JPH1088253A - Production of titanium-nickel alloy sintered compact - Google Patents

Production of titanium-nickel alloy sintered compact

Info

Publication number
JPH1088253A
JPH1088253A JP23766296A JP23766296A JPH1088253A JP H1088253 A JPH1088253 A JP H1088253A JP 23766296 A JP23766296 A JP 23766296A JP 23766296 A JP23766296 A JP 23766296A JP H1088253 A JPH1088253 A JP H1088253A
Authority
JP
Japan
Prior art keywords
powder
tini
sintered compact
alloy sintered
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23766296A
Other languages
Japanese (ja)
Inventor
Akihisa Furukawa
明久 古川
Hiroshi Ishikawa
洋 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP23766296A priority Critical patent/JPH1088253A/en
Publication of JPH1088253A publication Critical patent/JPH1088253A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a TiNi alloy sintered compact having high relative density by mixing Ni powder, Ti powder, and TiH2 powder, alloying the resultant powder mixture, and then carrying out sintering. SOLUTION: Ti powder (about 45μm average size), TiH2 powder (in a proportion where about 20 atomic % of Ti is expressed in terms of pure Ti content), and Ni powder (about 4μm average size), prepared by an atomizing process, are mixed so that a sintered compact having a composition consisting of about 49 atomic % Ti and about 50 atomic % Ni can be formed. The resultant mixture is alloyed in an argon gas atmosphere by a rotary ball method, pressed at about 1.5ton/cm<2> , and subjected to rapid heating at 1200 deg.C for about 2hr (in vacuum) and then to rapid cooling. By this method, the TiNi alloy sintered compact, increased in relative density and having oxygen content equal to the one prepared by means of melting and casting, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Ti−Ni系合金
焼結体の製造方法に関するもので、特に形状記憶及び超
弾性材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered Ti-Ni alloy, and more particularly to a shape memory and superelastic material.

【0002】[0002]

【従来の技術】これまでTiNi系合金製造の主流は溶
解鋳造法であった。この溶解鋳造法では、必ず溶解工程
を経ることから、製造ロット毎及び製造ロット内の組成
の均一性が悪い。実際に、TiNi系の形状記憶合金や
超弾性合金の場合に機能として変態温度の制御が特に重
要である。溶解鋳造法の場合Ni組成が0.1%は変動
するが、その場合変態温度も10℃程変動する。工業的
な観点からみた場合、前記変態温度を±2℃程度に抑る
ことが必要である。
2. Description of the Related Art Hitherto, the mainstream of production of TiNi-based alloys has been a melting casting method. In this melting casting method, since the melting step is always performed, the uniformity of the composition for each production lot and within the production lot is poor. Actually, control of the transformation temperature is particularly important as a function in the case of a TiNi-based shape memory alloy or superelastic alloy. In the case of the melt casting method, the Ni composition fluctuates by 0.1%, and in that case, the transformation temperature also fluctuates by about 10 ° C. From an industrial point of view, it is necessary to suppress the transformation temperature to about ± 2 ° C.

【0003】そこでこのような溶解鋳造法による組成制
御性の悪さを改善するために、粉末冶金法の一種である
素粉末混合法により、Ti粉末とNi粉末の混合粉末を
プレス・焼結してTiNi系形状記憶合金を製造するこ
とがいろいろ検討されている。
[0003] In order to improve the poor composition controllability by the melt casting method, a mixed powder of Ti powder and Ni powder is pressed and sintered by a powder mixing method which is a kind of powder metallurgy. Various studies have been made to produce TiNi-based shape memory alloys.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、粉末冶
金法による製造の検討は、例えばチューブのように複雑
形状の場合、現時点において成功しているケースはな
い。
However, studies on the production by powder metallurgy have not been successful at present at the time of, for example, complicated shapes such as tubes.

【0005】これまでのTiNi系合金製造の主流であ
る溶解鋳造法によってそのような複雑形状はできないこ
とから、その必要性がさらに高まってきている。しかし
ながら、実際検討をしてみると、TiNiの焼結過程に
おいて中間生成物であるTi2 NiやTiNi3 が生成
し、それらが焼結終期にも存在することとなり、TiN
i単相がうまく得られなかったり、TiとNiの相互拡
散係数の違いから、気孔も発生しやすく、相対密度が9
0%を超えるようなものは得られず、焼結体相対密度が
90%未満では、形状記憶及び超弾性にするための加工
を施すことができない。
[0005] Such a complicated shape cannot be formed by the melting and casting method, which has been the mainstream of the production of TiNi-based alloys, so that the necessity has been further increased. However, an actual examination shows that during the sintering process of TiNi, intermediate products Ti 2 Ni and TiNi 3 are generated, and they are present even at the final stage of sintering.
Due to the inability to obtain an i-single phase or the difference in the mutual diffusion coefficient between Ti and Ni, pores are likely to be generated, and the relative density is 9%.
When the relative density of the sintered body is less than 90%, a process for obtaining shape memory and superelasticity cannot be performed.

【0006】TiNi系合金は、加工を施さないと形状
記憶及び超弾性の特性が得られないことから、TiNi
系合金を粉末冶金法によって製造することは困難であっ
た。
[0006] Since TiNi-based alloys cannot obtain shape memory and superelastic properties without being processed,
It was difficult to produce a system alloy by powder metallurgy.

【0007】本発明の課題は、Ti−Ni系合金を素粉
末混合法によりTiNi系形状記憶合金を製造した場
合、相対密度が高く、酸素含有量も溶解鋳造法のものと
同等のTiNi系合金焼結体の製造方法を提供すること
である。
[0007] An object of the present invention is to provide a TiNi-based alloy having a high relative density and an oxygen content equivalent to that of a melt-casting method when a Ti-Ni-based alloy is produced by a powder mixing method. An object of the present invention is to provide a method for manufacturing a sintered body.

【0008】[0008]

【課題を解決するための手段】本発明によれば、まず、
TiNi合金を製造するに際し、素粉末を使用するので
はなく、TiNi合金粉末を使用し、またその合金粉末
を使用するだけではなく、水素化チタンを一部添加する
ことで緻密なTiNi合金焼結体が得られる。
According to the present invention, first,
When manufacturing a TiNi alloy, instead of using elementary powder, use TiNi alloy powder, and not only use the alloy powder, but also add a part of titanium hydride to dense TiNi alloy sintering. The body is obtained.

【0009】尚、アトマイズ法等によってTiNi合金
粉末を製造することが考えられるが、アトマイズ法の場
合はまず溶解鋳造法によってTiNi合金を製造しなけ
ればならないことから、ロット毎組成制御性が悪いとい
う問題がある。
[0009] It is conceivable to manufacture TiNi alloy powder by the atomizing method or the like. However, in the case of the atomizing method, the TiNi alloy must first be manufactured by the melting casting method, so that the composition controllability for each lot is poor. There's a problem.

【0010】そこで、本発明では、Ni粉末とTi粉末
及びTiH2 粉末とを混合し、その後、それら粉末を機
械的合金化法により合金化し、焼結することで組成の均
一なTiNi系合金焼結体を得ている。
Therefore, in the present invention, a Ni powder, a Ti powder and a TiH 2 powder are mixed, then the powders are alloyed by a mechanical alloying method and sintered to form a TiNi-based alloy having a uniform composition. I'm getting union.

【0011】[0011]

【発明の実施の形態】以下、本発明の第1の実施の形態
について説明する。本発明において、機械的合金化法は
回転式ボールミル法によって行い、ポットはSUS30
4製、使用ボール(直径17mm)はSUJ−2製のも
のを使用した。使用した粉末はアトマイズ法によって製
造されたTi粉末(45μm)、そしてTiH2 粉末
(Tiの20at%をTi純分で換算した割合)、さら
にNi粉末(平均4μm)であり、それらの粉末をTi
49Ni50(at%)の粉末の割合の焼結体になるよ
うに混合したそれぞれの粉末をアルゴンガス雰囲気にお
いて100rpmの回転速度で機械的合金化を300H
r行った。混合粉末の全重量とボールの全重量との全重
量比は1:50とした。このようにして得られたTi−
Ni合金粉末はアルゴンガス雰囲気で合金化したために
酸素の混入量を少量(0.1%以下)に抑制することが
できた。また、これを熱処理(700℃×30分:急熱
水冷)にて結晶化させた試料についてX線回折を行った
ところ、ほぼTiNi単相が検出された。さらに得られ
た合金粉末を焼結した。焼結の條件としては、1.5ト
ン/cm2 でプレスした後、1200℃×20時間(真
空中)で急熱急冷で行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described. In the present invention, the mechanical alloying method is performed by a rotary ball mill method, and the pot is made of SUS30.
4 and balls used (diameter 17 mm) were made of SUJ-2. The powders used were Ti powder (45 μm) produced by the atomization method, TiH 2 powder (20 at% of Ti converted to pure Ti content), and Ni powder (4 μm on average).
The respective powders mixed so as to form a sintered body having a powder ratio of 49Ni50 (at%) were subjected to mechanical alloying at a rotation speed of 100 rpm in an argon gas atmosphere at a rotational speed of 100 rpm.
r. The total weight ratio of the total weight of the mixed powder to the total weight of the balls was 1:50. The Ti- thus obtained
Since the Ni alloy powder was alloyed in an argon gas atmosphere, the mixing amount of oxygen could be suppressed to a small amount (0.1% or less). When a sample crystallized by heat treatment (700 ° C. × 30 minutes: rapid hot water cooling) was subjected to X-ray diffraction, almost a single phase of TiNi was detected. Further, the obtained alloy powder was sintered. As a condition of sintering, after pressing at 1.5 ton / cm 2 , sintering was performed by rapid heating and quenching at 1200 ° C. × 20 hours (in vacuum).

【0012】焼結体の相対密度は96%と高い値を示
し、実用に供することができると考えられる。各TiH
2 配合量での焼結体の相対密度及びMs点を以下の表1
に示す。
The relative density of the sintered body is as high as 96%, and is considered to be practical. Each TiH
Table 1 shows the relative density and Ms point of the sintered body at the two compounding amounts.
Shown in

【0013】[0013]

【表1】 [Table 1]

【0014】TiH2 配合量が10at%以上で相対密
度の著しい向上が認められ、形状記憶及び超弾性にする
ための加工を施すことができる相対密度(90%以上)
を得た。また、80at%以上の添加では逆に相対密度
の低下傾向が確認された。このことから、TiH2 配合
量が10at%以上で80at%未満の範囲において特
に著しく向上することがわかる。さらにこれらの焼結試
料について溶体化処理を施し、DSC分析において形状
記憶特性の一つである形状記憶回復温度を測定すると、
TiH2 配合量が10at%のものはMs点で−10℃
の極めてシャープなピークが存在する。
When the content of TiH 2 is 10 at% or more, a remarkable improvement in the relative density is recognized, and the relative density (90% or more) at which processing for obtaining shape memory and superelasticity can be performed.
I got On the other hand, the addition of 80 at% or more confirmed that the relative density tended to decrease. From this, it is understood that the content is particularly remarkably improved when the content of TiH 2 is 10 at% or more and less than 80 at%. Further, these sintered samples were subjected to a solution treatment, and the shape memory recovery temperature, which is one of the shape memory characteristics, was measured by DSC analysis.
When the amount of TiH 2 is 10 at%, the Ms point is −10 ° C.
There is an extremely sharp peak of

【0015】またその他にも、TiH2 配合量が50a
t%或いは80at%でも鋭いピークが存在しており、
十分実用に供することができると考えられる。各TiH
2 配合量での焼結体の不純物分析値を以下の表2に示
す。
In addition, the amount of TiH 2 is 50a
A sharp peak exists at t% or 80 at%,
It is considered that it can be put to practical use. Each TiH
Table 2 below shows the impurity analysis values of the sintered body at the two compounding amounts.

【0016】[0016]

【表2】 [Table 2]

【0017】TiH2 配合量と共に、酸素及び窒素の分
析値は高くなっている。TiH2 配合量が80at%以
上になると、酸素、窒素共に2000ppm以上の高い
値となっていることが分かる。表1において、TiH2
配合量が80at%以上の添加では焼結相対密度の低下
傾向が見られることから、TiH2 配合量が80at%
以上になると、酸素、窒素によって焼結が進まなくなる
と考えられる。
With the TiH 2 content, the analytical values of oxygen and nitrogen are higher. It can be seen that when the content of TiH 2 is 80 at% or more, both oxygen and nitrogen have high values of 2000 ppm or more. In Table 1, TiH 2
Since the amount is declining sintered relative density is observed by the addition of more than 80at%, TiH 2 amount is 80at%
When the above is reached, it is considered that sintering does not proceed due to oxygen and nitrogen.

【0018】以下、本発明の第2の実施の形態について
説明する。機械的合金化法は回転式ボールミル法によっ
て行い、ポットはSUS304製、使用ボール(直径1
7mm)はSUJ−2製のものを使用した。使用した粉
末はアトマイズ法によって製造された粒径が45μmで
あるTi粉末、さらにTiの一部(20at%)をTi
2 粉末、Ni−X、X=Cr、Fe、Co、Cu、
V、Mnからなるグループから選択された少なくとも一
種の金属で置換したNi−X合金粉末(溶解鋳造法で得
られた合金を粗粉砕及び微粉砕し、水素中で300℃で
熱処理した粒径10μのNi−X(X=1%或いは2
%)粉末)とを、それらを50:50(at%)の割合
で混合したTi−Ni−X混合粉末(Ti50Ni50
合金のNiの一部をXで置換したもの)で、アルゴンガ
ス雰囲気において100rpmの回転速度で機械的合金
化法を300Hr行った。混合粉末の全重量とボールの
全重量との全重量比は1:50とした。このようにして
得られたTi−Ni−X合金粉末は酸素の混入量を上記
した第1の実施の形態のように少量(0.1%以下)に
制御することができた。また、さらに得られた合金粉末
を1.5トン/cm2 でプレスした後、1200℃×2
0Hr(真空中)焼結した試料のそれぞれの相対密度を
以下の表3に示す。
Hereinafter, a second embodiment of the present invention will be described. The mechanical alloying method was performed by a rotary ball mill method, the pot was made of SUS304, and the balls used (diameter 1
7 mm) was manufactured by SUJ-2. The powder used was Ti powder having a particle size of 45 μm manufactured by an atomizing method, and a part (20 at%) of Ti was converted to Ti powder.
H 2 powder, Ni-X, X = Cr , Fe, Co, Cu,
Ni-X alloy powder substituted by at least one metal selected from the group consisting of V and Mn (an alloy obtained by a melt casting method is roughly pulverized and finely pulverized, and is heat-treated at 300 ° C. in hydrogen at a particle size of 10 μm). Ni-X (X = 1% or 2
%) Powder) and a 50:50 (at%) mixture thereof, Ti-Ni-X mixed powder (Ti50Ni50
The alloy was obtained by substituting a part of Ni of the alloy with X), and mechanically alloyed at a rotation speed of 100 rpm in an argon gas atmosphere for 300 hours. The total weight ratio of the total weight of the mixed powder to the total weight of the balls was 1:50. In the Ti-Ni-X alloy powder thus obtained, the amount of oxygen mixed was controlled to a small amount (0.1% or less) as in the above-described first embodiment. Further, the obtained alloy powder was pressed at 1.5 ton / cm 2 , and then 1200 ° C. × 2
The relative densities of the 0Hr (in vacuum) sintered samples are shown in Table 3 below.

【0019】[0019]

【表3】 [Table 3]

【0020】いずれの合金焼結体も相対密度が95%以
上と高い値を示すことから、Niの一部を第3元素で置
換しても充分実用に供することが分かった。
Since the relative density of each of the sintered alloys was as high as 95% or more, it was found that even if a part of Ni was replaced with the third element, it could be used sufficiently.

【0021】[0021]

【発明の効果】本発明によれば、原料としてTi、Ni
の他にTiH2 を含有することを特徴として機械的合金
化法により作製したTiNi系合金粉末をプレス及び焼
結して焼結体を製造すると実用に供することのできる相
対密度の高い、酸素含有量も溶解鋳造法のものと同等の
TiNi系合金焼結体が製造できる。
According to the present invention, Ti, Ni
In addition to containing TiH 2 , a TiNi-based alloy powder produced by a mechanical alloying method is pressed and sintered to produce a sintered body. A TiNi-based alloy sintered body having the same amount as that of the melt casting method can be produced.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 TiNi系合金焼結体の製造方法におい
て、Ni粉末とTi粉末及びTiH2 粉末とを混合し、
その後、それら粉末を機械的合金化法により合金化し、
その合金粉末を焼結することを特徴とするTiNi系合
金焼結体の製造方法。
1. A method for producing a TiNi-based alloy sintered body, comprising mixing Ni powder, Ti powder and TiH 2 powder,
Then, the powders are alloyed by a mechanical alloying method,
A method for producing a TiNi-based alloy sintered body, comprising sintering the alloy powder.
【請求項2】 請求項1記載のTiH2 粉末において、
その添加量が焼結体組成のTi成分のうちTi換算で1
0at%以上でかつ70at%以下であることを特徴と
するTiNi系合金焼結体の製造方法。
2. The TiH 2 powder according to claim 1, wherein
The amount added is 1 in Ti equivalent of the Ti component of the sintered body composition.
A method for producing a TiNi-based alloy sintered body, which is not less than 0 at% and not more than 70 at%.
【請求項3】 請求項2記載のTiNi系合金焼結体の
製造方法において、Niの一部をCr、Fe、Co、C
u、V、Mnからなる群の少なくとも1種であって2a
t%以下のものに置換したことを特徴とするTiNi系
合金焼結体の製造方法。
3. The method for producing a TiNi-based alloy sintered body according to claim 2, wherein a part of Ni is Cr, Fe, Co, C
at least one member of the group consisting of u, V and Mn,
A method for manufacturing a TiNi-based alloy sintered body, wherein the TiNi-based alloy sintered body is replaced with one having t% or less.
JP23766296A 1996-09-09 1996-09-09 Production of titanium-nickel alloy sintered compact Withdrawn JPH1088253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23766296A JPH1088253A (en) 1996-09-09 1996-09-09 Production of titanium-nickel alloy sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23766296A JPH1088253A (en) 1996-09-09 1996-09-09 Production of titanium-nickel alloy sintered compact

Publications (1)

Publication Number Publication Date
JPH1088253A true JPH1088253A (en) 1998-04-07

Family

ID=17018657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23766296A Withdrawn JPH1088253A (en) 1996-09-09 1996-09-09 Production of titanium-nickel alloy sintered compact

Country Status (1)

Country Link
JP (1) JPH1088253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175801B2 (en) * 2002-05-03 2007-02-13 Stichting Energieonderzoek Centrum Nederland Method for producing a porous titanium material article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175801B2 (en) * 2002-05-03 2007-02-13 Stichting Energieonderzoek Centrum Nederland Method for producing a porous titanium material article

Similar Documents

Publication Publication Date Title
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
EP1382700B1 (en) Improved oxidation resistant molybdenum alloy
JPH03500188A (en) Method for producing oxide dispersion hardened sintered alloy
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JP2793958B2 (en) Method for producing titanium-based sintered body by metal powder injection molding method
JP4515596B2 (en) Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
JPH02197535A (en) Manufacture of intermetallic compound
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPH1088253A (en) Production of titanium-nickel alloy sintered compact
JPH051342A (en) Production of titanium alloy and sintered titanium alloy
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPH1046208A (en) Production of ti-ni base alloy sintered body
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPWO2002083961A1 (en) Manufacturing method of reinforced platinum material
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JP3499142B2 (en) Manufacturing method of iron-based structural materials
JPH04183835A (en) Manufacture of ni-ti alloy member
Park et al. Effects of Adding Niobium and Vanadium to Fe-Based Oxide Dispersion Strengthened Alloy
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH04371536A (en) Production of tial intermetallic compound powder
JPS61113741A (en) High strength corrosion resistant nickel base alloy and its production
JP3054703B2 (en) Manufacturing method of iron-chromium alloy with excellent strength
JPS6358897B2 (en)
JPS61159539A (en) Manufacture of shape memory alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202