その1次粒子径は、通常、1〜5000n
m,好ましくは2〜50nmである。酸化物半導体微粉
末を含む塗布液(スラリー液)は、酸化物半導体微粉末
を溶媒中に分散させることによって調製することができ
る。溶媒中に分散された酸化物半導体微粉末は、その1
次粒子状で分散する。溶媒としては、酸化物半導体微粉
末を分散し得るものであればどのようなものでもよく、
特に制約されない。このような溶媒には、水、有機溶
媒、水と有機溶媒との混合液が包含される。有機溶媒と
しては、メタノールやエタノール等のアルコール、メチ
ルエチルケトン、アセトン、アセチルアセトン等のケト
ン、ヘキサン、シクロヘキサン等の炭化水素等が用いら
れる。塗布液中には、必要に応じ、界面活性剤や粘度調
節剤(ポリエチレングリコール等の多価アルコール等)
を加えることができる。溶媒中の酸化物半導体微粉末濃
度は、0.1〜70重量%、好ましくは0.1〜30重
量%である。
In order to manufacture the oxide semiconductor electrode of the present invention, first, a coating solution containing fine powder of an oxide semiconductor is prepared.
The finer the primary particle diameter of the oxide semiconductor fine powder is, the more preferable it is. The primary particle diameter is usually 1 to 5000 n.
m, preferably 2 to 50 nm. The coating liquid (slurry liquid) containing the oxide semiconductor fine powder can be prepared by dispersing the oxide semiconductor fine powder in a solvent. The oxide semiconductor fine powder dispersed in the solvent is
Disperse in the form of secondary particles. Any solvent may be used as long as it can disperse the oxide semiconductor fine powder,
There is no particular restriction. Such solvents include water, organic solvents, and mixtures of water and organic solvents. Examples of the organic solvent include alcohols such as methanol and ethanol, ketones such as methyl ethyl ketone, acetone and acetylacetone, and hydrocarbons such as hexane and cyclohexane. Surfactants and viscosity modifiers (polyhydric alcohols such as polyethylene glycol, etc.), if necessary, in the coating solution
Can be added. The concentration of the oxide semiconductor fine powder in the solvent is 0.1 to 70% by weight, preferably 0.1 to 30% by weight.

【0009】次に、前記塗布液を基板上に塗布、乾燥
し、次いで空気中又は不活性ガス中で焼成して、基板上
に酸化物半導体膜を形成する。基板としては、少なくと
もその表面が導電性表面に形成された基板が用いられ
る。このような基板としては、ガラス等の耐熱性基板上
に、In23やSnO2の導電性金属酸化物薄膜を形成
したものや金属等の導電性材料からなる基板が用いられ
る。このような導電性基板は従来良く知られたものであ
る。基板の厚さは特に制約されないが、通常、0.3〜
5mmである。この導電性基板は、透明又は不透明であ
ることができる。基板上に塗布液を塗布、乾燥して得ら
れる被膜は、酸化物半導体微粒子の集合体からなるもの
で、その微粒子の粒径は使用した酸化物半導体微粉末の
1次粒子径に対応するものである。このようにして基板
上に形成された酸化物半導体微粒子集合体膜は、基板と
の結合力及びその微粒子相互の結合力が弱く、機械的強
度の弱いものであることから、これを焼成して機械的強
度が高められ、かつ基板に強く固着した焼成物膜とす
る。
Next, the coating solution is applied on a substrate, dried, and then fired in air or an inert gas to form an oxide semiconductor film on the substrate. As the substrate, a substrate having at least its surface formed on a conductive surface is used. As such a substrate, a substrate formed by forming a conductive metal oxide thin film of In 2 O 3 or SnO 2 on a heat-resistant substrate such as glass or a substrate made of a conductive material such as metal is used. Such a conductive substrate is conventionally well-known. The thickness of the substrate is not particularly limited, but is usually 0.3 to
5 mm. This conductive substrate can be transparent or opaque. The coating obtained by applying and drying the coating solution on the substrate is composed of an aggregate of oxide semiconductor fine particles, the particle diameter of which corresponds to the primary particle diameter of the used oxide semiconductor fine powder. It is. Since the oxide semiconductor fine particle aggregate film formed on the substrate in this manner has a low bonding strength with the substrate and a low bonding strength between the fine particles and a low mechanical strength, it is baked. A fired product film having increased mechanical strength and strongly adhered to the substrate.

【0010】本発明においては、この焼成物膜は、多孔
質構造膜とし、その厚さは少なくとも10nm、好まし
くは100〜10000nmとし、かつその見かけ表面
積に対する実表面積の比を10以上、好ましくは100
以上とする。この比の上限は特に制約されないが、通
常、1000〜2000である。前記見かけ表面積と
は、通常の表面積を意味し、例えば、その表面形状が長
方形の場合には、縦の長さ×横の長さで表される。前記
実表面積とは、クリプトンガスの吸着量により求めたB
ET表面積を意味する。その具体的測定方法は、見かけ
表面積1cm2の基板付酸化物半導体膜をBET表面積
測定装置(マイクロメリティクス社製、ASAP200
0)を用い、液体窒素温度で、クリプトンガスを吸着さ
せる方法である。この測定方法により得られたクリプト
ンガス吸着量に基づいてBET表面積が算出される。こ
のような多孔質構造膜は、その内部に微細な細孔とその
表面に微細凹凸を有するものである。焼成物膜の厚さ及
び見かけ表面積に対する実表面積の比が前記範囲より小
さくなると、その表面に有機色素を単分子膜として吸着
させたときに、その有機色素単分子膜の表面積が小さく
なり、光吸収効率の良い電極を得ることができなくな
る。前記のような多孔質構造の焼成物膜は、酸化物半導
体微粒子を含む塗布液を基板上に塗布、乾燥して形成さ
れた微粒子集合体膜の焼成に際し、その焼成温度を低く
し、微粒子集合体膜を軽く焼結させることによって得る
ことができる。この場合、焼成温度は1000℃より低
く、通常、300〜800℃、好ましくは500〜80
0℃である。焼成温度が1000℃より高くなると、焼
成物膜の焼結が進みすぎ、その実表面積が小さくなり、
所望する焼成物膜を得ることができない。前記見かけ表
面積に対する実表面積の比は、酸化物半導体微粒子の粒
径及び比表面積や、焼成温度等によりコントロールする
ことができる。
In the present invention, the fired product film is a porous structure film having a thickness of at least 10 nm, preferably 100 to 10,000 nm, and a ratio of the actual surface area to the apparent surface area of 10 or more, preferably 100 or more.
Above. The upper limit of this ratio is not particularly limited, but is usually 1000 to 2000. The apparent surface area means a normal surface area. For example, when the surface shape is rectangular, it is represented by a vertical length × a horizontal length. The actual surface area is defined as B obtained from the amount of krypton gas absorbed.
ET means surface area. The specific measuring method is as follows. An oxide semiconductor film with a substrate having an apparent surface area of 1 cm 2 is measured using a BET surface area measuring device (ASAP200 manufactured by Micromeritics Co., Ltd.).
0) is a method of adsorbing krypton gas at the temperature of liquid nitrogen. The BET surface area is calculated based on the krypton gas adsorption amount obtained by this measurement method. Such a porous structure film has fine pores inside and fine irregularities on its surface. When the thickness of the fired product film and the ratio of the actual surface area to the apparent surface area are smaller than the above ranges, when the organic dye is adsorbed on the surface as a monomolecular film, the surface area of the organic dye monomolecular film becomes small, An electrode with good absorption efficiency cannot be obtained. The fired product film having a porous structure as described above is obtained by applying a coating solution containing oxide semiconductor fine particles on a substrate, and firing the formed fine particle aggregate film formed by drying. It can be obtained by lightly sintering the body film. In this case, the firing temperature is lower than 1000 ° C, usually 300 to 800 ° C, preferably 500 to 80 ° C.
0 ° C. When the firing temperature is higher than 1000 ° C., the sintering of the fired product film proceeds too much, the actual surface area decreases,
The desired fired product film cannot be obtained. The ratio of the actual surface area to the apparent surface area can be controlled by the particle size and specific surface area of the oxide semiconductor fine particles, the firing temperature, and the like.

【0011】次に、前記のようにして得られた基板上の
酸化物半導体膜表面に、有機色素を単分子膜として吸着
させる。このためには、有機色素を有機溶媒に溶解させ
て形成した有機色素溶液中に、酸化物半導体膜を基板と
とも浸漬すればよい。この場合、有機色素溶液が、多孔
質構造膜である酸化物半導体膜の内部深く進入するよう
に、その膜を有機色素溶液への浸漬に先立ち、減圧処理
したり、加熱処理して、膜中に含まれる気泡をあらかじ
め除去しておくのが好ましい。浸漬時間は、30分〜2
4時間程度であるが、有機色素の種類に応じて適宜定め
る。また、浸漬処理は、必要に応じ、複数回繰返し行う
こともできる。前記浸漬処理後、有機色素を吸着した酸
化物半導体膜は、常温〜80℃で乾燥する。
Next, an organic dye is adsorbed as a monomolecular film on the surface of the oxide semiconductor film on the substrate obtained as described above. For this purpose, the oxide semiconductor film and the substrate may be immersed in an organic dye solution formed by dissolving an organic dye in an organic solvent. In this case, the film is subjected to a reduced pressure treatment or a heat treatment prior to immersion in the organic dye solution so that the organic dye solution penetrates deep inside the oxide semiconductor film which is a porous structure film. It is preferable to remove the air bubbles contained in the water in advance. Immersion time is 30 minutes to 2
It is about 4 hours, but it is appropriately determined according to the type of the organic dye. Further, the immersion treatment can be repeated a plurality of times as necessary. After the immersion treatment, the oxide semiconductor film on which the organic dye has been adsorbed is dried at normal temperature to 80 ° C.

【0012】本発明においては、酸化物半導体膜に吸着
させる有機色素は、1種である必要はなく、好ましくは
光吸収領域の異なる複数の有機色素を吸着させる。これ
によって、光を効率よく利用することができる。複数の
有機色素を膜に吸着させるには、複数の有機色素を含む
溶液中に膜を浸漬する方法や、有機色素溶液を複数用意
し、これらの溶液に膜を順次浸漬する方法等が挙げられ
る。有機色素を有機溶媒に溶解させた溶液において、そ
の有機溶媒としては、有機色素を溶解し得るものであれ
ば任意のものが使用可能である。このようなものとして
は、例えば、メタノール、エタノール、アセトニトリ
ル、ジメチルホルムアミド、ジオキサン等が挙げられ
る。溶液中の有機色素の濃度は、溶液100ml中、1
〜10000mg、好ましくは10〜500mg程度で
あり、有機色素及び有機溶媒の種類に応じて適宜定め
る。
In the present invention, the organic dye adsorbed on the oxide semiconductor film does not need to be one kind, and preferably, a plurality of organic dyes having different light absorption regions are adsorbed. Thus, light can be used efficiently. In order to adsorb a plurality of organic dyes to the film, a method of immersing the film in a solution containing a plurality of organic dyes, a method of preparing a plurality of organic dye solutions, and sequentially immersing the film in these solutions can be used. . In a solution in which an organic dye is dissolved in an organic solvent, any organic solvent can be used as long as it can dissolve the organic dye. Such materials include, for example, methanol, ethanol, acetonitrile, dimethylformamide, dioxane and the like. The concentration of the organic dye in the solution is 1% in 100 ml of the solution.
It is about 10000 mg, preferably about 10-500 mg, and is appropriately determined according to the type of the organic dye and the organic solvent.

【0013】本発明の太陽電池は、前記酸化物半導体電
極と対極とそれらの電極に接触するレドックス電解質と
から構成される。レドックス電解質としては、I-/I3
-系や、Br-/Br3 -系、キノン/ハイドロキノン系等
が挙げられる。このようなレドックス電解質は、従来公
知の方法によって得ることができ、例えば、I-/I3 -
系の電解質は、ヨウ素のアンモニウム塩とヨウ素を混合
することによって得ることができる。電解質は、液体電
解質又はこれを高分子物質中に含有させた固体高分子電
解質であることができる。液体電解質において、その溶
媒としては、電気化学的に不活性なものが用いられ、例
えば、アセトニトリル、炭酸プロピレン、エチレンカー
ボネート等が用いられる。対極としては、導電性を有す
るものであればよく、任意の導電性材料が用いられる
が、I3 -イオン等の酸化型のレドックスイオンの還元反
応を充分な速さで行わせる触媒能を持ったものの使用が
好ましい。このようなものとしては、白金電極、導電材
料表面に白金めっきや白金蒸着を施したもの、ロジウム
金属、ルテニウム金属、酸化ルテニウム、カーボン等が
挙げられる。
A solar cell according to the present invention comprises the above-mentioned oxide semiconductor electrode, a counter electrode, and a redox electrolyte in contact with those electrodes. As the redox electrolyte, I / I 3
- system or, Br - / Br 3 - system, quinone / hydroquinone system. Such a redox electrolyte can be obtained by a conventionally known method, for example, I / I 3 −.
The system electrolyte can be obtained by mixing iodine with an ammonium salt of iodine. The electrolyte can be a liquid electrolyte or a solid polymer electrolyte containing the same in a polymer substance. In the liquid electrolyte, an electrochemically inert solvent is used as the solvent, for example, acetonitrile, propylene carbonate, ethylene carbonate, or the like. The counter electrode, as long as it has conductivity, but any conductive material is used, I 3 - with catalytic ability to perform fast enough the reduction reaction of the redox ions oxidized such as ion It is preferred to use Examples of such a material include a platinum electrode, a material obtained by subjecting a conductive material surface to platinum plating or platinum evaporation, rhodium metal, ruthenium metal, ruthenium oxide, carbon, and the like.

【0014】本発明の太陽電池は、前記酸化物半導体電
極、電解質及び対極をケース内に収納して封止するか又
はそれら全体を樹脂封止する。この場合、その酸化物半
導体電極には光があたる構造とする。このような構造の
電池は、その酸化物半導体電極に太陽光又は太陽光と同
等な可視光をあてると、酸化物半導体電極とその対極と
の間に電位差が生じ、両極間に電流が流れるようにな
る。
In the solar cell of the present invention, the oxide semiconductor electrode, the electrolyte and the counter electrode are housed in a case and sealed, or the whole is sealed with a resin. In this case, light is applied to the oxide semiconductor electrode. In a battery having such a structure, when sunlight or visible light equivalent to sunlight is applied to the oxide semiconductor electrode, a potential difference occurs between the oxide semiconductor electrode and the counter electrode, and a current flows between the two electrodes. become.

【0015】[0015]

【実施例】次に本発明を実施例によりさらに詳述する。
なお、以下の実施例において作製した電池は、いずれも
その電極面積が1×1cmである。また、電池を作動さ
せる光源として、500wのキセノンランプを用い、そ
のランプからの420nm以下の波長の光はフィルター
でカットした。また、作製した電池について、その短絡
電流及び開放電圧の測定に無抵抗電流計を備えたポテン
シオスタットを用いた。また、使用した酸化物半導体粉
末において、TiO2としては市販品(日本エアエロジ
ル、P−25、表面積55m2/g)を用い、Nb25
としては水酸化ニオブ(セントラル硝子社製)を熱分解
(500度、1時間、99m2/g)して調製したもの
を用いた。ZnO(20m2/g)、SnO2(60m2
/g)、In23(25m2/g)としては市販品(和
光純薬)を用いた。また、有機色素としては、前記した
Ro(ローズベンガル)、Rh(ローダミンB)、EB
(エオシンB)、DB(ジブロモフルオレセイン)、E
r(エリスロシンB)、EY(エオシンY)、DC(ジ
クロロフルオレセイン)、Py(ピロガロール)、F1
(フルオレセイン)、Ph(フロキシン)、AP(アミ
ノピロガロール)、Fn(フルオレシン)、ウラニン
(Ur)、4,5,6,7−テトラクロロフルオレセイ
ン(Tf)、フルオレセインアミンI(I1)、フルオ
レセインアミンII(I2)、ローダミン123(R3
及びローダミン6G(R6)を用いた。
Next, the present invention will be described in more detail by way of examples.
Each of the batteries manufactured in the following examples has an electrode area of 1 × 1 cm. A 500 watt xenon lamp was used as a light source for operating the battery, and light having a wavelength of 420 nm or less from the lamp was cut by a filter. A potentiostat equipped with a non-resistance ammeter was used for measuring the short-circuit current and the open-circuit voltage of the manufactured battery. In the oxide semiconductor powder used, a commercially available product (Nihon Air Aerosil, P-25, surface area 55 m 2 / g) was used as TiO 2 , and Nb 2 O 5 was used.
Used was prepared by thermally decomposing niobium hydroxide (manufactured by Central Glass Co., Ltd.) (500 ° C., 1 hour, 99 m 2 / g). ZnO (20m 2 / g), SnO 2 (60m 2
/ G) and In 2 O 3 (25 m 2 / g), commercial products (Wako Pure Chemical Industries, Ltd.) were used. Examples of the organic dye include Ro (rose bengal), Rh (rhodamine B), and EB.
(Eosin B), DB (dibromofluorescein), E
r (erythrosin B), EY (eosin Y), DC (dichlorofluorescein), Py (pyrogallol), F1
(Fluorescein), Ph (phloxine), AP (aminopyrogallol), Fn (fluorescin), uranine (Ur), 4,5,6,7-tetrachlorofluorescein (Tf), fluoresceinamine I (I1), fluoresceinamine II (I2), rhodamine 123 (R 3 )
And Rhodamine 6G (R 6 ).

【0016】実施例1 酸化物半導体電極は以下のようにして作製した。前記金
属酸化物粉末(その平均一次粒径はいずれも50nm以
下である)を非イオン性界面活性剤を含む水とアセチル
アセトンとの混合液(容量混合比=20/1)中に濃度
約1wt%で分散させてスラリー液を調製した。次に、
このスラリー液を厚さ1mmの導電性ガラス基板(F−
SnO2、10Ω/sq)上に塗布し、乾燥し、得られ
た乾燥物を500℃で1時間、空気中で焼成し、基板上
に厚さ7μmの焼成物膜を形成した。この焼成物膜の見
かけの表面積に対する実表面積比を酸化物半導体の種類
との関係で示すと、TiO2:500、Nb25:85
0、ZnO:200、SnO2:500、In23:2
00であった。次に、この焼成物膜を基板とともに、有
機色素溶液中に浸漬し、80℃で、還液を行いながら、
色素吸着処理を行った後、室温で乾燥した。この場合、
有機色素溶液は、F1を除き、有機色素を100mg/
100mlの濃度でエタノール中に溶解して調製した。
また、F1溶液はF1を100mg/100ml濃度で
ジメチルホルムアミド中に、溶解して調製した。
Example 1 An oxide semiconductor electrode was manufactured as follows. A concentration of about 1 wt% of the metal oxide powder (having an average primary particle diameter of 50 nm or less) in a mixed solution (volume mixing ratio = 20/1) of water and acetylacetone containing a nonionic surfactant. To prepare a slurry liquid. next,
This slurry liquid was applied to a conductive glass substrate (F-
It was applied on SnO 2 , 10Ω / sq) and dried, and the obtained dried product was fired at 500 ° C. for 1 hour in the air to form a fired product film having a thickness of 7 μm on the substrate. When the ratio of the actual surface area to the apparent surface area of the fired product film is shown in relation to the type of the oxide semiconductor, TiO 2 : 500 and Nb 2 O 5 : 85
0, ZnO: 200, SnO 2 : 500, In 2 O 3 : 2
00. Next, this baked product film together with the substrate is immersed in an organic dye solution, and the solution is returned at 80 ° C.
After performing the dye adsorption treatment, it was dried at room temperature. in this case,
The organic dye solution contained 100 mg of the organic dye except for F1.
It was prepared by dissolving in ethanol at a concentration of 100 ml.
The F1 solution was prepared by dissolving F1 at a concentration of 100 mg / 100 ml in dimethylformamide.

【0017】前記のようにして得た酸化物半導体電極と
その対極とを電解質液に接触させて太陽電池を構成し
た。この場合、対極としては、白金を20nm厚さで蒸
着した導電性ガラスを用いた。両電極間の距離は1mm
とした。電解質液としては、テトラプロピルアンモニウ
ムヨーダイド(0.46M)とヨウ素(0.6M)を含
むエチレンカーボネートとアセトニトリルとの混合液
(容量混合比=80/20)を用いた。前記のようにし
て得られた各電池についての短絡電流及び開放電圧を表
1に示し、その実験結果についての考察を以下に示す。
A solar cell was constructed by bringing the oxide semiconductor electrode obtained as described above and its counter electrode into contact with an electrolyte solution. In this case, as a counter electrode, conductive glass in which platinum was deposited to a thickness of 20 nm was used. The distance between both electrodes is 1mm
And As an electrolyte solution, a mixed solution of ethylene carbonate containing tetrapropylammonium iodide (0.46M) and iodine (0.6M) and acetonitrile (volume mixing ratio = 80/20) was used. Table 1 shows the short-circuit current and open-circuit voltage of each battery obtained as described above, and the results of the experiment are discussed below.

【0018】[0018]

【表1】 [Table 1]

【0019】(1)ローズベンガル(Ro)は、TiO
2電極に最も良く吸着し、Nb25にはほとんど吸着し
ていなかった。Nb25電極以外では充分な短絡電流、
開放電圧が得られた。特にIn23では高い電流値が得
られた。Nb25で性能が低い理由は色素の吸着がしに
くいことと、その伝導帯のポテンシャルが高すぎるため
と思われる。 (2)ローダミンB(Ro)は、どの電極についても良
い吸着を示した。いずれの電極でも充分な短絡電流、開
放電圧が得られた。特に、In23では高い電流値が得
られ、In23電極中最大値が得られた。Nb25につ
いてもNb25電極中最大の電流値が得られた。 (3)エリスロシンB(Er)については、Roと同様
な結果が得られた。 (4)エオシンY(EY)についても、Roと同様な結
果が得られた。TiO2電極においてはTiO2電極中最
大の電流、電圧が得られた。このEYを吸着したTiO
2電極を含む電池の寿命試験を行ったところ、セル中の
水分と酸素をほぼ完全に除去した条件下では、10日程
度は性能の劣化のないことが確認された。この際に流れ
た全電流値から計算した色素のターンオーバー数は37
万回以上に達することから、このような有機色素は酸素
などによる分解の影響を受けない限り安定に使用できる
といえる。 (5)フルオレセイン(F1)の色素の吸光度は小さい
が、半導体電極に吸着させると充分な着色を示した。電
池挙動としてはEYと同様な結果が得られた。 (6)フロキシン(Ph)は、Roと同様な結果を与え
た。 (7)エオシンB(EB)は、Roと同様な結果を与え
た。 (8)ジブロモフルオレセイン(DB)は、TiO2
極に最も良く吸着し、Nb25にはほとんど吸着してい
なかった。Nb25以外の電極では充分な短絡電流、開
放電圧が得られた。特に、ZnO及びSnO2ではそれ
らの電極中最大値が得られた。 (9)ジクロロフルオレセイン(DC)は、Roと同様
な結果を与えた。 (10)ピロガロール(Py)の場合、いずれの電極にも
吸着したが、吸収波長の長波長シフトが見られた。Ti
2電極について特に高い短絡電流が得られた。 (11)アミノピロガロール(AP)は、いずれの電極に
も吸着し、特にTiO2には強く吸着していた。しかし
電池特性としてはTiO2以外の電極について高い短絡
電流が得られた。 (12)フルオレセイン(Fn)は、Roと同様な挙動の
電池特性を示した。 (13)ウラニン(Ur)についてはRoと同様な結果が
得られた。 (14)4,5,6,7−テトラクロロフルオレセイン
(Tf)についてはRoと同様な結果が得られた。 (15)フルオレセインアミンI(I1)についてはRo
と同様な結果が得られた。 (16)フルオレセインアミンII(I2)についてはRo
と同様な結果が得られた。 (17)ローダミン123(R3)については、酸化ニオ
ブ電極に非常に良く吸着し、他の色素と比べると高い電
流値を得た。Rhと傾向が似た結果になった。 (18)ローダミン6G(R6)については酸化ニオブ電
極に良く吸着し、他の色素と比べると高い電流値を得た
が、酸化ニオブ以外の電極では性能が低かった。 (19)EYとFnの混合色素は、TiO2電極によく吸
着し、高性能の電池を与え、EY及びFnを単独で用い
たときよりも、短絡電流が向上する。これは利用できる
光の領域が広がったためと考えられる。
(1) Rose Bengal (Ro) is made of TiO
It adsorbed best on the two electrodes and hardly adsorbed on Nb 2 O 5 . Sufficient short-circuit current except for Nb 2 O 5 electrode,
An open circuit voltage was obtained. In particular, a high current value was obtained with In 2 O 3 . It is considered that the reason why the performance is low with Nb 2 O 5 is that it is difficult to adsorb the dye and the potential of the conduction band is too high. (2) Rhodamine B (Ro) showed good adsorption on all electrodes. Sufficient short-circuit current and open-circuit voltage were obtained with any of the electrodes. In particular, an In 2 in O 3 high current value is obtained, an In 2 O 3 electrodes in the maximum value is obtained. As for Nb 2 O 5 , the largest current value was obtained in the Nb 2 O 5 electrode. (3) For erythrosin B (Er), the same results as Ro were obtained. (4) For Eosin Y (EY), results similar to Ro were obtained. In the TiO 2 electrode, the highest current and voltage were obtained in the TiO 2 electrode. This EY adsorbed TiO
When a life test of the battery including the two electrodes was performed, it was confirmed that the performance was not deteriorated for about 10 days under the condition that the water and oxygen in the cell were almost completely removed. The turnover number of the dye calculated from the total current value flowing at this time was 37.
Since the number reaches 10,000 or more, it can be said that such an organic dye can be stably used as long as it is not affected by decomposition by oxygen or the like. (5) Although the absorbance of the dye of fluorescein (F1) was small, the dye was sufficiently colored when adsorbed on the semiconductor electrode. The same behavior as that of EY was obtained as the battery behavior. (6) Phloxine (Ph) gave similar results as Ro. (7) Eosin B (EB) gave similar results as Ro. (8) Dibromofluorescein (DB) adsorbed best on the TiO 2 electrode and hardly adsorbed on Nb 2 O 5 . With electrodes other than Nb 2 O 5 , sufficient short-circuit current and open-circuit voltage were obtained. In particular, ZnO and SnO 2 showed the maximum values among those electrodes. (9) Dichlorofluorescein (DC) gave similar results as Ro. (10) In the case of pyrogallol (Py), although it was adsorbed to any of the electrodes, a long wavelength shift of the absorption wavelength was observed. Ti
Particularly high short-circuit currents were obtained for the O 2 electrode. (11) Aminopyrogallol (AP) was adsorbed to any of the electrodes, especially to TiO 2 . However, as for battery characteristics, high short-circuit current was obtained for electrodes other than TiO 2 . (12) Fluorescein (Fn) exhibited the same battery characteristics as Ro. (13) As for uranine (Ur), the same results as Ro were obtained. (14) For 4,5,6,7-tetrachlorofluorescein (Tf), similar results to Ro were obtained. (15) Fluoresceinamine I (I1) is Ro
The same result as was obtained. (16) For fluoresceinamine II (I2), use Ro
The same result as was obtained. (17) Rhodamine 123 (R 3 ) was very well adsorbed on the niobium oxide electrode, and obtained a higher current value than other dyes. The result was similar to that of Rh. (18) Rhodamine 6G (R 6 ) was well adsorbed on the niobium oxide electrode, and a higher current value was obtained as compared with other dyes, but the performance was lower with electrodes other than niobium oxide. (19) The mixed dye of EY and Fn is well adsorbed on the TiO 2 electrode to give a high-performance battery, and the short-circuit current is improved as compared with the case where EY and Fn are used alone. This is considered to be because the available light area was widened.

【0020】比較例1 既報の論文(Nature,261(1976)p4O
2の方法のようにZnOを1300度で焼結した半導体
粉末を調製し、その後、実施例1と同様の方法で導電性
ガラス上に製膜し、ZnO電極(見かけ表面積に対する
実表面積比<10)を調製した。その後、実施例1と同
じ方法でローズベンガル(Ro)を吸着させた。しかし
吸着量を吸光度で比較すると、実施例1の値の5分の1
程度であった。次に、その電池特性について調べたとこ
ろ、表2に示す結果となり、実施例1の場合により小さ
な短絡電流、開放電圧となった。
Comparative Example 1 A previously published paper (Nature, 261 (1976) p40)
A semiconductor powder obtained by sintering ZnO at 1300 ° C. was prepared as in the method of Example 2, and then a film was formed on conductive glass in the same manner as in Example 1, and a ZnO electrode (the ratio of the actual surface area to the apparent surface area <10) was formed. ) Was prepared. Thereafter, Rose Bengal (Ro) was adsorbed in the same manner as in Example 1. However, comparing the amount of adsorption with the absorbance, it was found to be 1/5 of the value of Example 1.
It was about. Next, when the battery characteristics were examined, the results shown in Table 2 were obtained, and the short-circuit current and the open-circuit voltage were smaller in the case of Example 1.

【0021】比較例2〜4 有機色素として、以下に示す構造のアシッドオレンジ7
(A7)、モーダンオレンジ1(M1)及び又クレアー
ファーストレッド(NF)を用いた以外は実施例1の場
合と同様にして電池を構成した。これらの電池について
の短絡電流及び開放電圧を表2に示し、その実験結果の
考察を以下に示す。
Comparative Examples 2 to 4 As an organic dye, Acid Orange 7 having the following structure was used.
A battery was constructed in the same manner as in Example 1 except that (A7), Modan Orange 1 (M1) and Clear Fast Red (NF) were used. The short-circuit current and open-circuit voltage of these batteries are shown in Table 2, and consideration of the experimental results is shown below.

【0022】(A7)(A7)

【化20】 (MI)Embedded image (MI)

【化21】 (NF)Embedded image (NF)

【化22】 Embedded image

【0023】[0023]

【表2】 [Table 2]

【0024】(1)アシッドオレンジ7(A7)は、ア
ゾ系の色素であるが、このものはTiO2には吸着した
が他の電極にはほとんど吸着しなかった。電池特性も非
常に悪い結果となった。 (2)モーダントオレンジ1(M1)は、アゾ系の色素
であるが、すべての半銅体電極に良い吸着を示した。し
かしながらその電池特性は非常に悪いものとなった。
(3)ヌクレアーフアーストレッド(NF)は、キノン
系の色素であるが、このものはすべての半導体電極に良
い吸着を示した。しかしながら、その電池特性は非常に
悪いものであった。
(1) Acid Orange 7 (A7) is an azo dye, which was adsorbed on TiO 2 but hardly adsorbed on other electrodes. Battery performance was also very poor. (2) Modant Orange 1 (M1), which is an azo-based dye, exhibited good adsorption to all copper electrodes. However, the battery characteristics were very poor.
(3) Nuclear fast red (NF) is a quinone dye, which showed good adsorption to all semiconductor electrodes. However, the battery characteristics were very poor.

【0025】[0025]

【発明の効果】本発明の有機色素増感型半導体電極は、
高められた性能を有し、この電極を含む本発明の太陽電
池は高められた電池性能を有する。本発明の太陽電池
は、その材料が大量生産されている比較的安価でかつ安
全性の高いものであることから、比較的安価に生産する
ことができ、またその使用後においては、使い捨て可能
なものである。
The organic dye-sensitized semiconductor electrode of the present invention is
Having enhanced performance, solar cells of the present invention that include this electrode have enhanced battery performance. The solar cell of the present invention can be produced relatively inexpensively because its material is mass-produced and is relatively inexpensive and highly safe, and after its use, it is disposable. Things.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 導電性表面を有する基板とその導電性表
面に形成された酸化物半導体膜と、その酸化物半導体膜
の表面に吸着された有機色素からなり、該酸化物半導体
膜は、酸化物半導体微粒子集合体の焼成物から形成さ
れ、少なくとも10nmの厚さを有するとともに、その
見かけ表面積に対する実表面積の比が10以上であり、
かつ前記有機色素は9−フェニルキサンテン骨格を有す
る色素であることを特徴とする酸化物半導体電極。
1. A substrate having a conductive surface, an oxide semiconductor film formed on the conductive surface, and an organic dye adsorbed on the surface of the oxide semiconductor film. Formed from a baked product of the aggregate of semiconductor fine particles, having a thickness of at least 10 nm, and having a ratio of the actual surface area to the apparent surface area of 10 or more,
In addition, the organic dye is a dye having a 9-phenylxanthene skeleton.
【請求項2】 酸化物半導体が二酸化チタンであり、有
機色素がエオシンY、ジブロモフルオレセイン、フルオ
レセイン、ローダミンB、ピロガロール、ジクロロフル
オレセイン、エリスロシンB、フルオレシン、ウラニ
ン、ローダミン123、フルオレセインアミンI、フル
オレセインアミンII及びローズベンガルの中から選ばれ
る少なくとも1種である請求項1の酸化物半導体電極。
2. The oxide semiconductor is titanium dioxide, and the organic dye is eosin Y, dibromofluorescein, fluorescein, rhodamine B, pyrogallol, dichlorofluorescein, erythrosin B, fluorescin, uranine, rhodamine 123, fluorescein amine I, fluorescein amine II. 2. The oxide semiconductor electrode according to claim 1, wherein the oxide semiconductor electrode is at least one member selected from the group consisting of:
【請求項3】 酸化物半導体が二酸化チタンであり、有
機色素がエオシンYとフルオレシンとの混合物である請
求項1の酸化物半導体電極。
3. The oxide semiconductor electrode according to claim 1, wherein the oxide semiconductor is titanium dioxide, and the organic dye is a mixture of eosin Y and fluorescin.
【請求項4】 酸化物半導体が5酸化2ニオブであり、
有機色素がローダミンB、アミノピロガロール、ローダ
ミン6G及びローダミン123の中から選ばれる少なく
とも1種である請求項1の酸化物半導体電極。
4. The oxide semiconductor is 2 niobium pentoxide,
The oxide semiconductor electrode according to claim 1, wherein the organic dye is at least one selected from rhodamine B, aminopyrogallol, rhodamine 6G and rhodamine 123.
【請求項5】 酸化物半導体が酸化亜鉛であり、有機色
素がジブロモフルオレセイン、エオシンY、ジクロロフ
ルオレセイン、エリスロシンB、ローダミンB、フルオ
レセイン、アミノピロガロール、フロキシン、フルオレ
シン、ローズベンガル、ウラニン、テトラクロロフルオ
レセイン、フルオレセインアミンI及びフルオレセイン
アミンI及びフルオレセインアミンIIの中から選ばれる
少なくとも1種である請求項1の酸化物半導体電極。
5. The oxide semiconductor is zinc oxide, and the organic dye is dibromofluorescein, eosin Y, dichlorofluorescein, erythrosin B, rhodamine B, fluorescein, aminopyrogallol, phloxine, fluorescin, rose bengal, uranine, tetrachlorofluorescein, 2. The oxide semiconductor electrode according to claim 1, wherein the oxide semiconductor electrode is at least one selected from fluoresceinamine I, fluoresceinamine I and fluoresceinamine II.
【請求項6】 酸化物半導体が酸化スズであり、有機色
素がジブロモフルオレセイン、ローダミンB、エオシン
Y、フロキシン、フルオレセイン、ジクロロフルオレセ
イン、エリスロシンB、ウラニン、ローズベンガル及び
ローダミン123の中から選ばれる少なくとも1種であ
る請求項1の酸化物半導体電極。
6. The oxide semiconductor is tin oxide, and the organic dye is at least one selected from dibromofluorescein, rhodamine B, eosin Y, phloxine, fluorescein, dichlorofluorescein, erythrosin B, uranine, rose bengal and rhodamine 123. 2. The oxide semiconductor electrode of claim 1, which is a seed.
【請求項7】 酸化物半導体が3酸化2インジウムであ
り、有機色素がローダミンB、エオシンB、フロキシ
ン、エオシンY、エリスロシンB、ローズベンガル、ジ
ブロモフルオレセイン、ジクロロフルオレセイン、アミ
ノピロガロール及びウラニンの中から選ばれる少なくと
も1種である請求項1の酸化物半導体電極。
7. The oxide semiconductor is indium trioxide and the organic dye is selected from rhodamine B, eosin B, phloxine, eosin Y, erythrosin B, rose bengal, dibromofluorescein, dichlorofluorescein, aminopyrogallol and uranine. 2. The oxide semiconductor electrode according to claim 1, which is at least one of the following.
【請求項8】 請求項1〜6のいずれかの酸化物半導体
電極とその対極とそれらの電極に接触するレドックス電
解質とから構成される太陽電池。
8. A solar cell comprising: the oxide semiconductor electrode according to claim 1; a counter electrode thereof; and a redox electrolyte in contact with the electrode.
JP8241487A 1996-09-12 1996-09-12 Organic dye-sensitized oxide semiconductor electrode and solar cell including the same Expired - Lifetime JP2955646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8241487A JP2955646B2 (en) 1996-09-12 1996-09-12 Organic dye-sensitized oxide semiconductor electrode and solar cell including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8241487A JP2955646B2 (en) 1996-09-12 1996-09-12 Organic dye-sensitized oxide semiconductor electrode and solar cell including the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP00869299A Division JP3309131B2 (en) 1999-01-18 1999-01-18 Organic dye-sensitized niobium oxide semiconductor electrode and solar cell including the same
JP00868499A Division JP3353054B2 (en) 1999-01-18 1999-01-18 Organic dye-sensitized oxide semiconductor electrode and solar cell including the same

Publications (2)

Publication Number Publication Date
JPH1092477A true JPH1092477A (en) 1998-04-10
JP2955646B2 JP2955646B2 (en) 1999-10-04

Family

ID=17075055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8241487A Expired - Lifetime JP2955646B2 (en) 1996-09-12 1996-09-12 Organic dye-sensitized oxide semiconductor electrode and solar cell including the same

Country Status (1)

Country Link
JP (1) JP2955646B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001667A1 (en) * 2000-06-29 2002-01-03 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
JP2002280587A (en) * 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd Method for manufacturing photoelectric transfer device, photoelectric transfer device, and photoelectric cell
WO2003103085A1 (en) * 2002-06-04 2003-12-11 新日本石油株式会社 Photoelectric transducer
US7141735B2 (en) * 2000-07-27 2006-11-28 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
JP2007157999A (en) * 2005-12-05 2007-06-21 U-Tec Kk Photovoltaic element, and method of manufacturing same
WO2010016612A1 (en) 2008-08-06 2010-02-11 三菱製紙株式会社 Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP2011014543A (en) * 2010-08-24 2011-01-20 Fujifilm Corp Manufacturing method for photoelectric conversion element, photoelectric conversion element and photocell
JP2012113954A (en) * 2010-11-24 2012-06-14 Sekisui Chem Co Ltd Method for dyeing porous body
EP2924755A2 (en) 2014-03-27 2015-09-30 Ricoh Company, Ltd. Perovskite solar cell
WO2017130820A1 (en) 2016-01-25 2017-08-03 株式会社リコー Photoelectric conversion element
WO2018105431A1 (en) 2016-12-07 2018-06-14 Ricoh Company, Ltd. Photoelectric conversion element
WO2019181176A1 (en) 2018-03-19 2019-09-26 Ricoh Company, Ltd. Photoelectric conversion device, process cartridge, and image forming apparatus
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
WO2021010425A1 (en) 2019-07-16 2021-01-21 Ricoh Company, Ltd. Solar cell module, electronic device, and power supply module
WO2021059712A1 (en) 2019-09-26 2021-04-01 Ricoh Company, Ltd. Electronic device and method for producing the same, image forming method, and image forming apparatus
EP3839994A1 (en) 2019-11-28 2021-06-23 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
WO2021149461A1 (en) 2020-01-20 2021-07-29 Ricoh Company, Ltd. Electronic device and method for producing the same, image forming method, and image forming apparatus
EP3872881A1 (en) 2020-02-27 2021-09-01 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
EP3872861A1 (en) 2020-02-27 2021-09-01 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
EP3975278A1 (en) 2014-04-16 2022-03-30 Ricoh Company, Ltd. Photoelectric conversion element
EP4060700A1 (en) 2021-03-19 2022-09-21 Ricoh Company, Ltd. Photoelectric conversion element, electronic device, and power supply module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4092704A1 (en) 2021-05-20 2022-11-23 Ricoh Company, Ltd. Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device
EP4125105A1 (en) 2021-07-29 2023-02-01 Ricoh Company, Ltd. Title of the invention photoelectric conversion element, photoelectric conversion module, and electronic device
WO2023008085A1 (en) 2021-07-29 2023-02-02 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
EP4161234A1 (en) 2021-09-30 2023-04-05 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, and electronic device
EP4174888A1 (en) 2021-10-29 2023-05-03 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion element module
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
WO2023175466A1 (en) 2022-03-18 2023-09-21 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and solar cell module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120118375A1 (en) 2009-04-30 2012-05-17 Bridgestone Corporation Semiconductor electrode, solar cell in which semiconductor electrode is used and semiconductor electrode manufacturing method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822159B2 (en) 2000-06-29 2004-11-23 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
WO2002001667A1 (en) * 2000-06-29 2002-01-03 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
EP1296403A1 (en) * 2000-06-29 2003-03-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
EP1296403A4 (en) * 2000-06-29 2006-12-13 Nippon Kayaku Kk Dye-sensitized photoelectric transducer
JPWO2002001667A1 (en) * 2000-06-29 2004-01-08 日本化薬株式会社 Dye-sensitized photoelectric conversion element
JP5054269B2 (en) * 2000-07-27 2012-10-24 日本化薬株式会社 Dye-sensitized photoelectric conversion element
US7141735B2 (en) * 2000-07-27 2006-11-28 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
JP2002280587A (en) * 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd Method for manufacturing photoelectric transfer device, photoelectric transfer device, and photoelectric cell
WO2003103085A1 (en) * 2002-06-04 2003-12-11 新日本石油株式会社 Photoelectric transducer
JP2007157999A (en) * 2005-12-05 2007-06-21 U-Tec Kk Photovoltaic element, and method of manufacturing same
WO2010016612A1 (en) 2008-08-06 2010-02-11 三菱製紙株式会社 Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
US8383831B2 (en) 2008-08-06 2013-02-26 Mitsubishi Paper Mills Limited Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP2011014543A (en) * 2010-08-24 2011-01-20 Fujifilm Corp Manufacturing method for photoelectric conversion element, photoelectric conversion element and photocell
JP2012113954A (en) * 2010-11-24 2012-06-14 Sekisui Chem Co Ltd Method for dyeing porous body
EP2924755A2 (en) 2014-03-27 2015-09-30 Ricoh Company, Ltd. Perovskite solar cell
EP3657560A1 (en) 2014-03-27 2020-05-27 Ricoh Company, Ltd. Perovskite solar cell
EP3975278A1 (en) 2014-04-16 2022-03-30 Ricoh Company, Ltd. Photoelectric conversion element
WO2017130820A1 (en) 2016-01-25 2017-08-03 株式会社リコー Photoelectric conversion element
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
WO2018105431A1 (en) 2016-12-07 2018-06-14 Ricoh Company, Ltd. Photoelectric conversion element
WO2019181176A1 (en) 2018-03-19 2019-09-26 Ricoh Company, Ltd. Photoelectric conversion device, process cartridge, and image forming apparatus
WO2021010425A1 (en) 2019-07-16 2021-01-21 Ricoh Company, Ltd. Solar cell module, electronic device, and power supply module
WO2021059712A1 (en) 2019-09-26 2021-04-01 Ricoh Company, Ltd. Electronic device and method for producing the same, image forming method, and image forming apparatus
EP3839994A1 (en) 2019-11-28 2021-06-23 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
WO2021149461A1 (en) 2020-01-20 2021-07-29 Ricoh Company, Ltd. Electronic device and method for producing the same, image forming method, and image forming apparatus
EP3872881A1 (en) 2020-02-27 2021-09-01 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
EP3872861A1 (en) 2020-02-27 2021-09-01 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
EP4060700A1 (en) 2021-03-19 2022-09-21 Ricoh Company, Ltd. Photoelectric conversion element, electronic device, and power supply module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4092704A1 (en) 2021-05-20 2022-11-23 Ricoh Company, Ltd. Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device
EP4125105A1 (en) 2021-07-29 2023-02-01 Ricoh Company, Ltd. Title of the invention photoelectric conversion element, photoelectric conversion module, and electronic device
WO2023008085A1 (en) 2021-07-29 2023-02-02 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
EP4161234A1 (en) 2021-09-30 2023-04-05 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, and electronic device
EP4174888A1 (en) 2021-10-29 2023-05-03 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion element module
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
WO2023175466A1 (en) 2022-03-18 2023-09-21 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and solar cell module

Also Published As

Publication number Publication date
JP2955646B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
JP2955646B2 (en) Organic dye-sensitized oxide semiconductor electrode and solar cell including the same
JP3353054B2 (en) Organic dye-sensitized oxide semiconductor electrode and solar cell including the same
JP3309131B2 (en) Organic dye-sensitized niobium oxide semiconductor electrode and solar cell including the same
JP2955647B2 (en) Organic dye-sensitized oxide semiconductor electrode and solar cell including the same
EP0975026B1 (en) Metal complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
Erbs et al. Visible-light-induced oxygen generation from aqueous dispersions of tungsten (VI) oxide
Kogo et al. Photoelectrochemical analysis of size-dependent electronic structures of gold clusters supported on TiO 2
Hore et al. Acid versus base peptization of mesoporous nanocrystalline TiO 2 films: functional studies in dye sensitized solar cells
US6639073B2 (en) Ruthenium complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
JP4887664B2 (en) Method for producing porous structure and method for producing photoelectric conversion element
JP3945038B2 (en) Dye-sensitized solar cell
JP2002075477A (en) Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
JPH11339866A (en) Photoelectric conversion element and pigment sensitizing solar battery
JP2003168493A (en) Dye sensitizing solar cell
JP4406985B2 (en) Oxide semiconductor dye-coupled electrode and dye-sensitized solar cell
Oekermann et al. Electrochemical Self-Assembly of ZnO/SO 3EtPTCDI Hybrid Photoelectrodes
JPH10290018A (en) Semiconductor for photoelectric conversion material and chemical cell using thereof
JP2002075476A (en) Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
JP4129103B2 (en) Dye-coupled electrode for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP2000036331A (en) Metal oxide, semiconductor, electrode for photoelectric conversion material, and solar battery
JP4725701B2 (en) Method for forming porous thin film
JP2002100419A (en) Photoelectric transfer element
JP2002298646A (en) Semiconductor particulate paste, semiconductor membrane and its manufacturing method and photoelectric conversion element
JPH09237641A (en) Porous electrode and solar cell using same
JPH11102734A (en) Semiconductor of photoelectric conversion material, its manufacture and solar cell

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term