JPH1087619A - Production of piperidine compound - Google Patents

Production of piperidine compound

Info

Publication number
JPH1087619A
JPH1087619A JP21248397A JP21248397A JPH1087619A JP H1087619 A JPH1087619 A JP H1087619A JP 21248397 A JP21248397 A JP 21248397A JP 21248397 A JP21248397 A JP 21248397A JP H1087619 A JPH1087619 A JP H1087619A
Authority
JP
Japan
Prior art keywords
catalyst
catalytic reduction
pyridine
nickel
piperidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21248397A
Other languages
Japanese (ja)
Inventor
Katsutoshi Harada
勝利 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP21248397A priority Critical patent/JPH1087619A/en
Publication of JPH1087619A publication Critical patent/JPH1087619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogenated Pyridines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a piperidine compound in high yield by completing the catalytic reduction of a pyridine base compound in the presence of a relatively small amount of a catalyst along with suppressing formation of byproducts with boiling points close to that of the aimed piperidine compound. SOLUTION: A pressure reaction vessel is charged with a pyridine base compound and stabilization-treated nickel catalyst at >=2wt.% based on the pyridine base compound to conduct a catalytic reduction of the pyridine base compound under agitation and hydrogen introduction at 140-250 deg.C while keeping a hydrogen pressure of 30-100kgf/cm<2> (2.9×10<6> to 9.8×10<6> Pa), thus obtaining the objective piperidine compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ピリジン塩基類の
接触還元によりピペリジン類を製造する方法に関する。
[0001] The present invention relates to a method for producing piperidines by catalytic reduction of pyridine bases.

【0002】[0002]

【従来の技術】ピリジン塩基類の接触還元によってピペ
リジン類を製造する方法は公知であり、当該接触還元に
おいて種々の触媒が用いられている。
2. Description of the Related Art Methods for producing piperidines by catalytic reduction of pyridine bases are known, and various catalysts are used in the catalytic reduction.

【0003】[0003]

【発明が解決しようとする課題】ラネーニッケルは安価
な触媒であり特に有用であるが、これを用いてピリジン
塩基類の接触還元を行ったときには、反応が完結し難
く、高い水素圧下で反応を行っても未反応のピリジン塩
基類が残存する。反応を完結するには、多量のラネーニ
ッケルが必要となる。また白金触媒、パラジウム触媒、
ルテニウム触媒、ロジウム触媒等の貴金属触媒もピリジ
ン塩基類の接触還元に使用されるが、これら貴金属触媒
は高価であり、そして例えばルテニウム触媒をピリジン
塩基類の接触還元に用いたときには、生成したピペリジ
ン類の環の窒素原子と炭素原子との結合が開裂したアミ
ルアミン類が生成しやすい。副生成物のアミルアミン類
はピペリジン類と近接した沸点を有するため、これが生
成すると反応終了後の反応液からの高純度のピペリジン
類の回収が困難となる。
Raney nickel is an inexpensive catalyst which is particularly useful, but when it is used for catalytic reduction of pyridine bases, it is difficult to complete the reaction, and the reaction is carried out under a high hydrogen pressure. However, unreacted pyridine bases remain. A large amount of Raney nickel is required to complete the reaction. Platinum catalyst, palladium catalyst,
Noble metal catalysts such as ruthenium catalysts and rhodium catalysts are also used for the catalytic reduction of pyridine bases, but these noble metal catalysts are expensive, and for example, when a ruthenium catalyst is used for the catalytic reduction of pyridine bases, the piperidine formed Amylamines in which the bond between the nitrogen atom and the carbon atom of the ring is cleaved are easily formed. Since the by-product amylamines have a boiling point close to that of the piperidines, when they are formed, it becomes difficult to recover high-purity piperidines from the reaction solution after completion of the reaction.

【0004】本発明は上記課題を解決することのできる
ピペリジン類の製造方法、即ち、比較的少量の触媒量で
ピリジン塩基類の接触還元を完結せしめ、しかも目的物
のピペリジン類と近接した沸点を有する副生成物の生成
を抑制して高収率でピペリジン類を製造できる方法を提
供することを目的とする。
The present invention provides a method for producing piperidine which can solve the above-mentioned problems, that is, completes the catalytic reduction of pyridine bases with a relatively small amount of catalyst, and furthermore reduces the boiling point close to that of the target piperidine. It is an object of the present invention to provide a method capable of producing piperidines in high yield by suppressing generation of by-products having the same.

【0005】[0005]

【課題を解決するための手段】本発明者は上記課題を解
決するために鋭意検討を行った。その結果、ピリジン塩
基類の接触還元によりピペリジン類を製造するにあた
り、市販品として安価に入手でき、しかも取扱いが容易
な安定化処理されたニッケル触媒(以下、安定化ニッケ
ル触媒という。)を触媒として用いると、比較的少量の
触媒量で反応が完結し、しかもピペリジン環の開裂を抑
制して高収率でピペリジン類を製造し得ることを見出
し、本発明を完成するに至った。
Means for Solving the Problems The present inventor has conducted intensive studies in order to solve the above-mentioned problems. As a result, in producing piperidines by catalytic reduction of pyridine bases, a stabilized nickel catalyst (hereinafter, referred to as a stabilized nickel catalyst) which is commercially available at low cost and is easy to handle is used as a catalyst. It was found that when used, the reaction was completed with a relatively small amount of catalyst and that piperidine rings could be inhibited from being cleaved to produce piperidines in high yield, and the present invention was completed.

【0006】即ち本発明は、ピリジン塩基類の接触還元
によりピペリジン類を製造するにあたり、触媒として安
定化ニッケル触媒を用いることを特徴とするピペリジン
類の製造方法に関する。
That is, the present invention relates to a method for producing piperidines, which comprises using a stabilized nickel catalyst as a catalyst in producing piperidines by catalytic reduction of pyridine bases.

【0007】[0007]

【発明の実施の形態】本発明においては、接触還元に安
定化ニッケル触媒を使用することが重要である。本発明
で使用する安定化ニッケル触媒は、空気と接触して発火
する発火性のニッケル触媒を安定化処理して得られたも
のであり、発火性のない取扱いが容易な触媒である。安
定化ニッケル触媒は、従来公知のいずれの安定化処理方
法で発火性のニッケル触媒から製造されたものであって
もよい。安定化処理の方法としては、例えば、発火性の
ニッケル触媒を気相又は液相の水の存在下、空気と接触
させて酸化する方法、発火性のニッケル触媒を窒素、二
酸化炭素等の不活性ガスの存在下、空気と接触させて酸
化する方法等が挙げられる。安定化処理に供される発火
性のニッケル触媒としては、ラネーニッケル、硝酸ニッ
ケル、炭酸ニッケル等のニッケルの塩を還元して得られ
た触媒、蟻酸ニッケルを分解して得られた触媒又はニッ
ケル−マンガン等のニッケルと他の金属の合金或はこれ
らの混合物などが挙げられ、またこれらがケイ藻土等の
適当な担体に担持されたものであってもよい。また、本
発明の安定化ニッケル触媒は、助触媒を含有したもので
あってもよく、助触媒としては、例えば、アルカリ土類
金属等が挙げられる。安定化ニッケル触媒は市販品とし
て容易に入手できる。市販品の安定化ニッケル触媒とし
ては、N103、N161A、N162A、N163A
[以上、日揮化学(株)製。商品名]、SN−110、
SN−150、SN−250、SN−300、SN−7
50[以上、堺化学(株)製。商品名]等が挙げられ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, it is important to use a stabilized nickel catalyst for catalytic reduction. The stabilized nickel catalyst used in the present invention is obtained by stabilizing a ignitable nickel catalyst that ignites in contact with air, and is a non-ignitable and easy-to-handle catalyst. The stabilized nickel catalyst may be one produced from a ignitable nickel catalyst by any conventionally known stabilization method. As a method of the stabilization treatment, for example, a method of oxidizing a ignitable nickel catalyst by contacting it with air in the presence of water in a gas phase or a liquid phase, or a method of converting a ignitable nickel catalyst into an inert gas such as nitrogen or carbon dioxide A method of contacting with air and oxidizing in the presence of a gas may, for example, be mentioned. Examples of the ignitable nickel catalyst used for the stabilization treatment include a catalyst obtained by reducing a nickel salt such as Raney nickel, nickel nitrate, and nickel carbonate, a catalyst obtained by decomposing nickel formate, and a nickel-manganese catalyst. And alloys of nickel and other metals, or mixtures thereof, and these may be supported on a suitable carrier such as diatomaceous earth. Further, the stabilized nickel catalyst of the present invention may contain a co-catalyst, and examples of the co-catalyst include alkaline earth metals. Stabilized nickel catalysts are readily available as commercial products. Commercially available stabilized nickel catalysts include N103, N161A, N162A and N163A.
[The above are manufactured by JGC Chemicals, Inc. Product name], SN-110,
SN-150, SN-250, SN-300, SN-7
50 [or more, manufactured by Sakai Chemical Co., Ltd.] Product Name].

【0008】本発明における安定化ニッケル触媒の使用
量は、ピリジン塩基類に対して通常2重量%以上であれ
ばよく、好ましくは3〜30重量%である。ニッケル触
媒の使用量が、ピリジン塩基類に対して2重量%よりも
少ないと反応の完結に長時間を要する。
The amount of the stabilized nickel catalyst used in the present invention may be usually at least 2% by weight, preferably 3 to 30% by weight, based on pyridine bases. If the use amount of the nickel catalyst is less than 2% by weight based on the pyridine base, it takes a long time to complete the reaction.

【0009】本発明において用いられるピリジン塩基類
の具体例としては、ピリジン、2−メチルピリジン、2
−エチルピリジン、2−プロピルピリジン、2,3−ジ
メチルピリジン、2,4−ジメチルピリジン、2,5−
ジメチルピリジン、2,6−ジメチルピリジン、2−メ
チル−4−エチルピリジン、2−メチル−5−エチルピ
リジン、2−メチル−5−ブチルピリジン、2,6−ジ
プロピルピリジン、2,3,5−トリメチルピリジン、
2,4,6−トリメチルピリジン、2−メチル−3−エ
チル−6−プロピルピリジン、3−メチルピリジン、4
−メチルピリジン、3−エチルピリジン、4−エチルピ
リジン、4−プロピルピリジン、4−イソブチルピリジ
ン、4−(1−ブチルペンチル)ピリジン、3,4−ジ
メチルピリジン、3,5−ジメチルピリジン、3−メチ
ル−4−エチルピリジン、3−エチル−4−メチルピリ
ジン、3,4−ジエチルピリジン、3,5−ジエチルピ
リジン等が挙げられる。好ましくは、ピリジン、並びに
2−メチルピリジン、2−エチルピリジン、2−プロピ
ルピリジン、2,3−ジメチルピリジン、2,4−ジメ
チルピリジン、2,5−ジメチルピリジン、2,6−ジ
メチルピリジン、2−メチル−4−エチルピリジン、2
−メチル−5−エチルピリジン、2−メチル−5−ブチ
ルピリジン、2,6−ジプロピルピリジン、2,3,5
−トリメチルピリジン、2,4,6−トリメチルピリジ
ン、2−メチル−3−エチル−6−プロピルピリジン等
のα−位にアルキル基を有するアルキルピリジン類であ
る。
Specific examples of pyridine bases used in the present invention include pyridine, 2-methylpyridine,
-Ethylpyridine, 2-propylpyridine, 2,3-dimethylpyridine, 2,4-dimethylpyridine, 2,5-
Dimethylpyridine, 2,6-dimethylpyridine, 2-methyl-4-ethylpyridine, 2-methyl-5-ethylpyridine, 2-methyl-5-butylpyridine, 2,6-dipropylpyridine, 2,3,5 -Trimethylpyridine,
2,4,6-trimethylpyridine, 2-methyl-3-ethyl-6-propylpyridine, 3-methylpyridine,
-Methylpyridine, 3-ethylpyridine, 4-ethylpyridine, 4-propylpyridine, 4-isobutylpyridine, 4- (1-butylpentyl) pyridine, 3,4-dimethylpyridine, 3,5-dimethylpyridine, 3- Examples thereof include methyl-4-ethylpyridine, 3-ethyl-4-methylpyridine, 3,4-diethylpyridine, and 3,5-diethylpyridine. Preferably, pyridine and 2-methylpyridine, 2-ethylpyridine, 2-propylpyridine, 2,3-dimethylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, -Methyl-4-ethylpyridine, 2
-Methyl-5-ethylpyridine, 2-methyl-5-butylpyridine, 2,6-dipropylpyridine, 2,3,5
Alkylpyridines having an alkyl group at the α-position, such as -trimethylpyridine, 2,4,6-trimethylpyridine, 2-methyl-3-ethyl-6-propylpyridine and the like.

【0010】また本発明の方法により製造されるピペリ
ジン類の具体例としては、ピペリジン、2−メチルピペ
リジン、2−エチルピペリジン、2−プロピルピペリジ
ン、2,3−ジメチルピペリジン、2,4−ジメチルピ
ペリジン、2,5−ジメチルピペリジン、2,6−ジメ
チルピペリジン、2−メチル−4−エチルピペリジン、
2−メチル−5−エチルピペリジン、2−メチル−5−
ブチルピペリジン、2,6−ジプロピルピペリジン、
2,3,5−トリメチルピペリジン、2,4,6−トリ
メチルピペリジン、2−メチル−3−エチル−6−プロ
ピルピペリジン、3−メチルピペリジン、4−メチルピ
ペリジン、3−エチルピペリジン、4−エチルピペリジ
ン、4−プロピルピペリジン、4−イソブチルピペリジ
ン、4−(1−ブチルペンチル)ピペリジン、3,4−
ジメチルピペリジン、3,5−ジメチルピペリジン、3
−メチル−4−エチルピペリジン、3−エチル−4−メ
チルピペリジン、3,4−ジエチルピペリジン、3,5
−ジエチルピペリジン等が挙げられる。
Specific examples of the piperidine produced by the method of the present invention include piperidine, 2-methylpiperidine, 2-ethylpiperidine, 2-propylpiperidine, 2,3-dimethylpiperidine, and 2,4-dimethylpiperidine. 2,5-dimethylpiperidine, 2,6-dimethylpiperidine, 2-methyl-4-ethylpiperidine,
2-methyl-5-ethylpiperidine, 2-methyl-5
Butylpiperidine, 2,6-dipropylpiperidine,
2,3,5-trimethylpiperidine, 2,4,6-trimethylpiperidine, 2-methyl-3-ethyl-6-propylpiperidine, 3-methylpiperidine, 4-methylpiperidine, 3-ethylpiperidine, 4-ethylpiperidine , 4-propylpiperidine, 4-isobutylpiperidine, 4- (1-butylpentyl) piperidine, 3,4-
Dimethylpiperidine, 3,5-dimethylpiperidine, 3
-Methyl-4-ethylpiperidine, 3-ethyl-4-methylpiperidine, 3,4-diethylpiperidine, 3,5
-Diethylpiperidine and the like.

【0011】本発明における接触還元の反応温度は、通
常140〜250℃、好ましくは150〜210℃であ
る。反応温度が140℃より低いと反応の完結に長時間
を要し、また反応温度が250℃より高いとアミルアミ
ン類が生成しやすくなる。また接触還元における水素圧
は、通常30〜100kgf/cm2(2.9×106
9.8×106Pa)、好ましくは40〜90kgf/
cm2(3.9×106〜8.8×106Pa)である。
水素圧が30kgf/cm2(2.9×106Pa)より
低いと反応の完結に長時間を要し、また水素圧が100
kgf/cm2(9.8×10 6Pa)より高いと設備上
高価なものとなり実用的でない。
The reaction temperature of the catalytic reduction in the present invention is usually from 140 to 250 ° C, preferably from 150 to 210 ° C. When the reaction temperature is lower than 140 ° C., it takes a long time to complete the reaction, and when the reaction temperature is higher than 250 ° C., amylamines are easily formed. The hydrogen pressure in the catalytic reduction is usually 30 to 100 kgf / cm 2 (2.9 × 10 6 to
9.8 × 10 6 Pa), preferably 40 to 90 kgf /
cm 2 (3.9 × 10 6 to 8.8 × 10 6 Pa).
If the hydrogen pressure is lower than 30 kgf / cm 2 (2.9 × 10 6 Pa), it takes a long time to complete the reaction, and if the hydrogen pressure is lower than 100 kgf / cm 2 (2.9 × 10 6 Pa).
If it is higher than kgf / cm 2 (9.8 × 10 6 Pa), the equipment becomes expensive and not practical.

【0012】本発明の方法は特に溶媒を必要としない
が、溶媒を使用しても何ら差し支えない。使用できる溶
媒としては、本発明の接触還元に不活性なものであれば
特に制限されないが、水、ジオキサン、テトラヒドロフ
ラン等のエーテル、酢酸エステルなどを挙げることがで
きる。
The method of the present invention does not require a solvent, but a solvent can be used. The solvent that can be used is not particularly limited as long as it is inert to the catalytic reduction of the present invention, and examples thereof include water, ethers such as dioxane and tetrahydrofuran, and acetates.

【0013】本発明の方法を実施するには、例えば、加
圧反応器にピリジン塩基類、安定化ニッケル触媒及び所
望により溶媒を仕込み、攪拌下、水素を導入しながら上
記反応温度及び水素圧に保って反応を行えばよい。そし
て反応が終了すると水素が消費されなくなるが、通常、
さらに同温度で0.5〜1時間程度攪拌を続ける。この
ようにすると、未反応ピリジン塩基類が残存せず、選択
的に高収率でピペリジン類が生成する。
In order to carry out the process of the present invention, for example, a pyridine base, a stabilized nickel catalyst and a solvent as required are charged into a pressurized reactor, and the above reaction temperature and hydrogen pressure are adjusted while introducing hydrogen with stirring. The reaction may be performed while keeping the temperature. When the reaction is completed, hydrogen is no longer consumed, but usually,
Further, stirring is continued at the same temperature for about 0.5 to 1 hour. In this case, unreacted pyridine bases do not remain, and piperidine is selectively produced in high yield.

【0014】本発明の方法によれば、反応終了後の反応
液には未反応ピリジン塩基類及び副生成物が殆ど存在し
ないため、反応終了後の反応液から簡便な操作により高
純度のピペリジン類を得ることができる。例えば、反応
終了後、反応液を室温程度に冷却し、内圧を常圧に戻し
た後、反応液をろ過して触媒をろ別し、次いでろ液を蒸
留することにより容易に高純度のピペリジン類が得られ
る。
According to the method of the present invention, since unreacted pyridine bases and by-products are scarcely present in the reaction solution after the completion of the reaction, a high-purity piperidine can be obtained from the reaction solution after the reaction by a simple operation. Can be obtained. For example, after the reaction is completed, the reaction solution is cooled to about room temperature, the internal pressure is returned to normal pressure, the reaction solution is filtered to remove the catalyst, and then the filtrate is easily distilled to obtain high-purity piperidine. Kind is obtained.

【0015】[0015]

【実施例】次に実施例により本発明をさらに具体的に説
明するが、本発明は以下の実施例に限定されるものでは
ない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples.

【0016】実施例1 硝酸ニッケル・6水和物10重量部、水2重量部及びケ
イ藻土2重量部を混合して乾燥した後、焙焼し、次いで
これを水素で450℃付近で還元した。得られたニッケ
ル/ケイ藻土にスプレーによって水をニッケルに対して
50重量%添加し、適宜水を添加しながら80〜90℃
に保って空気で5時間酸化してケイ藻土に担持されたニ
ッケル含有率50重量%の安定化ニッケル触媒を得た。
得られた安定化ニッケル触媒12g及び2−メチルピリ
ジン400gを容量1リットルの電磁攪拌式オートクレ
ーブに仕込み、加熱、撹拌下、水素を導入しながら17
0℃に昇温し、同温度に2時間保持した。反応中、水素
圧は40kgf/cm2(3.9×106Pa)に保っ
た。その後、水素の導入を終了し、反応液を室温に冷却
して、常圧にもどした後、反応液をろ過して触媒をろ別
した。得られたろ液をガスクロマトグラフィーにて分析
したところ、2−メチルピリジンの転化率は100%で
あり、2−メチルピペリジンの収率は98%であった。
環の開裂による1−ヘキシルアミン又は2−ヘキシルア
ミンの生成は認められなかった。
Example 1 10 parts by weight of nickel nitrate hexahydrate, 2 parts by weight of water and 2 parts by weight of diatomaceous earth were mixed, dried and then roasted, and then reduced with hydrogen at about 450 ° C. did. Water is added to the obtained nickel / diatomaceous earth by spraying at 50% by weight with respect to nickel, and 80 to 90 ° C. while appropriately adding water.
The mixture was oxidized with air for 5 hours to obtain a stabilized nickel catalyst having a nickel content of 50% by weight supported on diatomaceous earth.
12 g of the obtained stabilized nickel catalyst and 400 g of 2-methylpyridine were charged into a 1-liter electromagnetic stirring type autoclave, and heated and stirred while introducing hydrogen.
The temperature was raised to 0 ° C. and kept at the same temperature for 2 hours. During the reaction, the hydrogen pressure was kept at 40 kgf / cm 2 (3.9 × 10 6 Pa). Thereafter, the introduction of hydrogen was terminated, the reaction solution was cooled to room temperature and returned to normal pressure, and then the reaction solution was filtered to remove the catalyst. When the obtained filtrate was analyzed by gas chromatography, the conversion of 2-methylpyridine was 100%, and the yield of 2-methylpiperidine was 98%.
No formation of 1-hexylamine or 2-hexylamine by ring cleavage was observed.

【0017】実施例2 2−メチルピリジンに代えてピリジンを使用した以外
は、実施例1と同様に行った。その結果、ピリジンの転
化率は100%であり、ピペリジンの収率は95%であ
った。環の開裂によるアミルアミンの生成は認められな
かった。
Example 2 The procedure of Example 1 was repeated, except that pyridine was used instead of 2-methylpyridine. As a result, the conversion of pyridine was 100%, and the yield of piperidine was 95%. Amylamine formation by ring cleavage was not observed.

【0018】実施例3 2−メチルピリジンに代えて2,6−ジメチルピリジン
を使用した以外は、実施例1と同様に行った。その結
果、2,6−ジメチルピリジンの転化率は100%であ
り、2,6−ジメチルピペリジンの収率は97%であっ
た。環の開裂による2−ヘプチルアミンの生成は認めら
れなかった。
Example 3 The same procedure as in Example 1 was carried out except that 2,6-dimethylpyridine was used instead of 2-methylpyridine. As a result, the conversion of 2,6-dimethylpyridine was 100%, and the yield of 2,6-dimethylpiperidine was 97%. No formation of 2-heptylamine by ring cleavage was observed.

【0019】比較例1 安定化ニッケル触媒に代えてラネーニッケル40gを使
用した以外は、実施例1と同様に行った。その結果、2
−メチルピリジンの転化率は95%であり、2−メチル
ピペリジンの収率は92%であった。1−ヘキシルアミ
ン又は2−ヘキシルアミンの生成は認められなかった。
Comparative Example 1 The procedure of Example 1 was repeated, except that 40 g of Raney nickel was used instead of the stabilized nickel catalyst. As a result, 2
The conversion of -methylpyridine was 95% and the yield of 2-methylpiperidine was 92%. No formation of 1-hexylamine or 2-hexylamine was observed.

【0020】比較例2 安定化ニッケル触媒に代えて5%−ルテニウム/カーボ
ン4gを使用した以外は、実施例1と同様に行った。そ
の結果、2−メチルピリジンの転化率は100%であ
り、2−メチルピペリジンの収率は93%であった。1
−ヘキシルアミン及び2−ヘキシルアミンが合計0.3
%生成していた。
Comparative Example 2 The procedure of Example 1 was repeated, except that 4 g of 5% -ruthenium / carbon was used instead of the stabilized nickel catalyst. As a result, the conversion of 2-methylpyridine was 100%, and the yield of 2-methylpiperidine was 93%. 1
-Hexylamine and 2-hexylamine total 0.3
% Had been generated.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ピリジン塩基類の接触還元によりピペリ
ジン類を製造するにあたり、触媒として安定化処理され
たニッケル触媒を用いることを特徴とするピペリジン類
の製造方法。
1. A method for producing piperidines, comprising using a stabilized nickel catalyst as a catalyst in producing piperidines by catalytic reduction of pyridine bases.
【請求項2】 ピリジン塩基類がピリジン又はα−位に
アルキル基を有するアルキルピリジン類である請求項1
記載の方法。
2. The pyridine base is pyridine or an alkylpyridine having an alkyl group at the α-position.
The described method.
【請求項3】 接触還元を反応温度140〜250℃、
水素圧30〜100kgf/cm2(2.9×106
9.8×106Pa)で行う請求項1又は2記載の方
法。
3. The catalytic reduction is carried out at a reaction temperature of 140 to 250 ° C.
Hydrogen pressure 30-100 kgf / cm 2 (2.9 × 10 6-
The method according to claim 1, wherein the method is performed at 9.8 × 10 6 Pa).
JP21248397A 1996-07-22 1997-07-22 Production of piperidine compound Pending JPH1087619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21248397A JPH1087619A (en) 1996-07-22 1997-07-22 Production of piperidine compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21191796 1996-07-22
JP8-211917 1996-07-22
JP21248397A JPH1087619A (en) 1996-07-22 1997-07-22 Production of piperidine compound

Publications (1)

Publication Number Publication Date
JPH1087619A true JPH1087619A (en) 1998-04-07

Family

ID=26518904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21248397A Pending JPH1087619A (en) 1996-07-22 1997-07-22 Production of piperidine compound

Country Status (1)

Country Link
JP (1) JPH1087619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041279A (en) * 2022-12-30 2023-05-02 摩珈(上海)生物科技有限公司 Method for preparing piperidine by using high-pressure kettle device and ruthenium-containing catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041279A (en) * 2022-12-30 2023-05-02 摩珈(上海)生物科技有限公司 Method for preparing piperidine by using high-pressure kettle device and ruthenium-containing catalyst

Similar Documents

Publication Publication Date Title
JP5391155B2 (en) Process for producing hydroxyethylcyclohexane and hydroxyethylpiperidine
JPS6130662B2 (en)
CN108610226B (en) Method for preparing amide compound by using manganese oxide to catalyze amine oxidation
JPH1087619A (en) Production of piperidine compound
JPS5910337B2 (en) Method for producing chlorinated phenylhydroxylamines
WO1998003483A1 (en) Process for the preparation of piperidines
JPS5822114B2 (en) Method for producing pyridine from piperidine
JPH01193246A (en) Production of 2,3-dichloropyridine
JP3031727B2 (en) Process for producing aminomethylpyridines having a chlorine atom at the α-position
JPS63275565A (en) Production of 2,3,5-trichloropyridine
JP3123815B2 (en) Method for producing 2-chloro-5-chloromethylpyridine and / or 2-chloro-5-dichloromethylpyridine
JPS6153344B2 (en)
JPS61251663A (en) Production of aminomethylpyridine
JP4224144B2 (en) Process for producing N-alkylpyridinemethanamines
JPH1135562A (en) Production of monoalkylaminopyridine
JPS61251659A (en) Production of 2-or 3-aminomethylpiperidine
JPH064603B2 (en) Method for producing 2-quinoxalinol compound
JPH0645598B2 (en) Method for producing hydroxymethylpyridine
CN114426516B (en) Preparation method of 2-amino-3-bromopyridine
JP2603686B2 (en) Method for producing hydroaromatic alcohol and / or hydroaromatic cyclic ketone
JPH01121268A (en) Production of 3,5-dichloropyridine
CN114014799A (en) Production process of 2, 2-bipyridine
JP4373515B2 (en) Method for producing acylpyridine
JPH10101646A (en) Production of aminomethylpyridine compound
JPS6346059B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20090731

Free format text: JAPANESE INTERMEDIATE CODE: A912