JPH1086208A - Manufacture of optical film - Google Patents

Manufacture of optical film

Info

Publication number
JPH1086208A
JPH1086208A JP8247329A JP24732996A JPH1086208A JP H1086208 A JPH1086208 A JP H1086208A JP 8247329 A JP8247329 A JP 8247329A JP 24732996 A JP24732996 A JP 24732996A JP H1086208 A JPH1086208 A JP H1086208A
Authority
JP
Japan
Prior art keywords
film
optical
temperature
heat treatment
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8247329A
Other languages
Japanese (ja)
Other versions
JP3313033B2 (en
Inventor
Susumu Arai
進 新井
Junji Tanaka
順二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP24732996A priority Critical patent/JP3313033B2/en
Publication of JPH1086208A publication Critical patent/JPH1086208A/en
Application granted granted Critical
Publication of JP3313033B2 publication Critical patent/JP3313033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a heat resistant optical film which is excellent in film smoothness and has a low double refraction index, i.e., a small optical phase difference, has a very high uniformity of an optical principal axis of an index ellipsoid in the inside of the film face and in the thickness direction, and can be used for a liquid crystal display panel. SOLUTION: When a thermoplastic resin having a glass transition point of 190 deg.C or higher is to be formed into a film by extrusion method, a zone of a lip tip is brought under pressure reduction lower than about 1.013×10<5> pa and an atmospheric temperature is kept within about 100 deg.C from a resin temperature at a tip of a die slip. Further, the film is treated with heat continuously in between rolls having dryers by a fixed tension in the flowing direction of the film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学用フィルムの作
製方法に関し、更に詳しくは耐熱性を要求されるフレキ
シブル液晶表示素子用透明電極基板として有用な光学的
位相差が小さく、かつ光学的主軸の均一な耐熱性光学用
フィルムの製造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical film, and more particularly, to a method for producing a transparent electrode substrate for a flexible liquid crystal display element requiring heat resistance, which has a small optical retardation and an optical principal axis. The present invention relates to the production of a uniform heat-resistant optical film.

【0002】[0002]

【従来の技術】従来、液晶表示素子用透明電極基板には
ガラス基板が使用されてきたが、ガラス基板を用いた液
晶表示素子においては、ガラス基板自体が厚いため液晶
表示素子体の薄型化が困難であると共に、軽量化しにく
いという欠点があり、更に、可撓性、耐衝撃性の点で問
題があった。
2. Description of the Related Art Conventionally, a glass substrate has been used as a transparent electrode substrate for a liquid crystal display element. However, in a liquid crystal display element using a glass substrate, the thickness of the liquid crystal display element body is reduced because the glass substrate itself is thick. It is difficult and has the drawback that it is difficult to reduce the weight, and further, there are problems in terms of flexibility and impact resistance.

【0003】このガラス基板液晶表示素子の持つ欠点を
改善する方法として、プラスチックフィルムを用いて液
晶パネルを連続的に作製することにより、液晶パネル加
工費のコストダウン、液晶パネルの量産化、軽量化、耐
衝撃性の向上が検討されている。例えば、特開昭53−
68099号公報及び特開昭54−126559号公報
には、ガラス基板の代わりに導電性酸化金属物質を蒸着
した長尺のポリエステルフィルムを用いて液晶表示素子
パネルを連続して製造することが示されているが、セル
加工工程での耐熱性、実装した場合の光学的特性におい
て優れているとは言いがたいものであった。
As a method of improving the disadvantages of the glass substrate liquid crystal display element, a liquid crystal panel is continuously manufactured using a plastic film, thereby reducing the cost of processing the liquid crystal panel, mass-producing the liquid crystal panel, and reducing the weight. Improvement in impact resistance has been studied. For example, Japanese Unexamined Patent Publication No.
68099 and JP-A-54-126559 show that a liquid crystal display panel is manufactured continuously using a long polyester film on which a conductive metal oxide material is deposited instead of a glass substrate. However, it was hard to say that the heat resistance in the cell processing step and the optical characteristics when mounted were excellent.

【0004】この問題を解決するため、耐熱性、光学等
方性に優れた熱可塑性樹脂フィルムをこれらの用途に応
用すべく研究を進めたところ、溶融押し出し製膜工程に
おいて発生する分子配向に起因するフィルムの複屈折率
の増大、及びフィルム面内並びに厚み方向における屈折
率楕円体の光学的主軸の振れ幅の増加が重大な欠点とな
ることがわかった。例えば、TN型液晶表示素子では偏
光板により直線偏光にされた入射光が、透明電極フィル
ムの複屈折性及びそのフィルム面内の偏差から部分的に
異なる楕円偏光になるため、コントラストの低下、表示
ムラを生じさせている。更にSTN(Super Twisted Ne
matic)型液晶表示素子では透明電極フィルムの複屈折
性より発現する光学的位相差からTN型液晶表示素子以
上に高精細な表示が得られないばかりでなく、液晶分子
より発生するレターデーションもあることから、光学位
相差を補償するための偏光板、位相差板及び透明電極フ
ィルムによる液晶セルの組み合わせの最適化が非常に煩
雑なものとなっている。
In order to solve this problem, research was conducted to apply a thermoplastic resin film having excellent heat resistance and optical isotropy to these applications. It has been found that an increase in the birefringence of the film and an increase in the amplitude of the optical principal axis of the refractive index ellipsoid in the plane of the film and in the thickness direction are serious drawbacks. For example, in a TN type liquid crystal display device, the incident light linearly polarized by the polarizing plate becomes elliptically polarized light which is partially different from the birefringence of the transparent electrode film and the deviation in the film plane, so that the contrast is reduced and the display is reduced. This causes unevenness. STN (Super Twisted Ne)
matic) type liquid crystal display devices cannot not only obtain high-definition display than TN type liquid crystal display devices due to the optical retardation developed from the birefringence of the transparent electrode film, but also have retardation generated from liquid crystal molecules. Therefore, optimization of a combination of a liquid crystal cell with a polarizing plate, a retardation plate, and a transparent electrode film for compensating an optical phase difference is very complicated.

【0005】更に、熱可塑性樹脂フィルムを用いた液晶
セルが実用化されるにつれ、表示面積が大型化し、電極
同志を均一間隔に保つ、いわゆるギャップ維持のため、
基材として変形し難いことが要求され、基材厚みが当初
の100μm厚から300μmを越える場合が出てきて
いる。この際、厚み方向の複屈折性が一層重要になり、
特に今後の主流になる反射型カラーモードでは、色ズレ
の原因と成るため、早急な改善が望まれている。
Further, as a liquid crystal cell using a thermoplastic resin film is put to practical use, the display area becomes large, and the electrodes are kept at a uniform interval.
The base material is required to be hardly deformed, and the thickness of the base material has increased from the initial thickness of 100 μm to more than 300 μm. At this time, the birefringence in the thickness direction becomes more important,
In particular, a reflection type color mode, which will become the mainstream in the future, causes color misregistration, so that an immediate improvement is desired.

【0006】光学用材料の位相差を改善する方法とし
て、特殊な2価フェノールを構造単位とする特殊ポリカ
ーボネートを用いる方法(特開昭63−108024号
公報)、固有複屈折が正の材料と負の材料をブレンドす
る方法(T. Inoue et al.,Journal of Polymer Scienc
e,Part B, 25, 1629(1987).)、固有複屈折が正のポリ
カーボネートと負のポリスチレンをグラフト共重合させ
る方法(日経ニューマテリアル、1988年9月26日
号、60〜62頁の記事)、極性基を有したノルボルネ
ン系樹脂を用いる方法(機能材料、1993年1月号、
40〜52頁の記事)などが提案されているが、いずれ
も耐熱性、光学特性が共に優れているとは言いがたく、
光学的主軸の均一化がなされていなかった。
As a method for improving the retardation of an optical material, a method using a special polycarbonate having a special dihydric phenol as a structural unit (JP-A-63-108024) is known. Method of blending the materials of (T. Inoue et al., Journal of Polymer Scienc
e, Part B, 25, 1629 (1987).), a method of graft copolymerizing a polycarbonate having a positive intrinsic birefringence and a negative polystyrene (Nikkei New Materials, September 26, 1988, pp. 60-62). ), A method using a norbornene-based resin having a polar group (functional materials, January 1993,
Articles on pages 40 to 52) have been proposed, but it is hard to say that both have excellent heat resistance and optical properties.
The optical main axis has not been made uniform.

【0007】押し出し法にて押し出されたフィルムが冷
却ロールで冷却固化され巻き取られる瞬間までの短時間
の間に、ダイス内で生じるせん断応力や、ダイスリップ
から出た樹脂が延伸されることによる流れ方向及び厚み
方向に生じる温度分布によりフィルム内で発生する面内
及び厚み方向での分子配向を避けることができなかっ
た。この傾向はフィルム厚みが厚ければ厚いほど顕著に
なる性質があり、表示画面の大型化に伴い重大な欠点と
成っていた。
[0007] In a short time from the moment when the film extruded by the extrusion method is cooled and solidified by the cooling rolls and wound up, the shear stress generated in the die and the stretching of the resin from the die slip are caused. Due to the temperature distribution occurring in the flow direction and the thickness direction, it was not possible to avoid the molecular orientation in the plane and the thickness direction generated in the film. This tendency has the property of becoming more pronounced as the film thickness increases, and has become a serious drawback as the display screen becomes larger.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的とすると
ころはフィルムの平滑性に優れ、複屈折率が小さい、つ
まり光学的位相差の小さいフィルムであり、フィルム面
内並びに厚み方向の屈折率楕円体の光学的主軸の均一性
が非常に高く、液晶表示パネル用として使用できる耐熱
性光学用フィルムの製造方法を提供するものである。
The object of the present invention is to provide a film having excellent smoothness and a small birefringence, that is, a film having a small optical retardation, and a refractive index in the film plane and in the thickness direction. It is an object of the present invention to provide a method for producing a heat-resistant optical film which has a very high optical axis uniformity of an ellipsoid and can be used for a liquid crystal display panel.

【0009】[0009]

【課題を解決するための手段】この点に鑑み鋭意検討し
た結果、本発明は、厚み方向の温度分布を最大限に少な
くし、分子レベルでの固化する速度を遅く均一化する事
で厚み方向の分子配向が押さえられる事を見出したもの
である。
As a result of intensive studies in view of this point, the present invention has found that the temperature distribution in the thickness direction is minimized and the solidification rate at the molecular level is slowed down and uniformized. It has been found that the molecular orientation of is suppressed.

【0010】即ち、ガラス転移点が190℃以上である
熱可塑性樹脂を押し出し法にてフィルム化する際に、リ
ップ先端のゾーンを1.013×105Pa未満の減圧
下にし、かつ雰囲気温度をダイスリップ先端樹脂温度よ
り−100℃以内に保って成形する光学用フィルムの製
造方法であり、更に好ましい態様は、押し出されたフィ
ルムを2本のロールの間で、流れ方向に一定の張力を掛
けて熱処理する際、2本のロールの間隔がフィルムの幅
より大きく、かつフィルムの線膨張率が上昇する温度か
らフィルムのガラス転移点より低い温度内で熱処理し、
熱処理後のフィルム面内の複屈折率が1×10-4以下
で、かつ熱処理後のフィルム面内の屈折率楕円体の光学
的主軸の振れ幅が±10°以下であり、熱処理後のフィ
ルム厚み方向の複屈折率が1×10-3以下で、かつ熱処
理後のフィルム厚み方向の屈折率楕円体の光学的主軸の
振れ幅が±10゜以下であり、熱可塑性樹脂がポリサル
ホン、ポリエーテルサルホン、ポリエーテルイミド及び
ポリアリレートの群から選ばれる少なくとも一種である
光学用フィルムの製造方法である。
That is, when a thermoplastic resin having a glass transition point of 190 ° C. or more is formed into a film by the extrusion method, the zone at the tip of the lip is reduced under a reduced pressure of less than 1.013 × 10 5 Pa, and the atmospheric temperature is reduced. This is a method for producing an optical film that is formed by keeping the temperature of the resin at the tip of the die slip within −100 ° C., and a more preferred embodiment is to apply a constant tension in the flow direction between the two rolls of the extruded film. When heat treatment, the interval between the two rolls is larger than the width of the film, and heat treatment is performed at a temperature lower than the glass transition point of the film from the temperature at which the linear expansion coefficient of the film increases,
The film after heat treatment has an in-plane birefringence of 1 × 10 −4 or less, and the heat treatment film has a refractive index ellipsoid with an optical principal axis swing of ± 10 ° or less. The birefringence in the thickness direction is 1 × 10 −3 or less, and the deflection width of the optical main axis of the refractive index ellipsoid in the film thickness direction after the heat treatment is ± 10 ° or less, and the thermoplastic resin is polysulfone or polyether. This is a method for producing an optical film, which is at least one selected from the group consisting of sulfone, polyetherimide, and polyarylate.

【0011】[0011]

【発明の実施の形態】更に詳細に説明すると、ダイスリ
ップ先端から冷却ロール間において、フィルムが流れる
間隙を除きこの区間の内部を1.013×105Pa未
満の減圧下に保ち、この区間の雰囲気温度をダイスリッ
プ先端樹脂温度より−100℃以内に保って成形するこ
とにより、厚み方向の分子運動の自由度が増し、保温効
果が増すことによって冷却ロールに接触するまでに応力
緩和が得られるようになったものである。
More specifically, the inside of this section is kept under a reduced pressure of less than 1.013 × 10 5 Pa except for the gap where the film flows, from the tip of the die slip to the cooling roll, and the inside of this section is reduced. Molding while keeping the ambient temperature within -100 ° C of the die-slip tip resin temperature increases the degree of freedom of molecular motion in the thickness direction and increases the heat-retaining effect, so that stress relaxation can be obtained before contacting the cooling roll. It is what came to be.

【0012】通常の溶融押し出し法のダイリップ先端ゾ
ーンは輻射熱により加熱されているが、基本的には大気
中への押し出しであるため空気を媒体とした熱放散によ
り急激な温度低下が起こり、フィルム表面とフィルム内
部での温度分布が生じている。更に、冷却ロールへの接
触で完全に分子配向が固化される。従って、完全に分子
配向が完了する直前までのフィルム内の分子配向はこの
温度分布に起因した状態で引き出される為、冷却ロール
に接触するまではダイリップ内の樹脂温度を維持させる
ことが理想である。この為、断熱材によるリップ先端ゾ
ーンの保温、外部よりの加温が厚み方向の複屈折低減の
ためには必要不可欠になる。この際、溶融樹脂の特性に
より異なるが、リップ先端の樹脂温度に対し−100℃
の範囲内に保持する事が望ましく、好ましくは−50℃
の範囲内が最も複屈折性には良好である。
Although the die lip tip zone in the normal melt extrusion method is heated by radiant heat, it is basically extruded into the atmosphere, so that a rapid temperature drop occurs due to heat dissipation using air as a medium, and the film surface is heated. And a temperature distribution inside the film. Further, the molecular orientation is completely solidified by contact with the cooling roll. Therefore, since the molecular orientation in the film immediately before the molecular orientation is completely completed is drawn out in a state due to this temperature distribution, it is ideal to maintain the resin temperature in the die lip until it contacts the cooling roll. . For this reason, it is indispensable to keep the lip tip zone warm by a heat insulating material and to heat it from the outside in order to reduce the birefringence in the thickness direction. At this time, although it depends on the characteristics of the molten resin, the temperature of the resin at the tip of the lip is -100C.
-50 ° C
Is most favorable for birefringence.

【0013】この為の具体的な方法としては、リップ先
端から冷却ロールまでの区間をフィルムが流れる間隙を
除き断熱材で覆い、例えばフィルム表面から各50mm
程離れた部分に断熱材表面を設置する。更にこの内部を
真空ポンプで排気し、1.013×105Pa未満の減
圧ゾーンにすることが保温する方法として最も経済的で
現実的で有ることを見出したものである。1.013×
105Paを越える雰囲気では外部からの加熱が必要で
あり装置の大型化に繋がる欠点が有る。又−100℃を
越える温度低下が有る場合は、厚み方向の複屈折性の低
減効果は小さいものになり目的を達成しない。
As a specific method for this, a section from the tip of the lip to the cooling roll is covered with a heat insulating material except for a gap in which the film flows.
Install the insulation surface some distance away. Furthermore, it has been found that it is the most economical and practical method for keeping the temperature low by evacuating the inside with a vacuum pump and setting a pressure reduction zone of less than 1.013 × 10 5 Pa. 1.013 ×
In an atmosphere exceeding 10 5 Pa, heating from the outside is required, and there is a drawback that the apparatus becomes large. On the other hand, when there is a temperature drop exceeding -100 ° C, the effect of reducing the birefringence in the thickness direction is small, and the object is not achieved.

【0014】この様にして厚み方向の分子配向を極力抑
えたフィルムを主として面内方向の分子配向を除くた
め、ドライヤーを配置したロールトウロールの熱処理機
を用いて連続的に熱処理する。この際、ロール間隔をL
MD、フィルム幅をLTDとするとき、ロール間で熱処理さ
れるフィルムにニ軸延伸性が付与されないように、LMD
/LTD>1.0にする必要がある。またフィルムの外観
が損なわれないように熱処理するために、フィルムに適
度な張力がかかるようにロールを駆動させる必要があ
る。そのフィルムを構成する分子鎖がミクロブラウン運
動を開始し、フィルムの線膨張率が上昇を始める温度
(以下Tg- という)からガラス転移点(以下Tgとい
う)より低い温度、好ましくはTgよりも10℃〜30
℃低い温度で押し出しフィルムを熱処理することで、そ
の外観が良好で、フィルムの面内複屈折率が1×10-4
以下であり、光学的主軸の振れ幅が±10°以下であ
り、フィルムの厚み方向の複屈折率が1×10-3以下で
あり、厚み方向の屈折率楕円体の光学的主軸の振れ幅が
±10°以下である耐熱性光学用フィルムを製造する事
が出来る。尚、複屈折の定義として、屈折率の3成分を
Nx>Ny>Nzの関係とした時、面内複屈折をNx−
Ny、厚み方向複屈折をNx−Nzとする。
In order to mainly remove the molecular orientation in the in-plane direction, the film in which the molecular orientation in the thickness direction is suppressed as much as possible is continuously heat-treated using a roll-to-roll heat treatment machine provided with a dryer. At this time, the roll interval is set to L
MD , when the film width is L TD , L MD should be used so that the film heat-treated between the rolls is not given biaxial stretchability.
/ L TD > 1.0. In addition, in order to heat-treat the film so that the appearance of the film is not impaired, it is necessary to drive the roll so that an appropriate tension is applied to the film. Molecular chain starts to micro-Brownian motion which constitutes the film, the linear expansion coefficient begins to rise temperature (hereinafter Tg - hereinafter) of the film at a temperature that is below the glass transition point (hereinafter referred to as Tg) from 10 preferably above Tg ℃ -30
By heat-treating the extruded film at a low temperature, the appearance is good and the in-plane birefringence of the film is 1 × 10 -4.
Or less, the deflection of the optical principal axis is ± 10 ° or less, the birefringence in the thickness direction of the film is 1 × 10 −3 or less, and the deflection of the optical principal axis of the refractive index ellipsoid in the thickness direction. Is ± 10 ° or less. As a definition of birefringence, when the three components of the refractive index have a relationship of Nx>Ny> Nz, the in-plane birefringence is Nx−
Ny and the thickness direction birefringence are Nx-Nz.

【0015】フィルムをLMD/LTD≦1.0の条件で熱
処理した場合は、ロール間隔が短いためフィルム幅方向
の収縮に制約ができ、フィルム面内において同時二軸的
な引っ張り応力が発生する。そのために高分子鎖は理想
的な一軸配向が抑制され、フィルムの幅方向に高分子鎖
の配向角分布が発現する。屈折率楕円体の光学的主軸は
分子鎖配向角に大きく依存するため、フィルムをLMD
TD≦1.0の条件にで熱処理すると、分子鎖配向の自
由度が一方向に制御されないため光学的主軸の均一化が
なされない。
When the film is heat-treated under the condition of L MD / L TD ≦ 1.0, shrinkage in the film width direction can be restricted due to the short roll interval, and simultaneous biaxial tensile stress occurs in the film plane. I do. Therefore, the ideal uniaxial orientation of the polymer chain is suppressed, and the orientation angle distribution of the polymer chain is developed in the width direction of the film. Since the optical principal axis of the refractive index ellipsoid greatly depends on the molecular chain orientation angle, the film should have an L MD /
When the heat treatment is performed under the condition of L TD ≦ 1.0, the degree of freedom of the molecular chain orientation is not controlled in one direction, so that the optical principal axis cannot be made uniform.

【0016】押し出しフィルムをLMD/LTD>1.0の
条件にて連続的に熱処理する時、Tg以上の高温で熱処
理した場合は、フィルムを構成する高分子鎖は流動性に
富むためにフィルム流れ方向の分子鎖配向が容易に起こ
り、光学的主軸の均一化はなされるものの、フィルム延
伸により複屈折率の増加が起こる。熱処理の温度がフィ
ルムのTg-より低すぎても、分子鎖のミクロブラウン
運動が凍結し、局所的な分子振動をするのみであるた
め、熱処理による分子鎖配向が起こり難くなり、光学的
主軸の均一化がなされない場合がある。
When the extruded film is continuously heat-treated under the condition of L MD / L TD > 1.0, if the heat treatment is performed at a high temperature of Tg or higher, the polymer chains constituting the film have a high fluidity, so that the film has high fluidity. Although the molecular chain orientation in the flow direction easily occurs and the optical principal axis is made uniform, the birefringence increases due to film stretching. The heat treatment temperature Tg of the film - even too than low, molecular chains micro Brownian motion is frozen, since it is only a local molecular vibrational, hardly occur molecular chain orientation by heat treatment, the optical main axis In some cases, uniformity is not achieved.

【0017】光学的主軸の振れ幅は、分子鎖配向のバラ
ツキを示し、±10°以下、好ましくは±5°以下であ
る。この光学的主軸の振れ幅が大きすぎると、直線偏光
した光がフィルムを透過する際に、透過光の偏光状態に
偏差が生じ、部分的な光の漏れが発現する。その結果、
TN及びSTN型の液晶表示素子に重要な光シャター機
能が電極基板フィルムにより損なわれるため好ましくな
い。
The fluctuation width of the optical principal axis indicates a variation in molecular chain orientation, and is ± 10 ° or less, preferably ± 5 ° or less. If the deviation of the optical principal axis is too large, when the linearly polarized light passes through the film, a deviation occurs in the polarization state of the transmitted light, and partial light leakage occurs. as a result,
It is not preferable because a light shutter function important for TN and STN type liquid crystal display elements is impaired by the electrode substrate film.

【0018】本発明におけるTgが190℃以上の熱可
塑性樹脂としてはポリサルホン、ポリエーテルサルホ
ン、ポリエーテルイミド、ポリアリレート及びこれらを
ブレンドした樹脂をあげることができる。また本発明に
おける樹脂は、添加剤として少量の安定剤、滑剤、染料
等が含まれていてもさしつかえない。
Examples of the thermoplastic resin having a Tg of 190 ° C. or higher in the present invention include polysulfone, polyethersulfone, polyetherimide, polyarylate, and resins blended with these. The resin of the present invention may contain a small amount of a stabilizer, a lubricant, a dye, or the like as an additive.

【0019】本発明における耐熱性光学用フィルムの厚
さは10μm〜500μm、更には50μm〜400μ
mであることが加工性、可撓性の面から好ましい。本発
明におけるフィルムの表面粗さは0.5μm以下である
ことが好ましく、更には0.1μm以下であることが好
ましい。表面粗さが0.5μmより大きいとSTN型液
晶表示素子では透明電極フィルムの光学的位相差により
生じる表示ムラよりも、電極フィルム表面の凹凸による
液晶セルギャップの変化から生じる表示ムラが顕著に確
認される。
The thickness of the heat-resistant optical film according to the present invention is 10 μm to 500 μm, and more preferably 50 μm to 400 μm.
m is preferable in terms of workability and flexibility. The surface roughness of the film in the present invention is preferably 0.5 μm or less, and more preferably 0.1 μm or less. When the surface roughness is larger than 0.5 μm, in the STN type liquid crystal display device, display unevenness caused by a change in the liquid crystal cell gap due to unevenness of the electrode film surface is more remarkably observed than display unevenness caused by the optical phase difference of the transparent electrode film. Is done.

【0020】本発明のフィルムの光学的物性は次の方法
により測定した。 (1)複屈折率 オリンパス光学(株)製偏光顕微鏡BH2とベレックコ
ンペンセーターを用い、波長550nmでの光学的位相
差を測定し、更にフィルムの厚みを測定することにより
波長550nmでの複屈折率を測定した。 (2)光学的主軸 光弾性測定装置により光弾性感度を測定した後に、ベレ
ックコンペンセーターを用い屈折率楕円体の増相軸と遅
相軸を調べることにより光学的主軸を測定した。
The optical properties of the film of the present invention were measured by the following methods. (1) Birefringence Birefringence at a wavelength of 550 nm by measuring the optical phase difference at a wavelength of 550 nm using a polarizing microscope BH2 manufactured by Olympus Optical Co., Ltd. and a Berek compensator, and further measuring the thickness of the film. The rate was measured. (2) Optical principal axis After measuring the photoelastic sensitivity with a photoelasticity measuring device, the optical principal axis was measured by examining the phase increase axis and the slow axis of the refractive index ellipsoid using a Berek compensator.

【0021】[0021]

【実施例】以下本発明を実施例、比較例によって説明す
る。 《実施例1》住友化学工業(株)のポリエーテルサルホ
ン樹脂:ビクトレックスPES4100G(Tg=22
6℃)を溶融押し出し法で、ダイリップ先端ゾーンをフ
ィルムが流れる間隙を除き遮蔽し、0.8×105Pa
の減圧下にし、ダイリップ先端樹脂温度(290℃)よ
り−45℃の雰囲気温度でフィルム化した。得られたフ
ィルムの特性を表1に示す。このフィルムをLMD/LTD
=11、処理温度を206℃、ライン速度を1.0M/
min、フィルム張力を1.0kg/巾(フィルム巾:
630mm)の条件で連続処理した。熱処理後のポリエ
ーテルサルホンフィルムの特性を表1に示す。
The present invention will be described below with reference to examples and comparative examples. << Example 1 >> Polyethersulfone resin of Sumitomo Chemical Co., Ltd .: Victrex PES4100G (Tg = 22)
6 ° C.) by a melt extrusion method to shield the die lip tip zone except for the gap where the film flows, and 0.8 × 10 5 Pa
, And formed into a film at an ambient temperature of -45 ° C from the resin temperature of the die lip tip (290 ° C). Table 1 shows the properties of the obtained film. This film is called L MD / L TD
= 11, processing temperature of 206 ° C, line speed of 1.0 M /
min, the film tension is 1.0 kg / width (film width:
630 mm). Table 1 shows the properties of the polyethersulfone film after the heat treatment.

【0022】《実施例2》実施例1と同様な方法により
0.9×105Paの減圧下にし、ダイリップ先端樹脂
温度(290℃)より−90℃の雰囲気温度でフィルム
化した。得られたフィルムの特性を表1に示す。このフ
ィルムをLMD/LTD=11、処理温度を216℃、ライ
ン速度を1.0M/min、フィルム張力を1.2kg
/巾(フィルム巾:630mm)の条件で連続処理し
た。熱処理後のポリエーテルサルホンフィルムの特性を
表1に示す。
Example 2 A film was formed under the reduced pressure of 0.9 × 10 5 Pa in the same manner as in Example 1 at an atmosphere temperature of −90 ° C. from the resin temperature of the die lip tip (290 ° C.). Table 1 shows the properties of the obtained film. LMD / LTD = 11, processing temperature of 216 ° C., line speed of 1.0 M / min, film tension of 1.2 kg
/ Width (film width: 630 mm). Table 1 shows the properties of the polyethersulfone film after the heat treatment.

【0023】《実施例3》実施例1と同様な方法により
0.6×105Paの減圧下にし、ダイリップ先端樹脂
温度(290℃)より−90℃の雰囲気温度でフィルム
化した。得られたフィルムの特性を表1に示す。このフ
ィルムをLMD/LTD=23、処理温度を216℃、ライ
ン速度を0.4M/min、フィルム張力を1.2kg
/巾(フィルム巾:300mm)の条件で連続処理し
た。連続熱処理後ポリエーテルサルホンフィルムの特性
を表1に示す。
Example 3 A film was formed under the reduced pressure of 0.6 × 10 5 Pa in the same manner as in Example 1 and at an ambient temperature of -90 ° C. from the resin temperature of the die lip tip (290 ° C.). Table 1 shows the properties of the obtained film. LMD / LTD = 23, processing temperature of 216 ° C., line speed of 0.4 M / min, film tension of 1.2 kg
/ Width (film width: 300 mm). Table 1 shows the properties of the polyethersulfone film after the continuous heat treatment.

【0024】《比較例1》実施例1と同一ロットの材料
を用いたが、ダイリップ先端ゾーンを減圧下にはせず、
環境温度もコントロールせずフィルム化した。得られた
フィルムの特性を表1に示す。このフィルムをLMD/L
TD=23、処理温度を226℃、ライン速度を0.4M
/min、フィルム張力を1.2kg/巾(フィルム
巾:300mm)の条件で連続処理した。連続熱処理後
のポリエーテルサルホンフィルムの特性を表1に示すが
光学的位相差が確認され、得られたフィルムを透明電極
として実装した液晶表示パネルはコントラストが充分で
はなく視認性の良いものではなかった。
Comparative Example 1 Materials of the same lot as in Example 1 were used, but the die lip tip zone was not reduced under reduced pressure.
The film was formed without controlling the ambient temperature. Table 1 shows the properties of the obtained film. This film is LMD / L
TD = 23, process temperature 226 ° C, line speed 0.4M
/ Min at a film tension of 1.2 kg / width (film width: 300 mm). The properties of the polyethersulfone film after the continuous heat treatment are shown in Table 1. The optical retardation was confirmed, and the liquid crystal display panel using the obtained film as a transparent electrode did not have sufficient contrast and good visibility. Did not.

【0025】《比較例2》実施例1と同様な方法により
0.8×105Paの減圧下にし、ダイリップ先端樹脂
温度(290℃)より−45℃の雰囲気温度でフィルム
化した。得られたフィルムの特性を表1に示す。このフ
ィルムをLMD/LTD=1、処理温度を206℃、ライン
速度を1.0M/min、フィルム張力を1.0kg/
巾(フィルム巾:630mm)の条件で連続熱処理し
た。連続熱処理後のポリエーテルサルホンフィルムの特
性を表1に示すが、熱処理の効果は認められないもので
あった。得られたフィルムを透明電極として実装した液
晶表示パネルは透過光の偏光状態に偏差が生じ、コント
ラストが不十分で視認性の良いものではなかった。
COMPARATIVE EXAMPLE 2 A film was formed in the same manner as in Example 1 under a reduced pressure of 0.8 × 10 5 Pa at an ambient temperature of -45 ° C. from the die lip tip resin temperature (290 ° C.). Table 1 shows the properties of the obtained film. This film was subjected to L MD / L TD = 1, processing temperature of 206 ° C., line speed of 1.0 M / min and film tension of 1.0 kg / min.
Continuous heat treatment was performed under the condition of a width (film width: 630 mm). Table 1 shows the properties of the polyethersulfone film after the continuous heat treatment, but no effect of the heat treatment was observed. In a liquid crystal display panel in which the obtained film was mounted as a transparent electrode, a deviation occurred in the polarization state of transmitted light, and the contrast was insufficient and the visibility was not good.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明により光学的異方性が小さく、屈
折率楕円体の光学的主軸の均一な耐熱性光学用フィルム
を連続で作製することができ、液晶表示素子加工におい
てもフィルム電極全面を有効に使用してパネルを量産化
することができる。また、本発明により得られた耐熱性
光学用フィルムはフレキシブル液晶表示素子用透明電極
フィルムとして液晶表示パネルに実装した場合に表示ム
ラのない高精細な表示を示した。
According to the present invention, a heat-resistant optical film having a small optical anisotropy and a uniform optical principal axis of a refractive index ellipsoid can be continuously produced. Can be used effectively to mass-produce panels. In addition, when the heat-resistant optical film obtained by the present invention was mounted on a liquid crystal display panel as a transparent electrode film for a flexible liquid crystal display element, a high-definition display without display unevenness was exhibited.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // B29K 81:00 B29L 7:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // B29K 81:00 B29L 7:00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガラス転移点が190℃以上である熱可
塑性樹脂を押し出し法にてフィルム化する際に、リップ
先端のゾーンを1.013×105Pa未満の減圧下に
し、かつ雰囲気温度をダイスリップ先端樹脂温度より−
100℃以内に保って成形することを特徴とする光学用
フィルムの製造方法。
When a thermoplastic resin having a glass transition point of 190 ° C. or more is formed into a film by an extrusion method, the zone at the tip of the lip is reduced under a reduced pressure of less than 1.013 × 10 5 Pa, and the atmospheric temperature is reduced. From the resin temperature at the tip of the die slip
A method for producing an optical film, wherein molding is performed while keeping the temperature within 100 ° C.
【請求項2】 押し出されたフィルムを2本のロールの
間で、流れ方向に一定の張力を掛けて熱処理する際、2
本のロールの間隔がフィルムの幅より大きく、かつフィ
ルムの線膨張率が上昇する温度からフィルムのガラス転
移点より低い温度内で熱処理することを特徴とする請求
項1記載の光学用フィルムの製造方法。
2. Extruded film is heat-treated between two rolls by applying a constant tension in the flow direction.
2. The optical film production according to claim 1, wherein the heat treatment is performed within a temperature range from the temperature at which the distance between the rolls of the book is greater than the width of the film and the linear expansion coefficient of the film is lower than the glass transition point of the film. Method.
【請求項3】 該熱処理後のフィルム面内の複屈折率が
1×10-4以下で、かつ熱処理後のフィルム面内の屈折
率楕円体の光学的主軸の振れ幅が±10°以下であるこ
とを特徴とする請求項1または2記載の光学用フィルム
の製造方法。
3. The film after heat treatment has an in-plane birefringence of 1 × 10 −4 or less, and the width of the optical principal axis of the refractive index ellipsoid in the film after heat treatment has a fluctuation of ± 10 ° or less. 3. The method for producing an optical film according to claim 1, wherein:
【請求項4】 該熱処理後のフィルム厚み方向の複屈折
率が1×10-3以下で、かつ熱処理後のフィルム厚み方
向の屈折率楕円体の光学的主軸の振れ幅が±10゜以下
であることを特徴とする請求項1、2または3記載の光
学用フィルムの製造方法。
4. The method according to claim 1, wherein the birefringence in the film thickness direction after the heat treatment is 1 × 10 −3 or less, and the fluctuation width of the optical principal axis of the refractive index ellipsoid in the film thickness direction after the heat treatment is ± 10 ° or less. The method for producing an optical film according to claim 1, wherein:
【請求項5】 該熱可塑性樹脂がポリサルホン、ポリエ
ーテルサルホン、ポリエーテルイミド及びポリアリレー
トの群から選ばれる少なくとも一種であることを特徴と
する請求項1、2、3または4記載の光学用フィルムの
製造方法。
5. The optical element according to claim 1, wherein the thermoplastic resin is at least one selected from the group consisting of polysulfone, polyethersulfone, polyetherimide, and polyarylate. Film production method.
JP24732996A 1996-09-19 1996-09-19 Manufacturing method of optical film Expired - Fee Related JP3313033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24732996A JP3313033B2 (en) 1996-09-19 1996-09-19 Manufacturing method of optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24732996A JP3313033B2 (en) 1996-09-19 1996-09-19 Manufacturing method of optical film

Publications (2)

Publication Number Publication Date
JPH1086208A true JPH1086208A (en) 1998-04-07
JP3313033B2 JP3313033B2 (en) 2002-08-12

Family

ID=17161790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24732996A Expired - Fee Related JP3313033B2 (en) 1996-09-19 1996-09-19 Manufacturing method of optical film

Country Status (1)

Country Link
JP (1) JP3313033B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060508A (en) * 2000-08-22 2002-02-26 Sumitomo Bakelite Co Ltd Polymer sheet and method for producing polymer sheet and liquid crystal display device
JP2002059472A (en) * 2000-08-22 2002-02-26 Sumitomo Bakelite Co Ltd Polymer sheet, manufacturing method therefor and liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060508A (en) * 2000-08-22 2002-02-26 Sumitomo Bakelite Co Ltd Polymer sheet and method for producing polymer sheet and liquid crystal display device
JP2002059472A (en) * 2000-08-22 2002-02-26 Sumitomo Bakelite Co Ltd Polymer sheet, manufacturing method therefor and liquid crystal display device
JP4491121B2 (en) * 2000-08-22 2010-06-30 住友ベークライト株式会社 Polymer sheet, polymer sheet manufacturing method, and liquid crystal display device

Also Published As

Publication number Publication date
JP3313033B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
JP7397813B2 (en) Protective films for polarizers, polarizing plates containing the same, and displays provided using them
JPH09239812A (en) Production of optical film and optical film
JP2013178576A (en) Optical film and method of manufacturing the same
JP3313033B2 (en) Manufacturing method of optical film
JP2003167121A (en) Polycarbonate optical retardation film and method for manufacturing the same
JP2008257231A (en) Manufacturing method of negative a plate, negative a plate, polarizing plate and liquid crystal display apparatus using the same
JPH10264237A (en) Stock roll for manufacture of optical film, and manufacture thereof
JP3078450B2 (en) Method for producing heat-resistant optical film, heat-resistant optical film, and liquid crystal display panel using the same
JP3035204B2 (en) Method for producing heat-resistant optical film, heat-resistant optical film, and liquid crystal display panel using the same
JP2001079929A (en) Method and apparatus for producing thermoplastic polymer sheet
JP3719761B2 (en) Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same
KR101029620B1 (en) Method for preparing optical films having uniform retardation value
JP2005316094A (en) Birefringent film, production method of birefringent film, elliptically polarizing plate, polarizing plate and liquid crystal display
JP2009119796A (en) Thermoplastic resin film, its forming method, polarizing plate, optical compensation film, antireflection film, and liquid crystal display
JPH0815524A (en) Production of heat resistant optical film and heat resistant optical film and liquid crystal display panel using the same
JP3675541B2 (en) Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same
JP3417696B2 (en) Plastic film and method of manufacturing the same
JPH09178936A (en) Production of optical compensation film, optical compensation film and liquid crystal display element formed by using the same
JP2003033962A (en) Method for producing thermoplastic resin film and substrate for display element using the same
JPH0511111A (en) Production of phase difference plate
JPH07168169A (en) Heat resistant optical film and liquid crystal display panel using the same
JP2000009934A (en) Production of phase difference plate
JP2003302522A (en) Optical polymer sheet, method for manufacturing the same, and optical recording material and liquid crystal display panel using the sheet
JP4366771B2 (en) Method for producing thermoplastic polymer sheet
JP2000239408A (en) Optical sheet and liquid crystal display device using same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140531

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees