JPH1088315A - Stainless steel member excellent in ozone-containing superpure water resistance and its production - Google Patents

Stainless steel member excellent in ozone-containing superpure water resistance and its production

Info

Publication number
JPH1088315A
JPH1088315A JP24587796A JP24587796A JPH1088315A JP H1088315 A JPH1088315 A JP H1088315A JP 24587796 A JP24587796 A JP 24587796A JP 24587796 A JP24587796 A JP 24587796A JP H1088315 A JPH1088315 A JP H1088315A
Authority
JP
Japan
Prior art keywords
ozone
stainless steel
ultrapure water
contg
steel member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24587796A
Other languages
Japanese (ja)
Inventor
Kiyoko Takeda
貴代子 竹田
Shigeki Azuma
茂樹 東
Kyoji Matsuda
恭司 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24587796A priority Critical patent/JPH1088315A/en
Publication of JPH1088315A publication Critical patent/JPH1088315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a stainless steel member excellent in a resistance to ozone- contg. superpure water by smoothening the surface of a stainless steel member having a specified compsn. and thereafter forming oxidized coating composed of Fe2 O3 on the surface. SOLUTION: As the stock for piping, device members or the like for ozone- contg. superpure water used in a semiconductor producing process or the like, a ferritic or austenitic stainless steel contg. >=12% Cr and excellent in strength and workability is used. The surface to be brougt into contact with ozone-contg. superpure water is subjected to mechanical polishing, is furthermore subjected to electrolytic polishing and is smoothend into <=3μm surface roughness. Next, heating is executed at 350 to 550 deg.C in an atmosphere contg. >=1vol.% oxygen to form oxidized coating by Fe2 O3 on the surface to a thickness of 5 to 50nm. The stainless steel as the member for a clean room using superpure water contg. ozone excellent in corrosion resistance to ozone-contg. superpure water can easily be produced at a low cost without eluting the ions of Cr and Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造プロセ
スなどで使用されるオゾン含有超純水に対する耐食性
(以下、耐オゾン含有超純水性という)に優れたステン
レス鋼部材及びその製造方法に関する。
The present invention relates to a stainless steel member excellent in corrosion resistance to ozone-containing ultrapure water used in a semiconductor manufacturing process or the like (hereinafter referred to as ozone-containing ultrapure water) and a method for producing the same.

【0002】[0002]

【従来の技術】半導体の製造分野においては、近年、高
集積化が進み、例えば超LSIと称されるデバイスで
は、1μm以下の微細パターンの加工が必要とされてい
る。
2. Description of the Related Art In the field of manufacturing semiconductors, in recent years, high integration has progressed, and for example, in a device called a super LSI, processing of a fine pattern of 1 μm or less is required.

【0003】このような超LSI製造プロセスでは、微
小な塵や微量不純物ガスが配線パターンに付着したり吸
着されて、回線不良の原因となる恐れがある。そのた
め、超LSIの製造は、いわゆる「クリーンルーム」内
で実施されている。
In such an VLSI manufacturing process, fine dust and trace impurity gas may adhere to or be adsorbed on the wiring pattern, causing a line failure. Therefore, the manufacture of the VLSI is performed in a so-called “clean room”.

【0004】クリーンルームの清浄度を確保するために
は、そこで使用されるガス及び水はいずれも高純度でな
ければならない。このため、微粒子並びに不純物成分の
少ない高純度ガス及び超純水が必要とされる。そして、
これらの高純度ガス及び超純水を供給するための配管、
配管部材、及び超LSI製造装置の部材に対しては、配
管内面や部材内部からの微粒子及び不純物成分の放出が
極力少ないことが必要とされる。
[0004] In order to ensure the cleanliness of a clean room, both the gas and water used therein must be of high purity. For this reason, high-purity gas and ultrapure water with few fine particles and impurity components are required. And
Piping to supply these high-purity gas and ultrapure water,
With respect to the piping member and the member of the VLSI manufacturing apparatus, it is necessary that the emission of fine particles and impurity components from the inner surface of the piping and the inside of the member is as small as possible.

【0005】更に、半導体の製造以外の分野でも、医薬
品製造、医療施設、微生物工業などの分野のクリーンル
ームにおいて、上記と同様に高純度ガスや超純水を汚染
することのない配管及び部材の開発が望まれている。
Further, in fields other than the semiconductor manufacturing field, development of pipes and members that do not contaminate high-purity gas or ultrapure water in clean rooms in fields such as pharmaceutical manufacturing, medical facilities, and microbial industry as described above. Is desired.

【0006】半導体の製造分野において、例えば、シリ
コンウェハーの洗浄などは、界面活性剤や酸、アルカリ
成分を含有する超純水を用いてクリーンルーム内で実施
されている。しかしながら、上記の洗浄水は金属成分の
除去には有効であるが、有機物、その中でも特に薬品に
対して比較的安定である「脂肪分」に対しては、洗浄効
果が低い。更に、上記の洗浄水に含まれる界面活性剤や
酸、アルカリ成分は、それ自体が同時に不純物となる。
そのため、シリコンウェハーに残留した界面活性剤や、
酸、アルカリ成分を除去するために、一層高純度の超純
水で「すすぎ」を行う必要がある。
In the field of manufacturing semiconductors, for example, cleaning of silicon wafers is performed in a clean room using ultrapure water containing a surfactant, an acid and an alkali component. However, the above-mentioned washing water is effective in removing metal components, but has a low washing effect on organic substances, particularly, on “fats” which are relatively stable to chemicals. Further, the surfactant, acid, and alkali component contained in the above-mentioned washing water itself become impurities simultaneously.
Therefore, the surfactant remaining on the silicon wafer,
In order to remove acid and alkali components, it is necessary to perform “rinsing” with ultrapure water of higher purity.

【0007】この問題を解決するため、最近、オゾン
(O3 )を含有させた超純水(以下、「オゾン含有超純
水」という)によるシリコンウェハーの洗浄が提案され
ている。オゾンは水に溶け易く、しかも強い酸化力を有
する。このため、オゾン含有超純水で洗浄すれば、金属
はこれをイオン化して除去できるし、有機物はこれを分
解して除去できる。更に、洗浄後にオゾンはシリコンウ
ェハー上に残留することがないので、オゾン含有超純水
で洗浄した後では「すすぎ」を行う必要がない。
In order to solve this problem, cleaning of a silicon wafer with ultrapure water containing ozone (O 3 ) (hereinafter referred to as “ozone-containing ultrapure water”) has recently been proposed. Ozone is easily soluble in water and has a strong oxidizing power. Therefore, by washing with ozone-containing ultrapure water, metals can be ionized and removed, and organic substances can be decomposed and removed. Furthermore, since ozone does not remain on the silicon wafer after cleaning, it is not necessary to perform “rinsing” after cleaning with ozone-containing ultrapure water.

【0008】このようにオゾン含有超純水はシリコンウ
ェハーの洗浄に極めて有効である。しかし、その一方
で、オゾン含有超純水を供給する配管や、オゾン含有超
純水が供給される装置部材からの超純水の汚染が問題と
なる。通常、配管や装置部材(以下、これらを併せて単
に「部材」ということもある)にはステンレス鋼材が用
いられている。しかし、これらステンレス鋼材にオゾン
含有超純水が接すると、金属イオン(特に、Fe、C
r、Niなどのイオン)が溶出するため、オゾン含有超
純水の純度が著しく低下してしまう。そのため、耐オゾ
ン含有超純水性に優れた部材の開発が必要となってき
た。
[0008] As described above, ozone-containing ultrapure water is extremely effective for cleaning silicon wafers. However, on the other hand, contamination of the ultrapure water from the pipe for supplying the ozone-containing ultrapure water and the equipment member to which the ozone-containing ultrapure water is supplied becomes a problem. Usually, stainless steel materials are used for piping and equipment members (hereinafter, these may be simply referred to as “members”). However, when ultrapure water containing ozone comes in contact with these stainless steel materials, metal ions (particularly, Fe, C
r, Ni, etc.) are eluted, and the purity of the ozone-containing ultrapure water is significantly reduced. Therefore, development of a member excellent in ozone resistance and ultrapure water has been required.

【0009】従来、クリーンルーム用配管及び部材に
は、ステンレス鋼、代表的にはオーステナイト系のSU
S316L鋼が用いられてきた。これらのステンレス鋼
を高純度ガス配管として使用する場合には、塵の発生
や、不純物の中でも最も問題となる水分の配管内面にお
ける脱着や吸着を防止する必要があるし、又、超純水用
配管として使用する場合には、金属イオンの溶出を抑制
する必要がある。
Conventionally, clean room piping and members have been made of stainless steel, typically austenitic SU.
S316L steel has been used. When these stainless steels are used as high-purity gas piping, it is necessary to prevent the generation of dust and the desorption and adsorption of moisture, which is the most problematic among impurities, on the inner surface of the piping. When used as a pipe, elution of metal ions must be suppressed.

【0010】このため、ステンレス鋼部材には、高純度
ガスや超純水と接触する表面積ができるだけ少なくなる
ように、その内面の表面粗さ(Rmax)が1μm以下
になるような平滑処理が施されている。この内面平滑処
理は、通常、冷間抽伸や機械研磨したステンレス鋼部材
に、更に電解研磨を加えるものである。電解研磨によっ
て内表面を平滑化されたステンレス鋼部材には、その
後、超純水による洗浄及び高純度ガスによる乾燥が施さ
れる。しかし、上記の電解研磨は、所要の平滑化を達成
するために電解液及び電解条件を厳密に管理する必要が
ある。加えて、生産効率が低いので大きなコストアップ
要因となってしまう。
[0010] Therefore, the stainless steel member is subjected to a smoothing treatment so that the surface roughness (Rmax) of the inner surface thereof is 1 μm or less so that the surface area in contact with the high-purity gas or ultrapure water is minimized. Have been. This inner surface smoothing treatment is usually performed by further performing electrolytic polishing on a cold drawn or mechanically polished stainless steel member. The stainless steel member whose inner surface has been smoothed by the electrolytic polishing is thereafter washed with ultrapure water and dried with high-purity gas. However, in the above-mentioned electrolytic polishing, it is necessary to strictly control the electrolytic solution and the electrolytic conditions in order to achieve required smoothing. In addition, low production efficiency causes a large cost increase.

【0011】一方、内面平滑処理を施したステンレス鋼
部材であっても、その構成元素であるFe、Cr及びN
iなどの金属イオンが超純水中に溶出することがある。
そのため、以下に示すように種々の提案がなされてき
た。しかし、いずれの提案も耐オゾン含有超純水性に優
れた部材に用いるには問題を有するものである。
On the other hand, even if the stainless steel member has been subjected to an inner surface smoothing treatment, its constituent elements Fe, Cr and N
Metal ions such as i may be eluted in ultrapure water.
Therefore, various proposals have been made as described below. However, any of the proposals has a problem when used for a member excellent in ozone resistance and ultrapure water.

【0012】特開昭63−161145号公報には、S
i、Mn、Al及びOなどの含有量を規制することによ
り、非金属介在物を制御した「クリーンルーム用鋼管」
が開示されている。
Japanese Patent Application Laid-Open No. 63-161145 discloses S
"Steel pipe for clean room" in which non-metallic inclusions are controlled by regulating the contents of i, Mn, Al and O.
Is disclosed.

【0013】しかし、この公報で提案されたクリーンル
ーム用鋼管は、鋼を清浄化して非金属介在物を減少させ
たものではあるが、オゾンを含有させた超純水に対する
耐食性については考慮されていない。そのため、上記の
鋼管にオゾン含有超純水が接する(流れる)と、金属イ
オン(特に、Fe、Cr、Niなどのイオン)が溶出し
て超純水の純度が著しく低下してしまう。
[0013] However, although the steel pipe for a clean room proposed in this publication is one in which steel is cleaned to reduce nonmetallic inclusions, no consideration is given to corrosion resistance to ultrapure water containing ozone. . Therefore, when the ozone-containing ultrapure water comes into contact (flows) with the steel pipe, metal ions (particularly ions such as Fe, Cr, and Ni) are eluted and the purity of the ultrapure water is significantly reduced.

【0014】特公平4−65144号公報には、電解研
磨処理を施したステンレス鋼部材表面に膜厚75オング
ストローム以上の非晶質酸化皮膜を形成させた「半導体
製造装置用ステンレス鋼部材」が開示されている。
Japanese Patent Publication No. 4-65144 discloses a "stainless steel member for semiconductor manufacturing equipment" in which an amorphous oxide film having a film thickness of 75 Å or more is formed on the surface of a stainless steel member which has been subjected to electrolytic polishing. Have been.

【0015】しかし、この公報で開示されたステンレス
鋼部材には電解研磨処理が必須であるため、研磨処理の
困難さに伴う生産性の低下をきたし、ひいては製品のコ
ストアップを招くという問題がある。更に、オゾンを含
有させた超純水については考慮されていないため、上記
のステンレス鋼部材にオゾン含有超純水が接すると、金
属イオンが溶出して超純水の純度が著しく低下してしま
う。
However, since the stainless steel member disclosed in this publication requires an electropolishing process, there is a problem that productivity is lowered due to the difficulty of the polishing process, and the cost of the product is increased. . Furthermore, since ozone-containing ultrapure water is not considered, when ozone-containing ultrapure water comes into contact with the above stainless steel member, metal ions are eluted and the purity of the ultrapure water is significantly reduced. .

【0016】更に、本発明者のうちの一部の者は、特開
平7−62520号公報において、Siを0.5〜5.
0重量%含有するオーステナイトステンレス鋼材で、そ
の表面にSiを主体とする酸化皮膜を有する「クリーン
ルーム用ステンレス鋼部材」とその製造方法を提案し
た。しかし、この公報で提案した技術も、高純度ガスと
超純水をともに対象としたものではあったが、超純水に
オゾンを含有させることについては配慮しておらず、そ
のため上記の部材にオゾン含有超純水が接すると、金属
イオンが溶出して超純水の純度が著しく低下してしまう
ことは避けられないものであった。
Further, some of the inventors of the present invention disclosed in Japanese Patent Application Laid-Open No. 7-62520 that Si was contained at 0.5 to 5.
A "stainless steel member for a clean room" having an austenitic stainless steel material containing 0% by weight and having an oxide film mainly composed of Si on its surface, and a method of manufacturing the same have been proposed. However, although the technology proposed in this publication also targets both high-purity gas and ultrapure water, it does not take into account the inclusion of ozone in ultrapure water. When the ozone-containing ultrapure water comes into contact, it is inevitable that metal ions are eluted and the purity of the ultrapure water is significantly reduced.

【0017】クリーンテクノロジーの1992年10月
号の57ページには、SUS316L部材の表面を電解
研磨した後に熱処理し、更に酸エッチング処理すること
により表面にCrリッチな不働態酸化皮膜を形成させる
技術が提案されている。ここでは、上記の皮膜処理を施
したSUS316Lの部材をオゾン含有超純水中に浸漬
しても、その表面粗さに変化が生じないことが示されて
いる。しかし、オゾン含有超純水に接する部材において
は、表面粗さが変化しないことよりも、むしろ部材から
金属イオンが溶出しないことが重要となる。ところが、
上記の皮膜処理を施したSUS316Lの部材がオゾン
含有超純水に接した場合には、金属イオンの溶出量が多
い。このため、オゾン含有超純水に対する抵抗性は低い
と言わざるを得ない。更に、電解研磨が必須であるた
め、前記したように、研磨処理の困難さに伴う生産性の
低下をきたし、ひいては製品のコストアップを招くとい
う問題がある。
On page 57 of the October 1992 issue of Clean Technology, there is described a technology for forming a Cr-rich passive oxide film on the surface of a SUS316L member by subjecting the surface to electrolytic polishing, heat treatment, and acid etching. Proposed. Here, it is shown that the surface roughness does not change even when the SUS316L member subjected to the above-mentioned film treatment is immersed in ozone-containing ultrapure water. However, in a member in contact with the ozone-containing ultrapure water, it is more important that metal ions do not elute from the member, rather than the surface roughness does not change. However,
When the SUS316L member that has been subjected to the above film treatment comes into contact with the ozone-containing ultrapure water, the amount of metal ions eluted is large. For this reason, it must be said that the resistance to ozone-containing ultrapure water is low. Further, since the electropolishing is essential, as described above, there is a problem that the productivity is reduced due to the difficulty of the polishing treatment, and the cost of the product is increased.

【0018】特開昭64−31956号公報には、電解
研磨したステンレス鋼部材を酸素含有量25容量%以上
の雰囲気中において、280〜580℃で加熱酸化処理
することにより、部材表面に酸化皮膜を形成させる「半
導体製造装置用ステンレス鋼部材」とその製造方法が開
示されている。
Japanese Patent Application Laid-Open No. Sho 64-31956 discloses that an electrolytically polished stainless steel member is heated and oxidized at 280 to 580 ° C. in an atmosphere having an oxygen content of 25% by volume or more, so that an oxide film is formed on the surface of the member. A "stainless steel member for a semiconductor manufacturing apparatus" for forming a semiconductor device and a method for manufacturing the same are disclosed.

【0019】しかし、この公報で提案された技術の場
合、電解研磨処理が必須であるため研磨処理の困難さが
伴って生産性が低下してしまうし、大気中の酸素濃度よ
りも高い25容量%以上の酸素含有量の酸化処理雰囲気
を必要とするため、酸素濃度をコントロールすることも
必要となる。このため、上記の公報で提案された技術の
場合には製品のコストが嵩んでしまう。更に、超純水に
オゾンを含有させるということについては考慮されてい
ない技術である。したがって、特に、加熱酸化処理温度
が高い場合には、予め調整しておいた表面の平滑性が劣
化するとともに生成する酸化皮膜には微細な欠陥が多く
なるため、上記の部材にオゾン含有超純水が接すると、
金属イオンが溶出して、超純水の純度が低下してしまう
こともあった。
However, in the case of the technique proposed in this publication, the electropolishing treatment is indispensable, so that the polishing treatment becomes difficult, thereby lowering the productivity. Since an oxidizing atmosphere having an oxygen content of at least% is required, it is necessary to control the oxygen concentration. For this reason, in the case of the technology proposed in the above publication, the cost of the product increases. Furthermore, the technique does not consider the inclusion of ozone in ultrapure water. Therefore, in particular, when the temperature of the heat oxidation treatment is high, the previously prepared surface smoothness is deteriorated and the generated oxide film has many fine defects. When water comes in contact,
In some cases, metal ions were eluted and the purity of ultrapure water was reduced.

【0020】特開平1−198463号公報には、電解
研磨したステンレス鋼部材の表面に形成された酸化皮膜
における外層部のNiの原子数の比率が2%以下である
とともに、内層部のCr原子数の比率が30%以上を占
め、且つ前記酸化皮膜の厚さが100〜500オングス
トロームである「半導体製造装置用ステンレス鋼部材」
とその製造法が開示されている。
JP-A-1-198463 discloses that the ratio of the number of Ni atoms in the outer layer portion of the oxide film formed on the surface of the electrolytically polished stainless steel member is 2% or less, and that the Cr atoms in the inner layer portion are not more than 2%. "Stainless steel member for semiconductor manufacturing equipment" wherein the ratio of the number occupies 30% or more and the thickness of the oxide film is 100 to 500 angstroms.
And a method for producing the same.

【0021】しかし、この公報で提案された技術の場合
にも電解研磨処理が必須であり、研磨処理の困難さは生
産性の低下をもたらす。更に、水分の露点温度が−10
℃以下の酸化性ガス雰囲気での加熱処理によって前記の
酸化被膜を形成させる必要があるため、露点のコントロ
ールを行わなければならない。このため、上記の公報で
提案された技術の場合にも製品のコストが嵩んでしま
う。更に、オゾンを含有させた超純水に対しては配慮が
なされていない技術である。このため、特に露点温度が
低い場合には酸化皮膜中のFe23の割合が低くなるた
め、上記の部材にオゾン含有超純水が接すると、金属イ
オンが溶出して、超純水の純度が低下してしまうことも
あった。
However, even in the case of the technique proposed in this publication, electrolytic polishing is indispensable, and the difficulty of the polishing causes a decrease in productivity. Furthermore, the dew point temperature of water is -10
Since it is necessary to form the oxide film by a heat treatment in an oxidizing gas atmosphere at a temperature of not more than ℃, the dew point must be controlled. For this reason, the cost of the product also increases in the case of the technique proposed in the above-mentioned publication. Furthermore, this technology does not take into consideration ultrapure water containing ozone. For this reason, especially when the dew point temperature is low, the proportion of Fe 2 O 3 in the oxide film becomes low. When the above-mentioned members are brought into contact with the ozone-containing ultrapure water, metal ions elute and the ultrapure water In some cases, the purity was reduced.

【0022】一方、これまで超純水用配管材料として
は、ポリ塩化ビニール(PVC)、ポリエーテルエーテ
ルケトン(PEEK)、ポリテトラフルオロエチレン
(PTFE)などの有機樹脂製品も使われてきた。しか
し、超純水にオゾンを含有させた場合には、こうした有
機樹脂製品はオゾンによって分解されるため、オゾン含
有超純水用配管材料としては使用に耐えないものであっ
た。
On the other hand, organic resin products such as polyvinyl chloride (PVC), polyetheretherketone (PEEK), and polytetrafluoroethylene (PTFE) have been used as ultrapure water piping materials. However, when ozone is contained in ultrapure water, such an organic resin product is decomposed by ozone, and thus cannot be used as a piping material for ozone-containing ultrapure water.

【0023】[0023]

【発明が解決しようとする課題】ステンレス鋼は、半導
体製造プロセスなどで使用される超純水用の配管及び装
置部材の素材として強度と加工性に優れているものの、
オゾンを含有させた超純水に対する耐食性(耐オゾン含
有超純水性)に欠ける。本発明は、従来の問題点に鑑
み、オゾン含有超純水に接しても金属イオンを溶出する
ことが抑制された、つまり耐オゾン含有超純水性に優れ
たステンレス鋼部材とその廉価な製造方法を提供するこ
とを目的としている。
Although stainless steel has excellent strength and workability as a material for piping and equipment members for ultrapure water used in semiconductor manufacturing processes and the like,
Lack of corrosion resistance to ozone-containing ultrapure water (resistance to ozone-containing ultrapure water). In view of the conventional problems, the present invention suppresses elution of metal ions even when in contact with ozone-containing ultrapure water, that is, a stainless steel member having excellent ozone-containing ultrapure water resistance and its inexpensive production. It is intended to provide a way.

【0024】[0024]

【課題を解決するための手段】本発明は、下記(1)の
耐オゾン含有超純水性に優れたステンレス鋼部材及び
(2)のその製造法を要旨とする。
The gist of the present invention is as follows (1) a stainless steel member excellent in ozone resistance and ultrapure water containing ozone, and (2) a method for producing the same.

【0025】(1)Crを12重量%以上含有するステ
ンレス鋼部材であって、表面の最大粗さが3μm未満
で、且つその表面に厚さ5〜50nmのFe23からな
る酸化皮膜を有することを特徴とする耐オゾン含有超純
水性に優れたステンレス鋼部材。
(1) A stainless steel member containing at least 12% by weight of Cr and having an oxide film made of Fe 2 O 3 having a maximum surface roughness of less than 3 μm and a thickness of 5 to 50 nm. A stainless steel member excellent in ozone resistance and ultrapure water containing, characterized by having.

【0026】(2)Crを12重量%以上含有するステ
ンレス鋼部材を、予め表面の最大粗さが3μm未満とな
るように処理した後、酸素を1容積%以上含む雰囲気中
で、350〜550℃で加熱処理することを特徴とする
耐オゾン含有超純水性に優れたステンレス鋼部材の製造
方法。
(2) A stainless steel member containing 12% by weight or more of Cr is preliminarily treated so that the maximum roughness of the surface is less than 3 μm, and is then subjected to 350 to 550 in an atmosphere containing 1% by volume or more of oxygen. A method for producing a stainless steel member excellent in ozone resistance and ultrapure water, characterized by heat treatment at a temperature of ° C.

【0027】[0027]

【発明の実施の形態】本発明者らは、種々の化学組成を
有するステンレス鋼に、各種の条件で処理を行い、ステ
ンレス鋼の表面に酸化皮膜を生成させ、オゾンを含有さ
せた超純水に対する金属イオン溶出の挙動、すなわち耐
オゾン含有超純水性を調査した。その結果、下記〜
の知見を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors performed treatments on stainless steel having various chemical compositions under various conditions to form an oxide film on the surface of the stainless steel, and to add ultrapure water containing ozone. The behavior of metal ion elution with respect to water, that is, the resistance to ultrapure water containing ozone was investigated. As a result,
Was obtained.

【0028】合金元素としてCrを12重量%以上含
有するステンレス鋼を所望部材の基材とすればよい。
Stainless steel containing Cr as an alloying element in an amount of 12% by weight or more may be used as the base material of the desired member.

【0029】酸化皮膜を形成させる処理の前に、上記
のステンレス鋼部材の表面の最大粗さ(Rmax)が
3μm未満になるように調整しておく必要がある。
Before the process of forming an oxide film, it is necessary to adjust the surface roughness (Rmax) of the stainless steel member to be less than 3 μm.

【0030】上記のCr量を含有し、表面が上記
を満たすように調整したステンレス鋼部材に対して、酸
素を1容積%以上含む雰囲気中で、350〜550℃で
加熱処理する酸化処理を行えば、厚さ5〜50nmのF
23からなる酸化皮膜をステンレス鋼部材の表面に形
成させることができる。
The stainless steel member containing the above-mentioned Cr amount and adjusted so that the surface satisfies the above-mentioned condition is subjected to an oxidizing treatment of heating at 350 to 550 ° C. in an atmosphere containing 1% by volume or more of oxygen. For example, F with a thickness of 5 to 50 nm
An oxide film made of e 2 O 3 can be formed on the surface of the stainless steel member.

【0031】上記の処理によって生成されたFe2
3の酸化皮膜は、オゾン含有超純水に対して化学的に
安定であり、容易には反応しない。そして、この作用に
より、オゾン含有超純水に接した場合のステンレス鋼部
材からの金属イオンの溶出量は極めて少なくなる。この
ため、前記ステンレス鋼部材は、オゾンを含有させた超
純水に対する部材として優れた性能をもつに到る。
The Fe 2 produced by the above process
The oxide film of O 3 is chemically stable to ozone-containing ultrapure water and does not easily react. By this action, the amount of metal ions eluted from the stainless steel member when in contact with the ozone-containing ultrapure water is extremely reduced. Therefore, the stainless steel member has excellent performance as a member for ultrapure water containing ozone.

【0032】以下、本発明の各要件について詳しく説明
する。
Hereinafter, each requirement of the present invention will be described in detail.

【0033】(a)化学組成 本発明は、半導体製造装置用部材としての強度と加工性
を有し、優れた耐オゾン含有超純水性を有するステンレ
ス鋼部材に関する発明であり、基材としてのステンレス
鋼の化学組成としてCr含有量のみを12重量%以上に
限定する。これはCr含有量が12重量%未満のステン
レス鋼の場合には、基地の耐食性が低くなる場合がある
ためである。しかし、Crを多量に含有させると、熱間
加工性の劣化及び溶接部の靭性劣化を招くので、Cr含
有量の上限は30重量%とすることが好ましい。より好
ましいCr含有量の上限は25重量%である。
(A) Chemical Composition The present invention relates to a stainless steel member having strength and workability as a member for semiconductor manufacturing equipment and having excellent ozone-containing ultrapure water resistance. As the chemical composition of stainless steel, only the Cr content is limited to 12% by weight or more. This is because in the case of stainless steel having a Cr content of less than 12% by weight, the corrosion resistance of the matrix may be reduced. However, if a large amount of Cr is contained, deterioration of hot workability and toughness of a welded portion are caused. Therefore, the upper limit of the Cr content is preferably set to 30% by weight. A more preferable upper limit of the Cr content is 25% by weight.

【0034】(b)部材表面の最大粗さ 後述の酸化皮膜を付与する処理の前に、上記(a)の化
学組成を有するステンレス鋼部材の表面の最大粗さ(R
max)を3μm未満となるように調整しておく必要が
ある。これは、Rmaxが3μm以上では、所要部材を
製造する途中及び部材を製品として使用するまでの間
に、海塩粒子などの異物が表面に付着し易くなり、これ
らの異物が付着すると発塵(不純物として放出される微
粒子発生)の原因となるため、耐オゾン含有超純水性の
劣化をきたすからである。
(B) Maximum roughness of the surface of the member Prior to the treatment for providing an oxide film described below, the maximum roughness (R) of the surface of the stainless steel member having the chemical composition of (a) above.
max) must be adjusted to be less than 3 μm. This is because, when Rmax is 3 μm or more, foreign substances such as sea salt particles easily adhere to the surface during the production of the required member and before the member is used as a product. This is because fine particles released as impurities are caused, thereby deteriorating the ultrapure water containing ozone.

【0035】ところで、本発明の場合には部材の表面の
Rmaxは3μm未満となるように調整しておけば充分
であって、従来行われていたように電解研磨して部材表
面のRmaxを1μm以下に仕上げる必要はない。これ
は、部材が上記(a)に記した化学組成のステンレス鋼
を基材とすること、その表面に耐オゾン含有超純水性が
良好なFe23からなる酸化皮膜を有することに基づく
ものである。Rmaxを3μm未満とするためには、ホ
ーニング、ラッピングなどの機械研磨やバフ研磨を施せ
ば充分であるので、本発明によれば所要のステンレス鋼
部材を廉価に製造することができる。
In the case of the present invention, it is sufficient to adjust the Rmax of the surface of the member to less than 3 μm, and the Rmax of the surface of the member is reduced to 1 μm by electrolytic polishing as conventionally performed. There is no need to finish below. This is based on the fact that the member is made of stainless steel having the chemical composition described in the above (a) as a base material, and has an oxide film made of Fe 2 O 3 having excellent ozone-resistant ultrapure water on its surface. Things. In order to reduce Rmax to less than 3 μm, mechanical polishing such as honing and lapping or buff polishing is sufficient. Therefore, according to the present invention, required stainless steel members can be manufactured at low cost.

【0036】なお、本発明ではRmaxを3μm未満と
することができれば、その手段は問わない。又、Rma
xの下限も特に規定するものではない。しかし、電解研
磨によってRmaxを1μm以下にしても、耐オゾン含
有超純水性は飽和する傾向がある。したがって、部材製
造コスト低減の観点から、通常の機械研磨などによって
Rmaxを1超〜3μm未満に仕上げることが望まし
い。
In the present invention, any means can be used as long as Rmax can be set to less than 3 μm. Also, Rma
The lower limit of x is not particularly specified. However, even when Rmax is set to 1 μm or less by electrolytic polishing, the ozone-resistant ultrapure water tends to be saturated. Therefore, from the viewpoint of reducing member manufacturing costs, it is desirable to finish Rmax to more than 1 to less than 3 μm by ordinary mechanical polishing or the like.

【0037】(c)Fe23からなる酸化皮膜 耐オゾン含有超純水性を高めるためには、表面をRma
xで3μm未満になるように平滑化し、そこに厚さ5〜
50nmのFe23からなる酸化皮膜を生成させる必要
がある。
(C) Oxide film made of Fe 2 O 3 In order to increase the resistance to ultrapure water containing ozone, the surface should be Rma.
x to be less than 3 μm,
It is necessary to form an oxide film made of 50 nm Fe 2 O 3 .

【0038】Fe23からなる酸化皮膜の厚さが5nm
未満の場合には後述の実施例に示すように充分な耐オゾ
ン含有超純水が得られない。一方、Fe23からなる酸
化皮膜の厚さが50nmを超えると、酸化皮膜が多孔質
になるとともに表面の平滑性も劣化する場合があって、
後述の実施例に示すように、やはり充分な耐オゾン含有
超純水が得られない。
The thickness of the oxide film made of Fe 2 O 3 is 5 nm.
If the amount is less than the above range, sufficient ozone-resistant ultrapure water cannot be obtained as shown in Examples described later. On the other hand, when the thickness of the oxide film made of Fe 2 O 3 exceeds 50 nm, the oxide film becomes porous and the surface smoothness may be deteriorated.
As shown in the examples described below, sufficient ozone-resistant ultrapure water cannot be obtained.

【0039】なお、上記のFe23からなる酸化皮膜の
厚さは、耐オゾン含有超純水性の観点からは15〜50
nmとすることが望ましい。
The thickness of the oxide film made of Fe 2 O 3 is 15 to 50 from the viewpoint of resistance to ozone-containing ultrapure water.
It is desirable to set it to nm.

【0040】厚さ5〜50nmのFe23からなる酸化
皮膜の生成方法としては、次に述べる酸化法がある。
As a method of forming an oxide film made of Fe 2 O 3 having a thickness of 5 to 50 nm, there is an oxidation method described below.

【0041】すなわち、鋼中のFeを優先的に酸化させ
るために、酸素量を1容積%以上含む雰囲気中で、35
0〜550℃で加熱処理する方法である。
That is, in order to preferentially oxidize Fe in steel, 35% of oxygen is contained in an atmosphere containing 1% by volume or more of oxygen.
This is a method of performing heat treatment at 0 to 550 ° C.

【0042】加熱処理雰囲気として、酸素量を1容積%
以上とするのは、酸素量が1容積%未満の場合には、所
望の厚さ5nm以上のFe23からなる酸化皮膜の形成
が困難となるためである。なお、加熱処理雰囲気におけ
る酸素量の上限は大気中の酸素量にほぼ等しい25容積
%未満とすることが好ましい。
As the heat treatment atmosphere, the oxygen content was 1% by volume.
The reason for this is that when the oxygen content is less than 1% by volume, it is difficult to form an oxide film of Fe 2 O 3 having a desired thickness of 5 nm or more. Note that the upper limit of the amount of oxygen in the heat treatment atmosphere is preferably less than 25% by volume, which is almost equal to the amount of oxygen in the atmosphere.

【0043】加熱温度を350〜550℃とするのは次
の理由による。先ず、加熱温度が350℃未満では温度
が低いため、部材の表面に5nm以上の厚さのFe23
からなる均一な酸化皮膜が形成されず、このために耐オ
ゾン含有超純水性が低下する。次に、加熱温度が550
℃を超えると、表面の平滑性が劣化してRmaxで3μ
m以上となることに加えて、酸化皮膜に微細な欠陥が導
入されるため、耐オゾン含有超純水性の低下を招く。し
たがって、加熱温度を350〜550℃とした。なお、
加熱温度は400〜500℃とすることが望ましい。
The heating temperature is set at 350 to 550 ° C. for the following reason. First, since the temperature is low at less than the heating temperature is 350 ℃, Fe 2 O 3 having a thickness of 5nm or more on the surface of the member
Is not formed, and therefore, the ozone-resistant ultrapure water containing water decreases. Next, when the heating temperature is 550
When the temperature exceeds ℃, the smoothness of the surface is deteriorated and the Rmax is 3 μm.
m or more, and in addition, fine defects are introduced into the oxide film, resulting in a decrease in the ozone-resistant ultrapure water containing the ozone. Therefore, the heating temperature was set to 350 to 550 ° C. In addition,
The heating temperature is desirably 400 to 500 ° C.

【0044】上記処理の加熱時間は、10分〜5時間と
することが好ましい。これは、上記の加熱処理を行った
場合でも、加熱時間が10分未満の短い場合には、厚さ
5nm以上のFe23からなる均一な酸化皮膜が形成さ
れないために、所望の耐オゾン含有超純水性が得られな
い場合があるからである。一方、5時間を超える長時間
の加熱では、特に所定温度域の高温側の温度で処理した
場合に酸化皮膜表面の平滑性が劣化して耐オゾン含有超
純水性が低下する場合があることと、処理に長時間を要
して生産性の低下をきたすからである。なお、加熱時間
は30分〜3時間とすることがより望ましい。
The heating time of the above treatment is preferably 10 minutes to 5 hours. This is because even if the above-mentioned heat treatment is performed, if the heating time is shorter than 10 minutes, a uniform oxide film made of Fe 2 O 3 having a thickness of 5 nm or more is not formed, so that the desired ozone resistance This is because the contained ultrapure water may not be obtained. On the other hand, when the heating is performed for a long time exceeding 5 hours, the surface smoothness of the oxide film may be deteriorated and the ozone-containing ultrapure water resistance may be reduced particularly when the treatment is performed at a high temperature in a predetermined temperature range. This is because it takes a long time to perform the process, and the productivity is reduced. Note that the heating time is more desirably 30 minutes to 3 hours.

【0045】前記(a)項のCr量を含有するステンレ
ス鋼の鋼材は、熱間や冷間での成形加工、機械加工など
によって所定の部材形状に加工された後、(b)項で述
べた機械研磨やバフ研磨などを施されて、表面の最大粗
さが3μm未満となるように調整される。次いで、本項
で述べた酸化処理が施されて、所望の5〜50nmの厚
さのFe23からなる酸化皮膜を有する最終の部材に仕
上げられる。
The stainless steel containing the Cr content described in the above item (a) is formed into a predetermined member shape by hot or cold forming, machining, or the like, and then described in the item (b). The surface is adjusted so that the maximum roughness of the surface is less than 3 μm by mechanical polishing or buffing. Next, the oxidation treatment described in this section is performed to finish the final member having an oxide film of Fe 2 O 3 having a desired thickness of 5 to 50 nm.

【0046】[0046]

【実施例】表1に示す化学組成を有する鋼a及びbを通
常の方法により試験炉を用いて50kg真空溶解した。
EXAMPLE 50 kg of steels a and b having the chemical compositions shown in Table 1 were vacuum-melted in a conventional manner using a test furnace.

【0047】[0047]

【表1】 [Table 1]

【0048】次いで、これらのステンレス鋼を通常の方
法によって鋼片とした後に、通常の方法により熱間鍛
造、熱間圧延及び冷間圧延を行って厚さ2mmの板材と
した。この後、更にフェライト系ステンレス鋼である鋼
aについては870℃で15分保持後水冷の熱処理を施
し、又、オーステナイト系ステンレス鋼である鋼bにつ
いては、1100℃で30分保持後水冷の固溶化熱処理
を施した。
Next, these stainless steels were made into billets by a usual method, and then subjected to hot forging, hot rolling and cold rolling by a usual method to obtain a sheet material having a thickness of 2 mm. Thereafter, the steel a, which is a ferritic stainless steel, is kept at 870 ° C. for 15 minutes and then subjected to a water-cooling heat treatment, and the steel b, which is an austenitic stainless steel, is kept at 1100 ° C. for 30 minutes and then cooled with water. A solution heat treatment was performed.

【0049】こうして得られた各熱処理後の板材から、
機械加工により50mm×50mm×1mmの板材を採
取した。次いで、鋼aを母材とする板材を、全面バフ
研磨、電解研磨、湿式ペーパー研磨し、表面粗さを
Rmaxでそれぞれ1.6μm、0.8μm、
3.5μmに仕上げて板状試験片を準備した。又、鋼b
を母材とする板材は、全面をバフ研磨して表面粗さをR
maxで1.6μmに仕上げて板状試験片を準備した。
From the thus obtained heat-treated sheet material,
A plate of 50 mm × 50 mm × 1 mm was sampled by machining. Next, the plate material whose base material is steel a is buff-polished, electrolytic-polished, and wet-paper-polished, and the surface roughness is 1.6 μm and 0.8 μm, respectively, with Rmax.
A plate-shaped test piece was prepared by finishing to 3.5 μm. And steel b
Is used as a base material, the entire surface is buffed to reduce the surface roughness to R.
A plate-shaped test piece was prepared by finishing to 1.6 μm with max.

【0050】上記のようにして得た板状試験片に酸化処
理を施し、次いで、超純水で洗浄した後、99.999
容積%のアルゴンガスにより乾燥させてから試験に供し
た。表2に、酸化処理条件を示す。
The plate-shaped test piece obtained as described above was subjected to an oxidation treatment, and then washed with ultrapure water.
After drying with a volume% of argon gas, it was used for the test. Table 2 shows the oxidation treatment conditions.

【0051】[0051]

【表2】 [Table 2]

【0052】なお、酸化処理後の材料には、いずれもそ
の表面にFe23からなる酸化皮膜が形成されているこ
とをレーザーラマン分光法で確認した。更に、2次イオ
ン質量分析を行い、Fe23からなる酸化皮膜の厚さを
算出した。
It was confirmed by laser Raman spectroscopy that an oxide film made of Fe 2 O 3 was formed on the surface of each of the oxidized materials. Further, secondary ion mass spectrometry was performed to calculate the thickness of the oxide film made of Fe 2 O 3 .

【0053】表3に、上記したFe23からなる酸化皮
膜の厚さを示す。なお、表3における酸化条件A〜L
は、表2に記載した酸化処理条件A〜Lを指す。
Table 3 shows the thickness of the oxide film made of Fe 2 O 3 described above. The oxidation conditions A to L in Table 3 were used.
Indicates the oxidation treatment conditions A to L described in Table 2.

【0054】[0054]

【表3】 [Table 3]

【0055】耐オゾン含有超純水性は以下の方法で評価
した。
The ozone-resistant ultrapure water content was evaluated by the following method.

【0056】すなわち、前記した50mm×50mm×
1mmの酸化処理後に洗浄・乾燥した各材料を、抵抗率
(比抵抗)17MΩ・cmでオゾン濃度10mg/リッ
トルの液温が25℃で液量が50ミリリットルの超純水
中に7日間浸漬した。この後、オゾン含有超純水中に溶
出した金属イオン量(Feイオン、Crイオン、Niイ
オンの総和)を誘導結合プラズマイオン化質量分析法に
より定量し、端面も含んだ試験片の見かけの表面積当た
りの値に換算し、耐オゾン含有超純水性を評価した。
That is, 50 mm × 50 mm ×
Each material washed and dried after the oxidation treatment of 1 mm was immersed in ultrapure water having a resistivity (specific resistance) of 17 MΩ · cm, an ozone concentration of 10 mg / liter, a liquid temperature of 25 ° C. and a liquid volume of 50 ml for 7 days. . Thereafter, the amount of metal ions (total of Fe ions, Cr ions, and Ni ions) eluted into the ozone-containing ultrapure water was quantified by inductively coupled plasma ionization mass spectrometry, and the per surface area of the test piece including the end face was determined. And the ozone resistance-containing ultrapure water was evaluated.

【0057】表3に、耐オゾン含有超純水性の評価結果
を併せて示す。なお、表3における耐オゾン含有超純水
性は、上記のオゾン含有超純水中に溶出した金属量が
0.5mg/m2未満である場合を「○」、0.5mg
/m2以上である場合を「×」として示した。
Table 3 also shows the evaluation results of the ozone-resistant ultrapure water containing ozone. In addition, the ozone-resistant ultrapure water resistant in Table 3 indicates that when the amount of metal eluted in the ozone-containing ultrapure water is less than 0.5 mg / m 2 ,
/ M 2 or more is indicated as “×”.

【0058】表3から、本発明で規定した条件を満足す
る場合には、耐オゾン含有超純水性が優れていることが
明らかである。
From Table 3, it is clear that when the conditions defined in the present invention are satisfied, the ozone-resistant ultrapure water containing water is excellent.

【0059】[0059]

【発明の効果】本発明のステンレス鋼部材は、耐オゾン
含有超純水性に優れているので、オゾンを添加した超純
水が使用されるクリーンルーム用部材などとして極めて
好適である。このステンレス鋼部材は、本発明方法によ
って、比較的容易且つ廉価に製造することができる。
The stainless steel member of the present invention has excellent resistance to ozone-containing ultrapure water, and is therefore extremely suitable as a member for a clean room in which ultrapure water to which ozone is added is used. This stainless steel member can be manufactured relatively easily and inexpensively by the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Crを12重量%以上含有するステンレス
鋼部材であって、表面の最大粗さが3μm未満で、且つ
その表面に厚さ5〜50nmのFe23からなる酸化皮
膜を有することを特徴とする耐オゾン含有超純水性に優
れたステンレス鋼部材。
1. A stainless steel member containing at least 12% by weight of Cr and having an oxide film made of Fe 2 O 3 having a maximum surface roughness of less than 3 μm and a thickness of 5 to 50 nm. A stainless steel member excellent in ozone resistance and ultrapure water resistance.
【請求項2】Crを12重量%以上含有するステンレス
鋼部材を、予め表面の最大粗さが3μm未満となるよう
に処理した後、酸素を1容積%以上含む雰囲気中で、3
50〜550℃で加熱処理することを特徴とする耐オゾ
ン含有超純水性に優れたステンレス鋼部材の製造方法。
2. A stainless steel member containing at least 12% by weight of Cr is preliminarily treated so that the maximum roughness of the surface is less than 3 μm, and then treated in an atmosphere containing at least 1% by volume of oxygen.
A method for producing a stainless steel member excellent in ozone resistance and ultrapure water containing water, characterized by performing a heat treatment at 50 to 550 ° C.
JP24587796A 1996-09-18 1996-09-18 Stainless steel member excellent in ozone-containing superpure water resistance and its production Pending JPH1088315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24587796A JPH1088315A (en) 1996-09-18 1996-09-18 Stainless steel member excellent in ozone-containing superpure water resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24587796A JPH1088315A (en) 1996-09-18 1996-09-18 Stainless steel member excellent in ozone-containing superpure water resistance and its production

Publications (1)

Publication Number Publication Date
JPH1088315A true JPH1088315A (en) 1998-04-07

Family

ID=17140139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24587796A Pending JPH1088315A (en) 1996-09-18 1996-09-18 Stainless steel member excellent in ozone-containing superpure water resistance and its production

Country Status (1)

Country Link
JP (1) JPH1088315A (en)

Similar Documents

Publication Publication Date Title
Ohmi et al. Formation of chromium oxide on 316L austenitic stainless steel
KR100227571B1 (en) Stainless steel for ozone added water and manufacturing method thereof
US6612898B1 (en) Method for forming oxidation-passive layer, fluid-contacting part, and fluid feed/discharge system
JP3433452B2 (en) Internal oxidation treatment method for ferritic stainless steel pipe
JP2517727B2 (en) Method for manufacturing stainless steel member for semiconductor manufacturing equipment
JP3596234B2 (en) Ozone-containing stainless steel for water and method for producing the same
US5456768A (en) Surface treatment of stainless steel component for semiconductor manufacturing apparatus
JPH1088315A (en) Stainless steel member excellent in ozone-containing superpure water resistance and its production
JPS63169391A (en) Metal member for semiconductor producing device
JP3257492B2 (en) Method for producing stainless steel with excellent resistance to ozone-containing water
JPH10280123A (en) Stainless steel member for ozone-containing ultrapure water and its production
JP3864585B2 (en) Method of oxidizing the inner surface of stainless steel pipe
JPH0971812A (en) Dry corrosion resistance heat treatment of stainless steel and stainless steel
JP2720716B2 (en) Austenitic stainless steel for high-purity gas with excellent corrosion resistance and method for producing the same
JPH0533156A (en) Surface treatment of stainless steel member
JPH0770730A (en) Pitting corrosion resistant stainless steel
JPH0762520A (en) Stainless steel member for clean room and its production
JPH093655A (en) Production of stainless steel member excellent in corrosion resistance
JPH0533116A (en) Surface treatment of stainless steel member
JPH07268669A (en) Surface treatment of stainless steel
JPH07185939A (en) Method for electrolytic polishing of member made of alloy steel
JPH1088259A (en) Titanium alloy excellent in ozone-containing pure water resistance, titanium alloy member and production of titanium alloy member
JPH07126828A (en) Production of high corrosion resistant austenitic stainless steel member for semiconductor producing device
JP2001140044A (en) Low dust generation and high corrosion resistant stainless steel pipe for piping
JPH0633216A (en) Austenitic stainless steel for high purity gas excellent in corrosion resistance and its manufacture