JPH1084643A - Open current detector for current breaker - Google Patents

Open current detector for current breaker

Info

Publication number
JPH1084643A
JPH1084643A JP8239479A JP23947996A JPH1084643A JP H1084643 A JPH1084643 A JP H1084643A JP 8239479 A JP8239479 A JP 8239479A JP 23947996 A JP23947996 A JP 23947996A JP H1084643 A JPH1084643 A JP H1084643A
Authority
JP
Japan
Prior art keywords
circuit
current
relay
detection
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP8239479A
Other languages
Japanese (ja)
Inventor
Keiichi Murakami
慶一 村上
Yukito Kanai
幸人 金井
Masahiko Nakamura
雅彦 中村
Shinzo Furuya
信造 古屋
Shinichi Okada
信一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
EIRAKU DENKI KK
Original Assignee
East Japan Railway Co
EIRAKU DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co, EIRAKU DENKI KK filed Critical East Japan Railway Co
Priority to JP8239479A priority Critical patent/JPH1084643A/en
Publication of JPH1084643A publication Critical patent/JPH1084643A/en
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to provide a more compact circuit breaker and to constitute the circuit with stationary parts such as an integrated circuit, by providing coils respectively for taking out the differentiated value of an open current of the circuit breaker during the operation for each protection relay for overcurrent detection and short-circuit detection, and by triggering the differentiated value at the initial stage of current rise. SOLUTION: In each protection relay, an open current of a circuit breaker during operation is applied through a coil 21 and taken out by triggering an initial differential voltage of rising, its minus region is removed by a rectifier circuit 22 and then input to a comparator 25 through an amplifier 23. Then, the presence or absence of open current is judged by a comparator 25, the time width of the output voltage waveform of the comparator 25 is extended by a timer 26 and is transmitted to a remote monitor controller through an optical relay 27.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力設備におけ
る故障状態監視を細分化し、故障状態を従来以上に具体
的に把握しうる装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for subdividing fault condition monitoring in electric power equipment, so that the fault condition can be grasped more specifically than before.

【0002】[0002]

【従来の技術】[Prior art]

1)ここで言う電力設備とは、複数の電力系統(例え
ば、信濃川電力系統、只見川電力系統など)を含めた総
合的な設備を指す。電力系統とは、電力の需要に応じる
ため電源(水力、火力、原子力発電所など)から、電力
輸送設備(変電所、送電線、配電線)を経て、負荷(例
えば、都市、工場、電気鉄道など)に至るまでの、総て
の要素が有機的に密接に連係され、電力の発生から消費
までに関与する設備の総称である。電力系統は、その神
経系統に相当する通信設備、遠隔監視設備、自動制御設
備などを併せ持っている。発電所と負荷との間を高電圧
送電線で連結する送電系統は、一般に放射状系統に構築
される。系統の規模の増大に伴い、送電安定度、信頼度
を向上させるために、受電端、又は中間地点で、他の隣
接する電力系統と連係させることがある。これらの系統
を合理的に運用管理するためには、各系統の状態をリア
ルタイムで広域的に把握し、適切な対応をすることが必
須の要件として要求される。これらの多数の設備を集中
的に運用管理する機関を、一般に制御所と呼ぶ。制御所
は送電端側、受電端側、又はその中間の何れに設けても
よい。制御所には、管轄する電力系統の状況を表示する
ための、監視盤が置かれている。監視盤は管轄する電力
系統の状況を表示するものであって、それらの状況を系
統図盤、計器盤そのもので表示させるか、又はその機能
の一部をコンピュータ制御の下でCRTの画面に、発電
機、変圧器、開閉装置等を映像の形で表示させる。これ
らの電力系統を通信設備系統の観点から見ると、現場に
おける監視対象とされる設備毎に通信子局があり、制御
所にはその通信子局が属する電力系統専用の通信親局が
ある。 2)現場電力設備に置かれた配電盤の表示を、制御所に
置かれた遠方監視制御装置に伝達する手段の原形、つま
り従来の手段を図2に示す。同図において、1RはR相
過電流保護継電器、2TはT相過電流保護継電器、3R
はR相短絡検出保護継電器、4TはT相短絡検出保護継
電器、5は過電流検出の集約継電器と動作残留表示器、
5aは過電流検出の動作を記憶し継続して導通する接
点、6は短絡検出の集約継電器と動作残留表示器、6a
は短絡検出の動作を記憶し継続して導通する接点、7は
過電流と短絡検出の集約継電器、27aは7の動作で導
通する接点(時限復帰する)、28は遠方監視制御装置
表示入力、9はベル警報回路、10は遮断器開放用ソレ
ノイド、そして11は遮断器閉で導通する接点である。
1) The power equipment referred to here refers to comprehensive equipment including a plurality of power systems (for example, Shinanogawa power system, Tadamigawa power system, etc.). A power system is a system that responds to power demand from power sources (hydro, thermal, nuclear power plants, etc.), through power transport facilities (substations, transmission lines, distribution lines), and loads (eg, cities, factories, electric railways). ) Is a generic term for equipment in which all elements are organically closely linked and are involved from the generation to consumption of electric power. The power system has communication equipment, remote monitoring equipment, automatic control equipment, and the like corresponding to the neural system. The transmission system that connects the power plant and the load with a high-voltage transmission line is generally constructed in a radial system. As the scale of the system increases, the system may be linked to another adjacent power system at the receiving end or at an intermediate point in order to improve the transmission stability and reliability. In order to operate and manage these systems rationally, it is necessary to grasp the status of each system in a wide area in real time and take appropriate measures as essential requirements. An organization that centrally manages these many facilities is generally called a control center. The control station may be provided on the power transmission end side, the power reception end side, or any intermediate position therebetween. The control station has a monitoring panel for displaying the status of the power system under its jurisdiction. The monitoring panel displays the status of the electric power system under its control, and the status is displayed on the system diagram panel or the instrument panel itself, or a part of the function is displayed on the CRT screen under computer control. Display generators, transformers, switchgear, etc. in the form of images. When these power systems are viewed from the viewpoint of the communication equipment system, there is a communication slave station for each equipment to be monitored at the site, and the control station has a communication master station dedicated to the power system to which the communication slave station belongs. 2) FIG. 2 shows the original form of the means for transmitting the display of the switchboard placed on the site power equipment to the remote monitoring control device placed at the control center, that is, the conventional means. In the figure, 1R is an R-phase overcurrent protection relay, 2T is a T-phase overcurrent protection relay, 3R
Is an R-phase short-circuit detection protection relay, 4T is a T-phase short-circuit detection protection relay, 5 is an integrated relay for overcurrent detection and an operation residual indicator,
5a is a contact that stores the operation of overcurrent detection and is continuously conductive, 6 is an integrated relay and short-circuit detection residual operation indicator, 6a
Is a contact that stores the operation of short-circuit detection and is continuously conductive; 7 is an integrated relay for overcurrent and short-circuit detection; 9 is a bell alarm circuit, 10 is a solenoid for opening a circuit breaker, and 11 is a contact which conducts when the circuit breaker is closed.

【0003】図2の方法では保護継電器1R、2T、3
R、4Tの動作電流は、何れも集約継電器7に集約され
て流れ、単に流れたという状況表示のみが遠方監視制御
装置28の表示入力として送られるので、表示された電
力設備の故障現象が過負荷によるもの(保護継電器1
R、2Tの動作)であるか、又は短絡によるもの(保護
継電器3R、4Tの動作)であるかの細分された表示が
なされることなく、運用を担当する制御所に伝達してい
るので、制御所では故障の実態が把握できず不便であっ
た。
In the method shown in FIG. 2, the protection relays 1R, 2T, 3
Since the operating currents of R and 4T are all collected in the centralized relay 7 and flow, and only the status indication of the flow is sent as the display input of the remote monitoring control device 28, the displayed failure phenomenon of the power equipment is excessive. By load (protection relay 1
R, 2T) or a short-circuit (operation of the protective relays 3R, 4T) without being subdivided, and is transmitted to the control station in charge of the operation. The control station was inconvenient because the actual situation of the failure could not be grasped.

【0004】図2の方法を改良して、少なくとも保護継
電器1R、2T、3R、4Tの状態を区分して伝達しう
るように、保護継電器毎に表示用二捲線リレーを各一個
宛取付ける改良を、従来の延長線上で行った構成が図3
の回路である。これを示す図3において、32R、32
aはR相過電流表示用二捲線リレーと接点、33T、3
3aはT相過電流表示用二捲線リレーと接点、34R、
34aはR相短絡表示用二捲線リレーと接点、そして3
5T、35aはT相短絡表示用二捲線リレーと接点であ
る。
[0004] By improving the method of FIG. 2, at least one two-winding display relay is provided for each protection relay so that the state of each of the protection relays 1R, 2T, 3R, and 4T can be separately transmitted. FIG. 3 shows a configuration performed on a conventional extension line.
Circuit. In FIG. 3 showing this, 32R, 32
a is an R-phase overcurrent display two-winding relay and a contact, 33T, 3
3a is a T-phase overcurrent display two-winding relay and a contact, 34R,
34a is a two-winding relay and a contact for R-phase short-circuit indication, and 3
5T and 35a are two-winding relays for T-phase short-circuit display and contacts.

【0005】前記の二つの回路に共通して使用される二
捲線リレーの詳細は、例えば、図4に示すとおり共通の
鉄心にピックアップコイル7A及びホールドコイル7B
と、少なくとも二つの接点を設けた二捲線リレーであ
る。図4において、7Aは一次(ピックアップ)コイル
0.14Ω、7Bは二次(ホールド)コイル2,000
Ω、19は二次コイル短絡用接点、そして20は遠方制
御用表示a接点である。但し、動作時間は、約10ms、
復帰時間は約150msである。
The details of the two-winding relay commonly used in the above two circuits are described in, for example, FIG.
And a two-winding relay provided with at least two contacts. In FIG. 4, 7A is a primary (pickup) coil of 0.14Ω, and 7B is a secondary (hold) coil of 2,000.
Ω, 19 is a secondary coil short-circuit contact, and 20 is a remote control display a contact. However, the operation time is about 10 ms,
The recovery time is about 150 ms.

【0006】3)上記の回路の動作について説明する。
保護継電器1R、2T、3R、4Tの何れかが動作する
と、遮断器の開放用ソレノイド10に開放電流を供給す
るが、約60ms経過して遮断器が開放されると開放電流
もなくなり、故障を検出した保護継電器の動作が復帰す
る。また保護継電器の動作状態を制御所に伝達する遠方
監視制御装置28、又は8は、他の電気所との同時競合
連絡に対応するために、配電盤保護装置からの入力信号
の時間を100ms以上の一定時間継続するように規定し
ている。したがって開放電流検出器7の機能は約60ms
の時間内に開放電流を検出し、その出力接点は100ms
以上の一定時間継続して導通することが要求されてい
る。
3) The operation of the above circuit will be described.
When any one of the protection relays 1R, 2T, 3R, 4T operates, an open current is supplied to the open solenoid 10 of the circuit breaker. The operation of the detected protection relay is restored. In addition, the remote monitoring control device 28 or 8 that transmits the operation state of the protection relay to the control station, in order to cope with simultaneous competition communication with other electric stations, sets the input signal time from the switchboard protection device to 100 ms or more. It is stipulated to continue for a certain period of time. Therefore, the function of the open current detector 7 is about 60 ms.
Open current is detected within the time of
Conduction is required to be continued for the above-mentioned fixed time.

【0007】4)二捲線リレーの一次(ピックアップ)
コイル7Aは約0.14Ωの低抵抗で、故障電力を遮断
する遮断器の引き外し用ソレノイド10の電流を許容す
る電流容量を具備している。検出時間は約10msであ
る。二次(ホールド)コイル7Bは捲回数の多いコイル
で、その回路には動作する接点19によって二次コイル
を短絡するように接続しておくと、一次のコイル電流が
遮断器の開放により無くなって二捲線リレーが復帰する
時に、共通鉄心の磁気を緩慢に減少させるので、接点2
0の導通時間が約150msに延長される。
4) Primary (pickup) of two-winding relay
The coil 7A has a low resistance of about 0.14Ω, and has a current capacity for allowing a current of the tripping solenoid 10 of the circuit breaker for interrupting the fault power. The detection time is about 10 ms. The secondary (hold) coil 7B is a coil having a large number of turns. If the secondary coil is short-circuited to the circuit by operating contacts 19, the primary coil current is lost by opening the circuit breaker. When the two-winding relay returns, the magnetism of the common iron core is slowly reduced.
The conduction time of 0 is extended to about 150 ms.

【0008】5)直流電流の検出にはホール素子を開放
電流の磁束と鎖交させる方法が一般に使われている。図
5がホール素子により開放電流を検出する回路である。
保護継電器の1R、2T、3R、4Tの各個にC型の鉄
心40とホール素子40−1とにより開放電流を検出し
て、その出力時間を伸長すれば保護継電器の細分化した
動作表示ができる。図において、40はC型鉄心、40
−1はC型鉄心40のギャップに挿入されたホール素
子、41はR相過電流動作ホール検出器、41aは検出
出力接点(電力用MOS接点)、42はT相過電流動作
ホール検出器、42aは検出出力接点、43はR相短絡
動作ホール検出器、43aは検出出力接点、44はT相
短絡動作ホール検出器、44aは検出出力接点、16、
41〜44は共通電源回路である。
5) A method of linking a Hall element with a magnetic flux of an open current is generally used for detecting a direct current. FIG. 5 shows a circuit for detecting an open current by a Hall element.
If the open current is detected by the C-shaped iron core 40 and the Hall element 40-1 in each of the protection relays 1R, 2T, 3R, and 4T, and the output time is extended, the operation display of the protection relay can be segmented. . In the figure, 40 is a C-shaped iron core, 40
-1 is a Hall element inserted in the gap of the C-shaped iron core 40, 41 is an R-phase overcurrent operation Hall detector, 41a is a detection output contact (power MOS contact), 42 is a T-phase overcurrent operation Hall detector, 42a is a detection output contact, 43 is an R-phase short-circuit operation hole detector, 43a is a detection output contact, 44 is a T-phase short-circuit operation hole detector, 44a is a detection output contact, 16,
41 to 44 are common power supply circuits.

【0009】[0009]

【発明が解決しようとする課題】[Problems to be solved by the invention]

1)図3の二捲線リレーを使用した既設配電盤の改良に
は下記の欠点がある。 1.リレーの寸法が大きいのと、接点機構の保護のため
にリレー収納のケースが必要となり占有する空間の寸法
が大きく既設配電盤の改良が困難になる。その概略の大
きさを示すと、単体寸法は縦130mm、横80mm、深さ
132mmであり、4回路収納して縦235mm、横168
mm、深さ179mm程になる。 2.可動部分があるリレーの使用を廃止して静止化をし
たい。 3.二捲線リレーは特殊のリレーであるから入手しにく
い。しかも、将来製造中止になる可能性がある。
1) The improvement of the existing switchboard using the two-winding relay shown in FIG. 3 has the following disadvantages. 1. When the size of the relay is large, a case for storing the relay is required to protect the contact mechanism, and the space occupied by the relay is large, making it difficult to improve the existing switchboard. Roughly, the dimensions are 130 mm in height, 80 mm in width and 132 mm in depth. Four circuits are stored and 235 mm in length and 168 in width.
mm and a depth of about 179 mm. 2. I want to abolish the use of relays with moving parts and make them stationary. 3. Two-winding relays are difficult to obtain because they are special relays. Moreover, there is a possibility that production will be discontinued in the future.

【0010】2)ホール素子を使用した既設配電盤の改
良には下記の欠点がある。 1.ホール素子を使用し、開放回路に割り入れを避けて
開放電流を検出するためには40−1のホール素子を4
0のC型鉄心の磁気回路の空隙に挿入して開放電流によ
る磁界の強さを取り出して検出する。C型鉄心、増幅回
路、定電流回路等の本発明以上の多くの部品が必要にな
る。 2.ホール素子により検出した開放電流は図6の左上に
示す波形31のように(解放電流と相似の)変化率の少
ない波形でトリガーとして取り出すための判定器の、判
定レベルを引き下げる必要があり、雑音電圧による誤動
作が起きやすくなる。 3.ホール素子により開放電流を検出しても、開放電流
の時間幅を伸長させて出力するタイマー回路も必要にな
る。
2) The improvement of the existing switchboard using the Hall element has the following disadvantages. 1. In order to use a Hall element and detect an open current while avoiding an interrupt in an open circuit, 40-1 Hall elements must be used.
0 is inserted into the air gap of the magnetic circuit of the C-shaped iron core to extract and detect the strength of the magnetic field due to the open current. Many components such as a C-type iron core, an amplifier circuit, a constant current circuit, and the like are required. 2. The open circuit current detected by the Hall element needs to be lowered in the determination level of a determiner for extracting as a trigger a waveform having a small change rate (similar to the open current) as shown by a waveform 31 shown in the upper left of FIG. Malfunction due to voltage is likely to occur. 3. Even if the opening current is detected by the Hall element, a timer circuit for extending and outputting the time width of the opening current is required.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

1)各保護継電器1R、2T、3R、4Tに対し、その
動作時の遮断器の開放電流の微分値を取り出すコイル2
1を夫々設ける(図1参照)。そして各コイルに開放電
流を貫通させて夫々取り出すようにする。 2)通常、遮断器開放用ソレノイド10はインダクタン
スが大きく、抵抗値一定の範囲内にあるので、開放電流
の立上がり初期の微分値は図6の左上2番目の波形32
に示すように一定の方向に大きく変化していることに着
目し、この立上がり初期の微分値をトリガーとするため
の手段を以下のように構成した。
1) For each protection relay 1R, 2T, 3R, 4T, a coil 2 for taking out the differential value of the open circuit current of the circuit breaker during its operation
1 are provided (see FIG. 1). Then, an open current is passed through each coil to take out each of them. 2) Normally, since the breaker opening solenoid 10 has a large inductance and is within a constant resistance value, the differential value of the opening current at the beginning of the rise is the second waveform 32 in the upper left of FIG.
Focusing on a large change in a certain direction as shown in (1), means for triggering the differential value at the beginning of rising as a trigger were configured as follows.

【0012】3)コイルに誘起された波形32の電圧
を、整流器と演算増幅器等で構成する整流回路22によ
り、開放電流の正方向の立上がり初期の微分値のみ判定
に利用するようにした。 4)判定に必要な電圧レベルまで増幅する演算増幅器2
3を設けた。 5)判定器25には基準電圧と、前記のハ.とニ.の経
過を経た波形33とが入力されて、開放電流の有無を比
較判定する。基準電圧は、可変抵抗器24(図8のVR
1〜VR4)で調整できるので、使用先の遮断器の開放
電流の固有の値に対応できる。 6)判定器による開放電流有りの出力をトリガーとし
て、一定時間継続する直流電圧に加工するタイマ回路2
6が動作して、遠方監視制御装置8に必要な一定の導通
時間を確保する。タイマ回路の時定数を選択することに
より、遠方監視制御装置8に必要な導通時間を任意に設
計できる。
3) The voltage of the waveform 32 induced in the coil is used by the rectifier circuit 22 composed of a rectifier and an operational amplifier or the like to determine only the differential value of the opening current in the initial rising of the positive direction. 4) Operational amplifier 2 for amplifying to the voltage level required for determination
3 were provided. 5) The reference voltage is applied to the decision unit 25, and And d. Is inputted, and the presence or absence of the open current is compared and determined. The reference voltage is a variable resistor 24 (VR in FIG. 8).
1 to VR4), it is possible to cope with the inherent value of the open current of the circuit breaker used. 6) A timer circuit 2 for processing into a DC voltage that continues for a certain period of time, triggered by an output indicating that there is an open current by the determiner.
6 operates to ensure a constant conduction time required for the remote monitoring and control device 8. By selecting the time constant of the timer circuit, the conduction time required for the remote monitoring control device 8 can be arbitrarily designed.

【0013】7)タイマ回路26の出力を発光ダイオー
ドに供給することにより、MOS光リレー27(詳細は
後記)を動作させ、この装置の電源とは絶縁された電圧
信号にして遠方監視制御装置8に伝達する。 8)構成する部品に集積回路部品を採用すると、電源部
分を含めて4回路分を一つの筐体に収納して体積の圧縮
が可能である(図8参照)。 9)回路部品はすべて静止形に置換できる。 10)電源回路に濾波器を設け誤動作を避ける。 11)判定の基準電圧をつくる可変抵抗器24(図8のV
R1〜VR4)は、筐体の外側にて調整できるように配
置した。
7) By supplying the output of the timer circuit 26 to the light emitting diode, the MOS optical relay 27 (to be described in detail later) is operated, and a voltage signal insulated from the power supply of this device is converted to a remote monitoring control device 8 To communicate. 8) When an integrated circuit component is used as a component, the volume can be reduced by housing four circuits including the power supply portion in one housing (see FIG. 8). 9) All circuit components can be replaced with static ones. 10) Provide a filter in the power supply circuit to avoid malfunction. 11) A variable resistor 24 (V in FIG. 8) for creating a reference voltage for judgment
R1 to VR4) are arranged so as to be adjustable outside the housing.

【0014】本発明に従って4回路収納したとき、縦1
26mm、横230mm、深さ40mm、体積は1159.2
cm3 に納まった。しかし、従来の技術で4回路収納する
と、少なくとも縦235mm、横168mm、深さ179mm
で、体積は7066.9cm3の大きさになった。したが
って本発明によれば体積比としては、約1/6のコンパ
クト化が実現される。
When four circuits are stored according to the present invention,
26mm, width 230mm, depth 40mm, volume 1159.2
subsided to cm 3. However, if four circuits are accommodated by the conventional technology, at least 235 mm in length, 168 mm in width, and 179 mm in depth
The volume became 7066.9 cm 3 . Therefore, according to the present invention, the volume ratio can be reduced to about 1/6.

【0015】[0015]

【実施例】図6は、図1に示す本発明の回路において例
えばR相過電流保護継電器1Rに直列接続された検出用
コイル21、同コイルの出力を受取るR相過電流動作検
出器12、同検出器の動作状態を表示する検出出力接点
12a等の詳細な回路構成に、その回路の主要部の電気
波形を添えて例示した図である。図6において、21は
開放電流の微分値を取り出すコイル、22はコイルに誘
起された電圧を整流して電流方向の判定に必要な電圧に
する回路、23は判定に必要な電圧レベルまで増幅する
演算増幅器(R2とR3の比率で増幅度は変更でき
る)、24は比較器の基準電圧を現地の開放電流の微分
値に調整する可変抵抗器、25は開放電流の有無を判定
する比較器、26は比較器の出力電圧の時間幅を伸長す
るタイマ、27はタイマの出力を遠方監視制御装置8に
伝達する光継電器、28は電源回路である。
FIG. 6 is a circuit diagram of the circuit of the present invention shown in FIG. 1, for example, a detection coil 21 connected in series to an R-phase overcurrent protection relay 1R, an R-phase overcurrent operation detector 12 receiving the output of the coil, FIG. 3 is a diagram illustrating a detailed circuit configuration of a detection output contact 12a and the like for displaying an operation state of the detector, with an electric waveform of a main part of the circuit added. In FIG. 6, reference numeral 21 denotes a coil for extracting a differential value of the open current, 22 a circuit for rectifying a voltage induced in the coil to generate a voltage necessary for determining the current direction, and 23 amplifying to a voltage level required for the determination. An operational amplifier (amplification degree can be changed by the ratio of R2 and R3), 24 is a variable resistor for adjusting the reference voltage of the comparator to a differential value of the local open current, 25 is a comparator for determining the presence or absence of the open current, 26 is a timer for extending the time width of the output voltage of the comparator, 27 is an optical relay for transmitting the output of the timer to the remote monitoring control device 8, and 28 is a power supply circuit.

【0016】保護継電器の動作時の遮断器の開放電流の
波形は遮断器開放用ソレノイド10の回路定数により波
形31に近似に定型化されている。この開放電流をコイ
ル21に貫通させて立上がり初期の微分電圧をトリガー
として取り出す手段をして検出する。コイル21の出力
微分電圧が波形32である。32のマイナス領域を整流
回路22によって取り除いたのち、増幅器23を経過し
比較器25の比較入力とした波形が33である。
The waveform of the open circuit current of the circuit breaker when the protection relay operates is approximated to the waveform 31 by the circuit constant of the circuit breaker opening solenoid 10. This open current is passed through the coil 21 and is detected by means for taking out the differential voltage at the initial rise as a trigger. The output differential voltage of the coil 21 is a waveform 32. After the minus region of 32 is removed by the rectifier circuit 22, the waveform passes through the amplifier 23 and becomes the comparison input of the comparator 25.

【0017】比較器25により開放電流の有無が判定さ
れる。波形34は比較器25の出力電圧、波形35は電
流検出器の出力電圧でタイマ26により時間幅を伸長さ
れている。開放電流の立上がりから波形35までの動作
時間は2msで、波形35の時間幅は112msで、電流検
出器の機能の動作時間責務を満足する。27は光リレー
の一実施例を示し、消費電力の小さい出力用光リレー
(光継電器)を利用して、タイマにより伸ばされた出力
を遠方監視制御装置8に伝達するようにしている。光を
受けるとMOSトランジスタが導通し、光がなくなると
遮断状態となる。光リレー27を利用すると、微弱電
流で開閉できる、一次側と二次側を絶縁して信号を伝
達できる、電磁リレーに生じ勝ちの接点チャッタリン
グ(振動)がない、微弱電流の開閉が容易、などの特
徴を有する。
The comparator 25 determines whether there is an open current. The waveform 34 is the output voltage of the comparator 25, and the waveform 35 is the output voltage of the current detector, the time width of which is extended by the timer 26. The operation time from the rise of the open current to the waveform 35 is 2 ms, and the time width of the waveform 35 is 112 ms, which satisfies the operation time duty of the function of the current detector. Reference numeral 27 denotes an embodiment of an optical relay, which uses an output optical relay (optical relay) with low power consumption to transmit the output extended by the timer to the remote monitoring control device 8. When light is received, the MOS transistor conducts, and when there is no light, the MOS transistor is turned off. When the optical relay 27 is used, it can be opened and closed with a weak current, can transmit a signal while isolating the primary side and the secondary side, there is no contact chattering (vibration) that is likely to occur in the electromagnetic relay, and it is easy to open and close the weak current. It has features such as.

【0018】図7において、31は開放電流の波形(最
大値4.6A)を示す。32は貫通コイル21に発生した
開放電流の微分電圧(最大値1.4V)を示す。33は整
流し増幅した増幅器23の出力電圧(最大値2.8V 増
幅率=2)を示す。34は比較器25の出力電圧(最大
値5V)を示す。35は光継電器27の出力電圧(最大値
108V)を示す。
In FIG. 7, reference numeral 31 denotes a waveform of the open current (the maximum value is 4.6 A). Reference numeral 32 denotes a differential voltage (maximum value: 1.4 V) of the open current generated in the through coil 21. Reference numeral 33 denotes the rectified and amplified output voltage of the amplifier 23 (maximum value: 2.8 V, amplification factor = 2). Reference numeral 34 denotes an output voltage (maximum value 5V) of the comparator 25. Reference numeral 35 denotes the output voltage of the optical relay 27 (maximum value 108 V).

【0019】本発明の装置の実施例の外観の3面図を図
8に示す。図中の図8(a)は図6に示す各相の回路を
4個まとめて一つのケースに収納した装置の平面図であ
る。図8(b)は正面図、図8(c)は側面図である。
例えば、図6において保護継電器1Rの開放電流は、検
出用コイル21を貫通し、その電流の微分値を端子1K
及び1Lに供給するようになっている。この端子1K、
1Lが図8(a)の上部左側のIN端子台の右端の端子
1K、1Lに相当する。保護継電器1Rの開放電流を検
出した結果は、図6の右端下側の端子COMおよびOU
Tから出力される。これらの端子が、図8(a)の右側
のOUT端子台の端子COM(共通)およびOUT1に
相当する。内蔵の4個の回路に共通した電力を供給する
のが、図6の右端にDC100Vと記載された端子P及
びNであり、これらが図8(a)の端子+、−にそれぞ
れ対応する。参照番号24が付された円形は、図6に示
した基準電圧調整用の可変抵抗器であって、内蔵の4回
路に各1個づつ、VR1〜VR4が割り当てられてい
る。第8図に例示した実施例装置の凡その寸法は、幅:
25cm、高さ:10cm、奥行き:4cm程度のコン
パクトなものであって、省スペースにも寄与するところ
が大である。この装置は、例えば電気鉄道用変電所の受
電用配電盤及び/又は配電用配電盤に設備して使用され
る。
FIG. 8 shows three external views of an embodiment of the apparatus of the present invention. FIG. 8A is a plan view of an apparatus in which four circuits of each phase shown in FIG. 6 are collectively housed in one case. FIG. 8B is a front view, and FIG. 8C is a side view.
For example, in FIG. 6, the open current of the protection relay 1R passes through the detection coil 21 and the differential value of the current is transmitted to the terminal 1K.
And 1L. This terminal 1K,
1L corresponds to the right end terminals 1K and 1L of the IN terminal block on the upper left side in FIG. 8A. The result of detecting the open current of the protection relay 1R is shown by the terminals COM and OU on the lower right side in FIG.
Output from T. These terminals correspond to the terminal COM (common) and OUT1 on the OUT terminal block on the right side of FIG. 8A. Terminals P and N indicated as 100 V DC at the right end of FIG. 6 supply common power to the four built-in circuits, which correspond to terminals + and − in FIG. 8A, respectively. The circle denoted by reference numeral 24 is the variable resistor for adjusting the reference voltage shown in FIG. 6, and VR1 to VR4 are assigned to each of the four built-in circuits. The approximate dimensions of the embodiment device illustrated in FIG.
It is as compact as about 25 cm, height: 10 cm and depth: about 4 cm, which greatly contributes to space saving. This device is used, for example, by installing it in a power distribution board and / or a power distribution board of an electric railway substation.

【0020】[0020]

【発明の効果】【The invention's effect】

1)この発明の電流検出器を使用すると、開放回路にコ
イル等の割り入れが無いので、改良工事に付随する電力
設備の故障時に遮断器の開放不能の危険状態の発生を未
然に抑止する。 2)この発明の4回路収納したものと従来の方式の4回
路収納したものを比較すると、体積比で約1/6に圧縮
できる。また配電盤の孔加工が不必要になり、随所に簡
単に取り付けられる。改良のための材料費と工事費が節
約できる。 3)電力系統の故障時に、制御所にて故障検出保護継電
器の細分化が早期に可能になる。保守要員が合理化でき
る。 4)構成部品が入手しやすい。 5)回路素子にMOS・ICを使用しているので消費電
力が少ない。
1) When the current detector according to the present invention is used, since there is no interruption of the coil or the like in the open circuit, the occurrence of a dangerous state in which the circuit breaker cannot be opened at the time of failure of the power equipment accompanying the improvement work is suppressed. 2) Comparing the four-circuit housing of the present invention with the conventional four-circuit housing, the volume ratio can be reduced to about 1/6. In addition, the drilling of the switchboard is not required, and the switchboard can be easily mounted anywhere. Material cost for improvement and construction cost can be saved. 3) In the event of a power system failure, the control center can quickly divide the failure detection protection relay. Maintenance staff can be streamlined. 4) Component parts are easily available. 5) Low power consumption because MOS-IC is used for the circuit element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の回路を示す概略図。FIG. 1 is a schematic diagram showing a circuit according to an embodiment of the present invention.

【図2】従来装置の回路の概略を示す図。FIG. 2 is a diagram schematically illustrating a circuit of a conventional device.

【図3】従来装置を従来技術の延長線上で改良を試みた
構成を示す図。
FIG. 3 is a diagram showing a configuration in which a conventional device is improved on an extension of the conventional technology.

【図4】二捲線リレーの構造を示す図。FIG. 4 is a diagram showing a structure of a two-winding relay.

【図5】ホール素子により開放電流の検出を試みた回路
を示す図。
FIG. 5 is a diagram showing a circuit in which an open current is detected by a Hall element.

【図6】図1において参照番号2、12で示すR相過電
流保護継電器1R関連回路部分の詳細、及びその回路の
主要部における信号波形を示す図。
FIG. 6 is a diagram showing details of a circuit portion related to the R-phase overcurrent protection relay 1R indicated by reference numerals 2 and 12 in FIG. 1 and signal waveforms in main parts of the circuit.

【図7】図6に示した各部の信号波形を、それらの時間
的相互関係がわかるように、時間軸を揃えて示した図。
FIG. 7 is a diagram showing signal waveforms of respective units shown in FIG. 6 with their time axes aligned so that their temporal correlation can be understood;

【図8】一つのケースにコンパクトに納まった本発明の
装置の外観を示す図。
FIG. 8 is a diagram showing the appearance of the device of the present invention compactly housed in one case.

【符号の説明】[Explanation of symbols]

1R:R相過電流保護継電器 2T:T相過電流保護継電器 3R:R相短絡検出保護継電器 4T:T相短絡検出保護継電器 5 :過電流検出の集約継電器と動作残留表示器 5a:過電流検出の動作を記憶し継続して導通する接点 6 :短絡検出の集約継電器と動作残留表示器 6a:短絡検出の動作を記憶し継続して導通する接点 7 :過電流と短絡検出を集約する二捲線リレー 7a:7の動作で導通し、時限復帰する接点 8 :遠方監視制御装置 9 :ベル警報回路 10 :遮断器開放用ソレノイド 11 :遮断器閉にて導通する接点 12、12a:R相過電流動作検出器と検出出力接点 13、13a:T相過電流動作検出器と検出出力接点 14、14a:R相短絡動作検出器と検出出力接点 15、15a:T相短絡動作検出器と検出出力接点 16、12〜15:共通電源回路 21: 検出用コイル 22: コイルの誘起された電圧を整流する回路 23: 判定に必要な電圧レベルまで増幅する演算増幅
器 24: 比較器の基準電圧を現地の開放電流の微分値に
調整する可変抵抗器 25: 開放電流の有無を判定する比較器 26: 比較器の出力電圧の時間幅を伸長するタイマ 27: タイマの出力を遠方監視制御装置8に伝達する
光リレー 28: 電源回路
1R: R-phase overcurrent protection relay 2T: T-phase overcurrent protection relay 3R: R-phase short-circuit detection protection relay 4T: T-phase short-circuit detection protection relay 5: Overcurrent detection integrated relay and operation residual indicator 5a: Overcurrent detection 6: An integrated relay for short-circuit detection and a residual operation indicator 6a: A contact for storing the operation of short-circuit detection and continuously conductive 7: Two windings for integrating over-current and short-circuit detection Relay 7a: Contact that conducts by operation of 7 and returns to time limit 8: Remote monitoring control device 9: Bell alarm circuit 10: Solenoid for opening circuit breaker 11: Contact that conducts when circuit breaker is closed 12, 12a: R-phase overcurrent Operation detector and detection output contact 13, 13a: T-phase overcurrent operation detector and detection output contact 14, 14a: R-phase short-circuit operation detector and detection output contact 15, 15a: T-phase short-circuit operation detector and detection output connection 16, 12 to 15: Common power supply circuit 21: Detection coil 22: Circuit for rectifying the induced voltage of the coil 23: Operational amplifier for amplifying to the voltage level necessary for determination 24: Opening the reference voltage of the comparator to the site A variable resistor that adjusts to the differential value of the current 25: A comparator that determines the presence or absence of an open current 26: A timer that extends the time width of the output voltage of the comparator 27: A light that transmits the output of the timer to the remote monitoring control device 8 Relay 28: Power supply circuit

フロントページの続き (72)発明者 中村 雅彦 東京都千代田区丸の内一丁目6番5号 東 日本旅客鉄道株式会社内 (72)発明者 古屋 信造 東京都品川区大崎一丁目19番1号 永楽電 気株式会社内 (72)発明者 岡田 信一 東京都品川区大崎一丁目19番1号 永楽電 気株式会社内Continued on the front page (72) Inventor Masahiko Nakamura 1-6-5 Marunouchi, Chiyoda-ku, Tokyo East Japan Railway Company (72) Inventor Shinzo Furuya 1-19-1 Osaki, Shinagawa-ku, Tokyo Eirakuden (72) Inventor Shinichi Okada 1-19-1, Osaki, Shinagawa-ku, Tokyo Eiraku Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 過電流検出用及び短絡検出用として相毎
に設けられた各保護継電器(例えば1R)に対して、個
別的に検出手段を設けて前記保護継電器の動作時の開放
電流の微分値を取り出すようにしたことと、前記検出手
段の出力電圧を整流し増幅する手段(例えば、22、2
3)と、電圧レベルの基準をセットするセット手段(2
4)と、前記増幅する手段及びセット手段の信号に基づ
いて判定する判定手段(25)と、判定された電圧を一
定時間継続する直流電圧に加工する手段(26)と、出
力を伝達する継電手段(27)とを組み合わせたことに
より、電力設備の故障を検出して動作した前記保護継電
器を個別に細分化して遠方監視制御装置(8)に伝達す
るようにしたこととを特徴とする電流検出器。
1. A protection device for each phase (for example, 1R) provided for each of an overcurrent detection and a short-circuit detection is provided with a detection unit to differentiate an open current when the protection relay operates. Means for taking out the value and means for rectifying and amplifying the output voltage of the detecting means (for example, 22, 2,
3) and setting means (2) for setting a voltage level reference.
4), a judging means (25) for judging based on the signals of the amplifying means and the setting means, a means (26) for processing the judged voltage into a DC voltage which continues for a certain period of time, and By combining with the electric means (27), the protection relay operated upon detecting the failure of the power equipment is individually subdivided and transmitted to the remote monitoring control device (8). Current detector.
【請求項2】 前記検出手段は検出用コイル(21)お
よび動作検出器(12)よりなることと、前記加工する
手段はタイマ(26)であることと、前記継電手段は光
リレー(27)であることとを特徴とする請求項1に記
載の電流検出器。
2. The detecting means comprises a detecting coil (21) and an operation detector (12); the processing means comprises a timer (26); and the relay means comprises an optical relay (27). 2. The current detector according to claim 1, wherein
JP8239479A 1996-09-10 1996-09-10 Open current detector for current breaker Ceased JPH1084643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8239479A JPH1084643A (en) 1996-09-10 1996-09-10 Open current detector for current breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8239479A JPH1084643A (en) 1996-09-10 1996-09-10 Open current detector for current breaker

Publications (1)

Publication Number Publication Date
JPH1084643A true JPH1084643A (en) 1998-03-31

Family

ID=17045393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8239479A Ceased JPH1084643A (en) 1996-09-10 1996-09-10 Open current detector for current breaker

Country Status (1)

Country Link
JP (1) JPH1084643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178475A (en) * 2009-01-28 2010-08-12 Chugoku Electric Power Co Inc:The Method and system for collectively and remotely monitoring switch
CN102662118A (en) * 2012-05-11 2012-09-12 河北省电力建设调整试验所 Recording mode-based stage difference coordination testing method for protective electrical equipment of direct current power system
CN111987733A (en) * 2020-08-10 2020-11-24 国网福建省电力有限公司检修分公司 High-voltage flexible straight submodule fault automatic positioning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178475A (en) * 2009-01-28 2010-08-12 Chugoku Electric Power Co Inc:The Method and system for collectively and remotely monitoring switch
CN102662118A (en) * 2012-05-11 2012-09-12 河北省电力建设调整试验所 Recording mode-based stage difference coordination testing method for protective electrical equipment of direct current power system
CN111987733A (en) * 2020-08-10 2020-11-24 国网福建省电力有限公司检修分公司 High-voltage flexible straight submodule fault automatic positioning device
CN111987733B (en) * 2020-08-10 2024-04-09 国网福建省电力有限公司超高压分公司 Automatic fault positioning device for high-voltage flexible straight submodule

Similar Documents

Publication Publication Date Title
US7242110B2 (en) Control system for canceling load unbalance of three-phase circuit
CN201945649U (en) Comprehensive test table for relay protector
KR101008956B1 (en) Monitoring system of substation using color data
KR100990736B1 (en) Switchgear protection and control to monitor the status of the protection system
CN108183462A (en) Electrical protection device for electrical equipment and electrical equipment
WO2003056587A1 (en) Fault current limiting system
US4156884A (en) Ground fault protection system for industrial power circuits
CN101714486A (en) Multi-function circuit interruption accessory
KR102058400B1 (en) Apparatus for discriminating instantaneous current in power grid line
JPH1084643A (en) Open current detector for current breaker
KR20120028254A (en) Remote power recovery system using telephone ring signal of an electronic exchanger
KR20230158346A (en) Bidirectional multi-function electronic earth leakage circuit breaker
KR102128036B1 (en) Arc protection system and method to control arc protection system
KR20180115451A (en) Digital electric distribution equipment for display of protective relay condition
CN113140971A (en) Anti-vibration high tension switchgear circuit breaker anti-jumping system
CN205992731U (en) A kind of arc light protecting system with selectivity trip avoidance function
CN102437520B (en) Control circuit board of power distribution cabinet
KR100532925B1 (en) Detection techniques of line-to-earth fault section in ungrounded network base on distribution automation
KR100268016B1 (en) Circuit breaker auxiliary switch
CN111969566A (en) Improved capacitor tripping device for high-voltage AC system
CN221806157U (en) Control device for mobile bank business booth
TWI691135B (en) Control display integrated device with display self-tripping power status
JPH08182220A (en) Overcurrent protective relay
KR101076015B1 (en) Distributing board for monitering connection state
KR100967618B1 (en) System for managing distributing board with dual-sequence apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20041130