JPH1084153A - Optical fiber for amplification use - Google Patents

Optical fiber for amplification use

Info

Publication number
JPH1084153A
JPH1084153A JP8237665A JP23766596A JPH1084153A JP H1084153 A JPH1084153 A JP H1084153A JP 8237665 A JP8237665 A JP 8237665A JP 23766596 A JP23766596 A JP 23766596A JP H1084153 A JPH1084153 A JP H1084153A
Authority
JP
Japan
Prior art keywords
optical fiber
wavelengths
gain
wavelength
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8237665A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Kawamura
樹寛 河村
実 ▲吉▼田
Minoru Yoshida
Hisashi Sawada
久 澤田
Takahide Sudo
恭秀 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP8237665A priority Critical patent/JPH1084153A/en
Publication of JPH1084153A publication Critical patent/JPH1084153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the gain difference between wavelengths of each light signal and also to enhanced conversion efficiency from the input of stimulation light to the output of the light signal in an optical amplifier by a method wherein La is doped to the interior of a core or the outer peripheral part of the core along with Er and Al and at the same time, each optical fiber for amplification use is set so as to have concentration redundant product, at which the gain differences between wavelengths of the light signals of each wavelength become smallest. SOLUTION: In the case where the light signal of a multiplexed wavelength is batch- amplified, the value of a concentration redundant product (CL), at which an gain difference between wavelengths of each light signal becomes smallest, exists in any optical fiber for amplification use regardless of the presence or absence of a boding of La. The gain differences between wavelengths of the respective light signal, become smallest at the places of a density redundant product CL1 =10.8kppm.m and a density redundant product CL2 =12.2kppm.m, which correspond to the position of the intersecting point of two broken lines, and moreover, in the respective gains of the optical fibers for amplification use, the gain of the optical fiber for amplification use, which is doped the La(lanthanum) along with Er and Al, is large. Accordingly, if the density redundant products of the optical fibers are previously set so as to become the optimum concentration redundant product (CL), the intensities of the wavelengths of the light signals become roughly the same intensity, the gain differences between wavelengths of the light signals are reduced and gain wavelength characteristics are obtained. As a result, a conversion efficiency from the input of excitation light to the output of the light signal in an optical amplifier can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波長多重化された
信号光を誘導放出効果によって円滑に一括増幅する場合
に適用される増幅用光ファイバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amplifying optical fiber which is used when a wavelength multiplexed signal light is smoothly and collectively amplified by a stimulated emission effect.

【0002】[0002]

【従来の技術】一般に、光通信システムにおいては、伝
送路の途中で減衰した信号光のパワーを増幅して再度、
光伝送路に送出するために、光増幅器が使用される。
2. Description of the Related Art In general, in an optical communication system, the power of signal light attenuated in the middle of a transmission line is amplified and re-amplified.
An optical amplifier is used to send the signal to an optical transmission line.

【0003】従来、このような光増幅器として、誘導放
出効果によって信号光を光電変換することなく直接に増
幅する増幅用光ファイバを用いたものが提供されてい
る。
Conventionally, as such an optical amplifier, an optical amplifier using an amplifying optical fiber for directly amplifying signal light without photoelectric conversion by the stimulated emission effect has been provided.

【0004】図4にこの種の光増幅器の構成を示す。FIG. 4 shows the configuration of this type of optical amplifier.

【0005】同図において、aは誘導放出効果に基づい
て信号光を直接増幅する増幅用光ファイバ、bは増幅用
光ファイバaをポンピングする励起光を発生するレーザ
ダイオード等の励起光源、cは励起光を増幅用光ファイ
バaに導入するための光カプラ、d1,d2は端面反射等に
起因する寄生発振を抑えて雑音を低減するために信号光
を一方向にのみ通過させる偏波無依存型のアイソレー
タ、e1,e2は信号光の入射および出射用の各コネクタ、
fはこれらの各光学素子a,b,c,d1,d2,…間を結合す
るための結合用光ファイバである。
[0005] In the figure, a is an amplification optical fiber for directly amplifying signal light based on the stimulated emission effect, b is an excitation light source such as a laser diode for generating excitation light for pumping the amplification optical fiber a, and c is an excitation light source. Optical couplers for introducing the pump light into the amplification optical fiber a, and d 1 and d 2 are polarizations that allow signal light to pass only in one direction to suppress parasitic oscillations caused by end face reflection and reduce noise. Independent isolators, e 1 and e 2 are connectors for input and output of signal light,
f Each of these optical elements a, b, c, d 1 , d 2, a coupling optical fiber for coupling between ....

【0006】そして、上記の増幅用光ファイバaは、誘
導放出効果を発揮するために、コア部分に希土類元素
(たとえばEr)をドープして構成されており、また、結
合用光ファイバfとしては、一般的な石英系のシングル
モード光ファイバが使用される。
The amplifying optical fiber a has a core formed of a rare earth element in order to exhibit a stimulated emission effect.
(For example, Er), and a common quartz single mode optical fiber is used as the coupling optical fiber f.

【0007】この構成の光増幅器において、コネクタe1
に入射される信号光(たとえば波長1.55μm)は、アイ
ソレータd1を通過して増幅用光ファイバaに入力され
る。一方、励起光源bからの励起光(たとえば波長1.4
8μm)は、光カプラcを経由して同じく増幅用光ファイ
バaに入射される。
In the optical amplifier having this configuration, the connector e 1
Incident signal light (e.g., wavelength 1.55 .mu.m) in is input to the amplification optical fiber a and passes through the isolator d 1. On the other hand, the excitation light from the excitation light source b (for example, a wavelength of 1.4)
8 μm) is also incident on the amplification optical fiber a via the optical coupler c.

【0008】増幅用光ファイバaは、励起光によってポ
ンピングされた状態で信号光が入射されると、この信号
光を誘導放出によって増幅する。そして、増幅された信
号光は、光カプラcおよびアイソレータd2を通過してコ
ネクタe2から出射される。
When the signal light is incident on the amplification optical fiber a while being pumped by the pumping light, the signal light is amplified by stimulated emission. Then, the signal light amplified is emitted from the connector e 2 through the optical coupler c and isolator d 2.

【0009】なお、図4に示した光増幅器は、増幅用光
ファイバaの信号光出射側から励起光を入射する、いわ
ゆる後方励起型のものであるが、信号光と励起光とを増
幅用光ファイバaに対して同じ方向から入射する前方励
起型のものや、増幅用光ファイバaの入射出射の両端か
ら励起光を入射する双方向励起型のもある。
The optical amplifier shown in FIG. 4 is of a so-called backward pumping type in which pumping light is incident from the signal light emitting side of the amplifying optical fiber a, but the signal light and pumping light are amplified. There is a forward pumping type in which the light enters the optical fiber a from the same direction, and a bidirectional pumping type in which the pumping light enters from both ends of the input and output of the amplification optical fiber a.

【0010】[0010]

【発明が解決しようとする課題】ところで、複数の情報
を単一の光ファイバ伝送路で効率良く伝送するために、
波長多重通信の有効性が指摘されている。
By the way, in order to efficiently transmit a plurality of information through a single optical fiber transmission line,
The effectiveness of wavelength division multiplexing communication has been pointed out.

【0011】このような波長多重通信において、図4に
示したような構成の光増幅器を用いて波長多重化された
信号光を一括して増幅する場合、Erをドープした増幅
用光ファイバaは、増幅可能な利得波長帯が非常に広い
ので有効である。
In such wavelength division multiplexing communication, when a signal light wavelength-multiplexed is collectively amplified using an optical amplifier having a configuration as shown in FIG. 4, the amplification optical fiber a doped with Er is This is effective because the gain wavelength band that can be amplified is very wide.

【0012】しかし、所定の波長域(たとえばλL=1.
54μmからλH=1.57μmの範囲)で波長多重化した
信号光を扱う場合、Erを単独にドープしたものは、そ
の波長域(λL〜λH)で波長の大小によって利得にばらつ
きを生じてしまう。
However, a predetermined wavelength range (for example, λ L = 1.
In the case of handling wavelength-multiplexed signal light in the range of 54 μm to λ H = 1.57 μm), the one doped with Er alone has a variation in gain depending on the wavelength in the wavelength range (λ L to λ H ). Will happen.

【0013】すなわち、図5は、横軸に増幅用光ファイ
バに入力する信号光の各波長を、縦軸に各波長の信号光
をそれぞれ単独で入力した場合の利得をそれぞれとっ
て、両者の関係(以下、この関係を利得波長特性と称す
る)を示したものである。
That is, FIG. 5 shows the wavelengths of the signal light input to the amplification optical fiber on the horizontal axis and the gains when the signal light of each wavelength is input alone on the vertical axis. FIG. 6 shows a relationship (hereinafter, this relationship is referred to as a gain wavelength characteristic).

【0014】Erをドープした増幅用光ファイバaは、同
図中の破線で示すように、その対象となる波長域(λL
λH)の範囲内に利得のピークp1,p2が存在するため、多
重化された信号光は、各波長λL〜λHごとに利得差(以
下、これを波長間利得差という)を生じるばかりでな
く、多段にわたって増幅するときには、信号歪みを生じ
るなどの不都合が起こる。
The Er-doped amplifying optical fiber a has a target wavelength range (λ L to λ L ) as shown by a broken line in FIG.
λ H ), since the gain peaks p 1 and p 2 exist within the range of λ H ), the multiplexed signal light has a gain difference for each of the wavelengths λ L to λ H (hereinafter referred to as an inter-wavelength gain difference). When amplification is performed over multiple stages, inconveniences such as signal distortion occur.

【0015】ここで、増幅用光ファイバaにおいて、Er
を単独ドープするのではなく、Erと共にAlをドープす
ると、図5の一点鎖線で示すように、利得波長特性のピ
ークp1,p2が消失して平坦化することが知られている
(たとえば、電気通信学会秋季全国大会(1992)C−
263参照)。
Here, in the amplification optical fiber a, Er
It is known that when Al is doped together with Er instead of doping singly, the peaks p 1 and p 2 of the gain wavelength characteristic disappear and are flattened as shown by the dashed line in FIG.
(For example, IEICE Autumn National Convention (1992) C-
263).

【0016】このように、ErにAlを共ドープしたもの
は、利得波長特性のピークp1,p2が消失して平坦化する
ものの、図5の一点鎖線で示したように、利得波長特性
が若干右上がりの勾配をもち、短波長側から長波長側に
なるほど次第に利得が大きくなる。しかも、一般に、波
長多重化された信号光を一括増幅する場合、増幅に寄与
する反転分布のエネルギーは、短波長側から長波長側に
向けて誘導放出によって次第に移行していく(つまり、
短波長側の信号光から長波長側の信号光にパワーが移行
する)傾向があることから、増幅用光ファイバaから出射
される増幅後の各波長の信号光の強度は、図6に示すよ
うに、短波長側から長波長側になるほど大きくなり(λL
→λM→λHと波長が長くなるほどその信号光強度が大き
い)、依然として波長間利得差を生じる。
As described above, in the case where Er is co-doped with Al, the peaks p 1 and p 2 of the gain wavelength characteristic disappear and are flattened, but as shown by the dashed line in FIG. Has a slight upward slope, and the gain gradually increases from the short wavelength side to the long wavelength side. Moreover, in general, when collectively amplifying the wavelength-multiplexed signal light, the inversion distribution energy contributing to the amplification gradually shifts from the short wavelength side to the long wavelength side by stimulated emission (that is,
Since the power tends to shift from the signal light on the short wavelength side to the signal light on the long wavelength side), the intensity of the amplified signal light of each wavelength emitted from the amplification optical fiber a is shown in FIG. From the short wavelength side to the long wavelength side, it becomes larger (λ L
→ λ M → λ H , the longer the wavelength, the greater the signal light intensity), but still causes a gain difference between wavelengths.

【0017】そこで、従来技術では、このような波長間
利得差を小さくするために、ErにAlを共ドープした増
幅用光ファイバaについて、その条長を比較的短尺に設
定し、しかも、励起光源bからの励起光のパワーを高め
ることによって、短波長側での反転分布のエネルギーを
一層高くし、短波長側での僅かに右下りの勾配をもつ利
得波長特性が得られるように調整している。
Therefore, in the prior art, in order to reduce such a gain difference between wavelengths, the length of the amplifying optical fiber a in which Er is co-doped with Al is set to be relatively short, By increasing the power of the pumping light from the light source b, the energy of the population inversion on the short wavelength side is further increased, and the gain wavelength characteristic is adjusted so as to have a slight downward slope on the short wavelength side. ing.

【0018】このようにすれば、短波長側の信号光から
長波長側の信号光にパワーが移行していく場合でも、結
果的に増幅用光ファイバaから出力される信号光の波長
間利得差が生じるのを低減することができる。
In this way, even when the power shifts from the signal light on the short wavelength side to the signal light on the long wavelength side, the inter-wavelength gain of the signal light output from the amplification optical fiber a is consequently obtained. The occurrence of the difference can be reduced.

【0019】ところが、上記のように、信号光の波長間
利得差を小さくするために、増幅用光ファイバaを短尺
にし、かつ励起光のパワーを高くして使用するときに
は、励起光が増幅用光ファイバを素通りしてしまい、誘
導放出を起こさせるための励起光から信号光へのエネル
ギーの変換効率が極めて悪くなってしまう。
However, as described above, in order to reduce the gain difference between the wavelengths of the signal light, when the amplification optical fiber a is made shorter and the power of the pumping light is increased, the pumping light is not amplified. The light passes through the optical fiber, and the efficiency of conversion of energy from pump light to signal light for causing stimulated emission becomes extremely low.

【0020】本発明は、上記の問題点を解決するために
なされたもので、多波長一括増幅を行う場合に、波長間
利得差を可及的に低減するとともに、励起光入力から信
号光出力への変換効率を同時に高めることを課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. When multi-wavelength batch amplification is performed, the gain difference between wavelengths is reduced as much as possible, and the signal light output from the pump light input is reduced. It is an object to simultaneously increase the conversion efficiency.

【0021】[0021]

【課題を解決するための手段】本発明は、上述の課題を
解決するために、次の構成を採用している。
The present invention employs the following structure in order to solve the above-mentioned problems.

【0022】すなわち、本発明の増幅用光ファイバは、
波長多重化された信号光を誘導放出効果によって一括増
幅するものであって、そのコア内またはその外周部には
ErとAlに加えて、La(ランタン)が共ドープされると
ともに、各波長の信号光の波長間利得差が最小となる濃
度条長積を有するように設定されている。
That is, the amplification optical fiber of the present invention comprises:
This is a device for collectively amplifying the wavelength-multiplexed signal light by the stimulated emission effect. In the core or the outer periphery thereof, in addition to Er and Al, La (lanthanum) is co-doped. It is set so as to have a concentration-length product that minimizes a gain difference between wavelengths of signal light.

【0023】この構成の増幅用光ファイバは、従来のよ
うに、条長を比較的短尺にし、かつ高励起状態にしなく
ても、利得波長特性は右下りの勾配をもつので、信号光
出力の波長間利得差が殆どなくなり、しかも、各波長成
分の信号光の波長間利得差が最小となるときの条長は、
Laをドープしない場合よりも大きいので、濃度条長積
(CL)も大きく、励起光から信号光へのエネルギーの変
換効率は低くならない。
In the amplifying optical fiber having this configuration, the gain wavelength characteristic has a right-down slope even if the strip length is relatively short and the pumping state is not high, as in the prior art. When the gain difference between wavelengths is almost eliminated, and the gain difference between wavelengths of the signal light of each wavelength component is minimized, the line length is:
Since it is larger than when La is not doped, the concentration
(CL) is large, and the conversion efficiency of energy from pump light to signal light does not decrease.

【0024】[0024]

【発明の実施の形態】本発明の実施形態に係る増幅用光
ファイバは、図4に示したような構成の光増幅器に使用
されるものであって、そのコア内またはその外周部には
ErとAlとに加えて、Laが共ドープされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An amplifying optical fiber according to an embodiment of the present invention is used for an optical amplifier having a configuration as shown in FIG. La is co-doped in addition to Al and Al.

【0025】このように、ErとAlに加えてLaを共ド
ープし、しかも、その各ドープ量を適切な値に設定すれ
ば、図1に示すように、たとえば、λL,λM,λHL
<λM<λH)の各波長の信号光をそれぞれ単独に入力し
て増幅した場合には、若干右下りの勾配をもつ利得波長
特性が得られる。
As described above, if La is co-doped in addition to Er and Al, and the respective doping amounts are set to appropriate values, as shown in FIG. 1, for example, λ L , λ M , λ HL
When the signal light of each wavelength of <λ MH ) is independently input and amplified, a gain wavelength characteristic having a slightly downward slope is obtained.

【0026】しかも、各波長の信号光を多重化して入力
した場合には、各波長ごとの波長間利得差が最小となる
ように、Erのドープ量と条長との積である濃度条長積
(CL)が設定される。
Furthermore, when the signal light of each wavelength is multiplexed and input, the concentration length, which is the product of the doping amount of Er and the length, is set so that the gain difference between wavelengths for each wavelength is minimized. product
(CL) is set.

【0027】一例として、Erのドープ量460ppm、A
lのドープ量16000ppm、Laのドープ量12000p
pmの場合、条長は26.5m、よって濃度条長積(CL)は
12.2kppm・mに設定される。
As an example, the doping amount of Er is 460 ppm,
l doping amount 16000ppm, La doping amount 12000p
In the case of pm, the strip length is set to 26.5 m, and the concentration strip product (CL) is set to 12.2 kppm · m.

【0028】図2は、横軸に濃度条長積(CL)を、縦軸
に利得(ゲイン)をとって、ErとAlを共ドープした増幅
用光ファイバ(図中、破線で示す)と、ErにAlとLaと
を共ドープした増幅用光ファイバ(図中、実線で示す)の
それぞれについて、2波長λ L(=1.548μm),λ
H(=1.561μm)の信号光を多重化して入力し、一括
増幅した後の各波長λL,λHごとの利得特性を調べた結
果である。なお、この場合の各波長λL,λHの信号光の
入力レベルは、共に−13dBmで同一とし、また、励起
光波長は1.48μm、励起光パワーは100mWとして
いる。
FIG. 2 shows the concentration strip product (CL) on the horizontal axis and the vertical axis.
To gain, and co-doped with Er and Al
Optical fiber (shown by a broken line in the figure), and Al and La
Of the amplification optical fiber (indicated by the solid line in the figure)
For each, two wavelengths λ L(= 1.548 μm), λ
H(= 1.561 μm) signal light is multiplexed and input.
Each wavelength λ after amplificationL, ΛHThe gain characteristics of each
It is a fruit. In this case, each wavelength λL, ΛHOf signal light
The input level is the same at both -13 dBm.
Assuming that the light wavelength is 1.48 μm and the pump light power is 100 mW
I have.

【0029】図2から分かるように、波長多重化された
信号光を一括増幅する場合、Laのドープの有無にかか
わらず、いずれの増幅用光ファイバも、波長間利得差が
最小となる濃度条長積(CL)の値が存在する。この例で
は、2つの破線の交点位置に対応する濃度条長積CL1
=10.8kppm・m、2つの実線の交点位置に対応する濃
度条長積CL2=12.2kppm・mのところで、それぞれ
波長間利得差が最小となる。
As can be seen from FIG. 2, when the wavelength-multiplexed signal light is collectively amplified, regardless of the presence or absence of La doping, any of the amplifying optical fibers has a concentration condition at which the gain difference between wavelengths is minimized. There is a long product (CL) value. In this example, the concentration length product CL 1 corresponding to the intersection of the two broken lines.
= 10.8 kppm · m, the gain difference between wavelengths becomes minimum at the concentration length product CL 2 = 12.2 kppm · m corresponding to the intersection of the two solid lines.

【0030】しかも、波長間利得差が最小となる濃度条
長積CL1,CL2における各利得は、Laを共ドープし
た本発明に係る増幅用光ファイバの方が、Laを共ドー
プしていない従来の増幅用光ファイバよりも大きい。こ
の例では、前者が27.3dBであるのに対して、後者は
26.3dBで、前者の方がΔG=1dB高くなってい
る。
In addition, the gains in the concentration-length products CL 1 and CL 2 at which the gain difference between wavelengths is minimized are such that the optical fiber for amplification according to the present invention in which La is co-doped is co-doped with La. No larger than conventional amplification optical fibers. In this example, the former is 27.3 dB, while the latter is 26.3 dB, and the former is higher by ΔG = 1 dB.

【0031】したがって、たとえばλL=1.548μ
m,λM=1.553μm、λH=1.561μmの各波長の
信号光を多重化して増幅用光ファイバに入力して一括増
幅するような場合、この増幅用光ファイバの利得波長特
性は、図1に示したような若干右下がりの勾配をもち、
かつ、最適な濃度条長積(CL)となるように予め設定さ
れているため、短波長側の信号光から長波長側の信号光
にパワーが移行していったとしても、この光ファイバa
で増幅された後の信号光は、結果的に、図3に示すよう
に、各波長λL,λM,λHによらず略同じ強度レベルと
なり、波長間利得差が極めて小さくなる。
Therefore, for example, λ L = 1.548 μ
In the case where signal light of each wavelength of m, λ M = 1.553 μm and λ H = 1.561 μm are multiplexed and input to an amplification optical fiber and collectively amplified, the gain wavelength characteristic of the amplification optical fiber is as follows. , With a slight downward slope as shown in FIG.
Moreover, since the optical fiber is preset so as to have an optimum concentration-length product (CL), even if the power shifts from the signal light on the short wavelength side to the signal light on the long wavelength side, this optical fiber a
As a result, as shown in FIG. 3, the signal light after being amplified by the above has substantially the same intensity level irrespective of the wavelengths λ L , λ M and λ H , and the gain difference between wavelengths becomes extremely small.

【0032】しかも、Laを共ドープしない従来のもの
では、条長を比較的短尺に設定し、しかも、励起光パワ
ーを高めることで、図1に示すような右下りの勾配をも
つ利得波長特性が得られるようにしていたために、誘導
放出を起こさせるための励起光から信号光へのエネルギ
ーの変換効率が悪かった。これに対して、Laを共ドー
プした本発明のものでは、条長を短くかつ励起光パワー
を徒に高くしなくても、図1に示す利得波長特性が得ら
れるので、変換効率の低下を抑えることができる。
Further, in the conventional device in which La is not co-doped, the gain wavelength characteristic having a right-down slope as shown in FIG. Was obtained, so that the efficiency of conversion of energy from excitation light to signal light for causing stimulated emission was low. On the other hand, in the case of the present invention in which La is co-doped, the gain wavelength characteristic shown in FIG. 1 can be obtained without shortening the strip length and increasing the pumping light power. Can be suppressed.

【0033】たとえば、ErとAlを共ドープした従来の
増幅用光ファイバを備えた光増幅器における変換効率は
29%であったが、本発明のErとAlおよびLaを共ド
ープしたものの変換効率は37%となり、高い変換効率
となった。
For example, while the conversion efficiency of an optical amplifier having a conventional amplification optical fiber co-doped with Er and Al is 29%, the conversion efficiency of the co-doped Er, Al and La of the present invention is as follows. 37%, which is a high conversion efficiency.

【0034】[0034]

【発明の効果】本発明によれば、多波長一括増幅を行う
場合に、波長間利得差が可及的に低減されるとともに、
励起光入力から信号光出力への変換効率を同時に高める
ことができる。
According to the present invention, when performing multi-wavelength batch amplification, the gain difference between wavelengths is reduced as much as possible.
The conversion efficiency from the input of the pump light to the output of the signal light can be simultaneously increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る増幅用光ファイバの利
得波長特性を示す図である。
FIG. 1 is a diagram showing gain wavelength characteristics of an amplification optical fiber according to an embodiment of the present invention.

【図2】Laを共ドープしない従来の増幅用光ファイバ
とLaを共ドープした本発明に係る増幅用光ファイバの
それぞれについて、2波長λL,λHの信号光を多重化し
て入力して一括増幅した場合の各波長λL,λHごとの利
得特性を調べた結果を示す図である。
FIG. 2 is a diagram illustrating a conventional amplification optical fiber not co-doped with La and an amplification optical fiber according to the present invention co-doped with La in which signal lights of two wavelengths λ L and λ H are multiplexed and input. FIG. 9 is a diagram illustrating a result of examining gain characteristics for each wavelength λ L and λ H when collectively amplifying.

【図3】本発明に係る増幅用光ファイバを用いて波長多
重化された信号光を一括増幅した場合の、各波長ごとの
信号光強度を示す図である。
FIG. 3 is a diagram illustrating signal light intensity for each wavelength when signal light wavelength-multiplexed using the amplification optical fiber according to the present invention is collectively amplified.

【図4】光増幅器の全体構成図である。FIG. 4 is an overall configuration diagram of an optical amplifier.

【図5】Laを共ドープしない従来の増幅用光ファイバ
の利得波長特性を示す図である。
FIG. 5 is a diagram illustrating gain wavelength characteristics of a conventional amplification optical fiber in which La is not co-doped.

【図6】Laを共ドープしない従来の増幅用光ファイバ
を用いて波長多重化された信号光を一括増幅した場合
の、各波長ごとの信号光強度を示す図である。
FIG. 6 is a diagram illustrating signal light intensity for each wavelength when signal light that has been wavelength-multiplexed is collectively amplified using a conventional amplification optical fiber that is not co-doped with La.

【符号の説明】[Explanation of symbols]

a…増幅用光ファイバ、b…励起光源、c…光カプラ、
d1,d2…アイソレータ、f…結合用光ファイバ、e1,e2
…コネクタ。
a ... amplifying optical fiber, b ... excitation light source, c ... optical coupler,
d 1, d 2 ... isolator, f ... coupling optical fibers, e 1, e 2
…connector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須藤 恭秀 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yasuhide Sudo 4-3 Ikejiri, Itami-shi, Hyogo Mitsubishi Electric Cable Industry Co., Ltd. Itami Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 波長多重化された信号光を誘導放出効果
によって一括増幅する増幅用光ファイバであって、 コア内またはその外周部にはErとAlに加えて、Laが
共ドープされるとともに、各波長の信号光の波長間利得
差が最小となる濃度条長積を有するように設定されてい
ることを特徴とする増幅用光ファイバ。
1. An amplifying optical fiber for amplifying a wavelength-multiplexed signal light collectively by a stimulated emission effect, wherein La in addition to Er and Al is co-doped in a core or an outer periphery thereof. An amplification optical fiber, which is set so as to have a concentration-length product that minimizes a gain difference between wavelengths of signal light of each wavelength.
JP8237665A 1996-09-09 1996-09-09 Optical fiber for amplification use Pending JPH1084153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8237665A JPH1084153A (en) 1996-09-09 1996-09-09 Optical fiber for amplification use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8237665A JPH1084153A (en) 1996-09-09 1996-09-09 Optical fiber for amplification use

Publications (1)

Publication Number Publication Date
JPH1084153A true JPH1084153A (en) 1998-03-31

Family

ID=17018700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8237665A Pending JPH1084153A (en) 1996-09-09 1996-09-09 Optical fiber for amplification use

Country Status (1)

Country Link
JP (1) JPH1084153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245244A (en) * 2005-03-02 2006-09-14 Sumitomo Electric Ind Ltd Optically amplifying waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245244A (en) * 2005-03-02 2006-09-14 Sumitomo Electric Ind Ltd Optically amplifying waveguide

Similar Documents

Publication Publication Date Title
JP2640445B2 (en) Optical amplifier
EP0497246B1 (en) Optical fiber amplifier
US5510931A (en) Optical amplifier and optical communication system with optical amplifier using pumping right beam
KR100265788B1 (en) Optical fiber amplifier having high small signal gain
US6317254B1 (en) Parallel optical fiber amplifier with high power conversion
US6529317B2 (en) L-band erbium-doped fiber amplifier pumped by 1530 nm-band pump
KR100547868B1 (en) Gain Fixed Semiconductor Optical Amplifier Using Raman Amplification Principle
JPH1174597A (en) Optical amplifier with absorber
JPH08330650A (en) Optical amplifier
EP1418690A2 (en) Optical amplifying apparatus
JPH10326930A (en) Gain-flattening optical fiber amplifier
JP2000236127A (en) Optical fiber amplifier
JPH1084153A (en) Optical fiber for amplification use
US6888668B2 (en) Optical amplifier with multiple wavelength pump
EP1087550A1 (en) Method and device for providing optical amplification
KR100250615B1 (en) Gain flat optical fiber amplifier
US6246515B1 (en) Apparatus and method for amplifying an optical signal
JPH09138432A (en) Optical amplifier
JPH11243243A (en) Light source module and optical amplifier using the same
KR100327299B1 (en) Fiber-optic amplifier using a 2-port wavelength selective coupler
JP3062204B2 (en) Optical amplifier
JPH1187823A (en) Light amplifier
JPH04291972A (en) Erbium filer for optical amplifier
JP2663873B2 (en) Light source for measuring transmission characteristics
KR0138960B1 (en) High efficiency fiber optic amplifier