JPH1187823A - Light amplifier - Google Patents

Light amplifier

Info

Publication number
JPH1187823A
JPH1187823A JP9242424A JP24242497A JPH1187823A JP H1187823 A JPH1187823 A JP H1187823A JP 9242424 A JP9242424 A JP 9242424A JP 24242497 A JP24242497 A JP 24242497A JP H1187823 A JPH1187823 A JP H1187823A
Authority
JP
Japan
Prior art keywords
light
optical
excitation light
optical amplification
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9242424A
Other languages
Japanese (ja)
Inventor
Hidenori Mimura
榮紀 三村
Yukio Noda
行雄 野田
Tetsuya Nakai
哲哉 中井
Toshio Tani
俊男 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP9242424A priority Critical patent/JPH1187823A/en
Publication of JPH1187823A publication Critical patent/JPH1187823A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve excitation efficiency. SOLUTION: To one end of a light amplification fiber 10 to which a rare earth element is added, a wavelength division multiplex(WDM) photocoupler 14 for multiplexing excitation light (wavelength λp) from an excitation light source 12 to signal light to be light amplified, and for supplying it to the light amplification fiber 10, is connected. To the other end of the light amplification fiber 10, an optical fiber grating 16 for selectively reflecting the wavelength λp of the excitation light for 100% or almost 100%, and for transmitting the signal light almost without loss, is connected. At the input part of the signal light to be light amplified, an optical isolator 18 for interrupting light propagated in the opposite direction of the signal light is arranged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光信号を光のまま
増幅する光増幅器に関する。
The present invention relates to an optical amplifier for amplifying an optical signal as light.

【0002】[0002]

【従来の技術】このような光増幅器として、エルビウム
に代表される希土類を添加した光増幅ファイバに1.4
8μm又は0.98μmの励起レーザ光を波長分割多重
(WDM)光カップラにより入射する構成が広く知られ
ている。
2. Description of the Related Art As such an optical amplifier, 1.4 is applied to an optical amplification fiber doped with rare earth represented by erbium.
It is widely known that an excitation laser beam of 8 μm or 0.98 μm is incident by a wavelength division multiplexing (WDM) optical coupler.

【0003】WDM光カップラは、光増幅しようとする
信号光の入射側に配置される構成、増幅後の信号光の出
射側に配置される構成、及び入射側と出射側の両方に配
置される構成が知られている。
[0003] The WDM optical coupler is arranged on the incident side of the signal light to be optically amplified, is arranged on the emission side of the amplified signal light, and is arranged on both the incidence side and the emission side. The configuration is known.

【0004】[0004]

【発明が解決しようとする課題】従来例では、光増幅フ
ァイバに入射された励起光のうち、光増幅ファイバで吸
収されなかった光はそのまま破棄されており、励起光率
が悪かった。
In the conventional example, of the pump light incident on the optical amplification fiber, the light not absorbed by the optical amplification fiber is discarded as it is, and the excitation light rate is low.

【0005】また、信号光の入射側及び出射側の一方か
らのみ励起光を光増幅ファイバに入射する単方向励起構
成では、光光増幅ファイバ内で励起光が吸収されていく
ことにより、光増幅利得が光増幅ファイバの軸方向で漸
減し、利得効率が悪いという問題点がある。光増幅ファ
イバの両側から励起光を入射する双方向励起構成では、
このような問題点は緩和されるが、複数の例光源を用意
しなければならないし、一方の励起光源が何らかの原因
で故障した場合には、単方向励起構成の利得効率の悪さ
という問題点が浮上する。
In a unidirectional pump configuration in which the pump light is incident on the optical amplification fiber only from one of the incident side and the output side of the signal light, the pump light is absorbed in the optical amplification fiber, so that the optical amplification is performed. There is a problem that the gain gradually decreases in the axial direction of the optical amplification fiber, and the gain efficiency is poor. In a bidirectional pump configuration in which pump light is incident from both sides of the optical amplification fiber,
Although such problems are mitigated, a plurality of example light sources must be prepared, and if one of the pump light sources fails for some reason, the problem of poor gain efficiency of the unidirectional pump configuration will occur. Surface.

【0006】本発明は、より高い励起光率を得られる光
増幅器を提示することを目的とする。
An object of the present invention is to provide an optical amplifier capable of obtaining a higher pumping light rate.

【0007】本発明はまた、単一の励起光源でも双方向
励起と同様の利得効率を達成できる光増幅器を提示する
ことを提示することを目的とする。
It is another object of the present invention to provide an optical amplifier which can achieve the same gain efficiency as bidirectional pumping even with a single pumping light source.

【0008】[0008]

【課題を解決するための手段】本発明では、光増幅媒体
の一側に、当該光増幅媒体からの励起光を選択的に反射
するが、光増幅の対象光を透過する第1の反射部材を設
ける。これにより、いまだ充分な強度を具備する励起光
が光増幅媒体に戻されることになり、励起光を有効に活
用できる。即ち、励起光率が良くなる。光増幅媒体内で
励起光のパワー分布が軸方向で均一化するので、利得効
率も良くなる。
According to the present invention, a first reflecting member which selectively reflects the excitation light from the optical amplifying medium but transmits the light to be amplified is provided on one side of the optical amplifying medium. Is provided. As a result, the excitation light having a sufficient intensity is still returned to the optical amplification medium, and the excitation light can be used effectively. That is, the excitation light rate is improved. Since the power distribution of the pump light is made uniform in the axial direction in the optical amplifying medium, the gain efficiency is improved.

【0009】更に、当該光増幅媒体の他側にも同様の反
射部材、即ち、第2の反射部材を設けることで、励起光
を光増幅媒体に実質的に閉じ込めることになり、更に、
励起光率及び利得効率が改善される。
Further, by providing a similar reflecting member, that is, a second reflecting member on the other side of the optical amplifying medium, the excitation light is substantially confined in the optical amplifying medium.
The pumping light rate and gain efficiency are improved.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】図1は、本発明の一実施例の概略構成ブロ
ック図を示す。
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention.

【0012】10は、希土類元素を添加した光増幅ファ
イバであり、その一端には、励起光源12からの励起光
(波長λp)を、光増幅すべき信号光に多重して光増幅
ファイバ10に供給する波長分割多重(WDM)光カッ
プラ14が接続し、光増幅ファイバ10の他端には、励
起光の波長ラムダpを選択的に100%又はほぼ100
%反射するが、信号光をほぼ無損失で透過する光ファイ
バ・グレーティング16が接続する。
Reference numeral 10 denotes an optical amplification fiber doped with a rare earth element. At one end, an excitation light (wavelength λp) from an excitation light source 12 is multiplexed to a signal light to be optically amplified, and the resulting signal is applied to the optical amplification fiber 10. A wavelength division multiplexing (WDM) optical coupler 14 to be supplied is connected, and a wavelength lambda p of the pump light is selectively 100% or almost 100% at the other end of the optical amplification fiber 10.
An optical fiber grating 16 that transmits the signal light with almost no loss while connecting the signal light is connected.

【0013】また、光増幅すべき信号光の入力部には、
信号光とは逆方向に伝搬する光を遮断する光アイソレー
タ18を配置してある。
[0013] The input section of the signal light to be optically amplified includes:
An optical isolator 18 that blocks light propagating in the opposite direction to the signal light is provided.

【0014】本実施例の動作を説明する。光増幅すべき
信号光は光アイソレータ18を通過し、光カップラ14
に入射する。光カップラ14には、励起光源12から波
長λpの励起光も印加されている。励起光の波長λp
は、例えば、1.48μm帯及び0.98μm帯であ
る。光カップラ14は、信号光に励起光源12からの励
起光を多重して光増幅ファイバ10に供給する。
The operation of this embodiment will be described. The signal light to be optically amplified passes through the optical isolator 18 and the optical coupler 14
Incident on. The excitation light of wavelength λp is also applied to the optical coupler 14 from the excitation light source 12. Excitation light wavelength λp
Are, for example, the 1.48 μm band and the 0.98 μm band. The optical coupler 14 multiplexes the signal light with the pump light from the pump light source 12 and supplies the signal light to the optical amplification fiber 10.

【0015】光増幅ファイバ10は、励起光により励起
されて信号光を光増幅する。光増幅ファイバ10を伝搬
する過程で、励起光は、図3に符号Aで示すように減衰
していく。図2は、本実施例における励起光パワーの軸
方向の変化を示す。縦軸は、規格化した励起光パワー、
横軸は、光増幅ファイバ10の規格化したファイバ距離
を示す。本実施例では、光ファイバ10の長さを、励起
光が3dB減衰する長さであるとしている。
The optical amplification fiber 10 is excited by the excitation light to optically amplify the signal light. In the process of propagating through the optical amplifying fiber 10, the pump light is attenuated as shown by a symbol A in FIG. FIG. 2 shows the change in the pump light power in the axial direction in this embodiment. The vertical axis is the normalized pump light power,
The horizontal axis indicates the standardized fiber distance of the optical amplification fiber 10. In this embodiment, the length of the optical fiber 10 is set to a length at which the excitation light is attenuated by 3 dB.

【0016】励起光は光増幅ファイバ10を信号光と同
方向に伝搬し終えた段階、具体的には、光ファイバ・グ
レーティング16の位置で3dB減衰しているが、光フ
ァイバ・グレーティング16により反射された、今度
は、信号光とは逆方向に伝搬する。このときも、励起光
は光増幅ファイバの希土類元素を励起する。即ち、あた
かも、光増幅ファイバ10の出力側からも励起光を入射
したのと同じ状態になる。この、信号光とは逆方向に進
行する励起光によっても、信号光が増幅される。
The pump light is attenuated by 3 dB at the stage where the pump light has propagated through the optical amplification fiber 10 in the same direction as the signal light, specifically, at the position of the optical fiber grating 16, but is reflected by the optical fiber grating 16. This time, it propagates in the opposite direction to the signal light. Also at this time, the excitation light excites the rare earth element of the optical amplification fiber. In other words, it is as if the pump light was also incident from the output side of the optical amplification fiber 10. The signal light is also amplified by the pump light traveling in the opposite direction to the signal light.

【0017】信号光と逆方向に進行する励起光は、図2
の符号Bに示すように減衰し、光増幅ファイバ10の信
号光入力端では、当初の25%のパワーになっている。
この励起光は、光カップラ14に逆方向に入射し、一部
は、励起光源12に向かい、残りは信号光の入力部に伝
搬する。しかし、信号光の入力部に向かって伝搬する励
起光成分は、光アイソレータ18によりブロックされ
る。従って、励起光を光ファイバ・グレーティング16
により反射させ、信号光とは逆方向に伝搬させたとして
も、前段の光処理系に障害を与えることは無い。
The pump light traveling in the opposite direction to the signal light is shown in FIG.
At the signal light input end of the optical amplification fiber 10, the power is 25% of the initial power.
The pump light is incident on the optical coupler 14 in the opposite direction, a part of the pump light is directed to the pump light source 12, and the rest propagates to the input part of the signal light. However, the pump light component propagating toward the input part of the signal light is blocked by the optical isolator 18. Therefore, the pump light is transmitted to the optical fiber grating 16.
And does not impair the optical processing system in the preceding stage even if the light is propagated in the opposite direction to the signal light.

【0018】結局、信号光と同方向に伝搬する励起光
と、光ファイバ・グレーティング16により反射されて
信号光とは逆方向に伝搬する励起光のパワーの和が光増
幅ファイバの利得に寄与することになり、光増幅ファイ
バ10の軸方向では、図2の符号Cに示す特性になる。
図2の符号Aで示す特性は、従来の単方向励起の場合に
相当する。図2の符号Aで示す特性と符号Cで示す特性
を比較すれば明瞭なように、本実施例の方が、光増幅フ
ァイバ10の軸方向での励起光パワーの変化が小さく、
従って、軸方向で利得の均一化を図ることができてい
る。
After all, the sum of the power of the pump light propagating in the same direction as the signal light and the power of the pump light reflected by the optical fiber grating 16 and propagating in the opposite direction to the signal light contributes to the gain of the optical amplification fiber. That is, in the axial direction of the optical amplification fiber 10, the characteristic shown by the symbol C in FIG. 2 is obtained.
The characteristic indicated by symbol A in FIG. 2 corresponds to the case of conventional unidirectional excitation. As is clear from the comparison between the characteristic indicated by reference character A and the characteristic indicated by reference character C in FIG. 2, the present embodiment has a smaller change in the pumping light power in the axial direction of the optical amplification fiber 10,
Therefore, the gain can be made uniform in the axial direction.

【0019】本実施例では、従来は捨てられていた励起
光を、光ファイバ・グレーティング16で反射して再利
用するので、高い励起光率を達成できる。これは、同じ
利得で良ければ、励起光源12の出力光強度を下げるこ
とができることを意味する。
In this embodiment, since the pump light which has been conventionally discarded is reflected by the optical fiber grating 16 and reused, a high pump light rate can be achieved. This means that if the gain is the same, the output light intensity of the pump light source 12 can be reduced.

【0020】上記実施例では、光増幅ファイバ10の出
力側にのみ、励起光を反射する光ファイバ・グレーティ
ング16を配置したが、図3に示すように、光アイソレ
ータ18と光カップラ14の間に励起光の波長λpを選
択的に100%又はほぼ100%反射する光ファイバ・
グレーティング20を配置しても良い。即ち、光増幅フ
ァイバ10の入力側と出力側の両方に、励起光を反射す
る光ファイバ・グレーティング16,20を配置するこ
とになる。この場合、光カップラ14により光増幅ファ
イバ10に導入された励起光は、光ファイバ・グレーテ
ィング16,20の間をラウンドトリップすることにな
り、励起光を無駄無く活用できる。光ファイバ・グレー
ティング20が励起光の波長λpを選択する反射素子と
することで、信号光は、光ファイバ・グレーティング2
0をほぼ無損失で透過できる。
In the above embodiment, the optical fiber grating 16 for reflecting the excitation light is disposed only on the output side of the optical amplification fiber 10, but as shown in FIG. 3, between the optical isolator 18 and the optical coupler 14. An optical fiber that selectively reflects 100% or almost 100% of the wavelength λp of the excitation light.
The grating 20 may be arranged. That is, the optical fiber gratings 16 and 20 that reflect the excitation light are arranged on both the input side and the output side of the optical amplification fiber 10. In this case, the pump light introduced into the optical amplification fiber 10 by the optical coupler 14 makes a round trip between the optical fiber gratings 16 and 20, and the pump light can be utilized without waste. Since the optical fiber grating 20 is a reflection element for selecting the wavelength λp of the pump light, the signal light is transmitted to the optical fiber grating 2.
0 can be transmitted with almost no loss.

【0021】本実施例は、例えば、1.3μm帯又は
1.5μm帯の光通信システムに使用できる。1.5μ
mの信号光を増幅する場合、光増幅ファイバ10にはE
rが添加され、励起光源12の波長は、1.48μm帯
又は0.98μm帯である。1.3μmの信号光を増幅
する場合、光増幅ファイバ10にはPrが添加され、励
起光源12の波長は、1.02μm帯である。
The present embodiment can be used for, for example, an optical communication system in a 1.3 μm band or a 1.5 μm band. 1.5μ
When amplifying the signal light of m, the optical amplification fiber 10 has E
The wavelength of the excitation light source 12 is 1.48 μm band or 0.98 μm band. When amplifying the 1.3 μm signal light, Pr is added to the optical amplification fiber 10, and the wavelength of the excitation light source 12 is in the 1.02 μm band.

【0022】[0022]

【発明の効果】以上の説明から容易に理解できるよう
に、本発明によれば、非常に簡単な構成で、高い励起光
率と利得効率を実現できる。従って、安価で信頼性の高
い光増幅器を提供でき、光ファイバ通信システムの信頼
性の向上に寄与できる。
As can be easily understood from the above description, according to the present invention, a high pumping light rate and a high gain efficiency can be realized with a very simple configuration. Therefore, an inexpensive and highly reliable optical amplifier can be provided, which can contribute to improvement of the reliability of the optical fiber communication system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の概略構成ブロック図であ
る。
FIG. 1 is a schematic block diagram of an embodiment of the present invention.

【図2】 本実施例の特性図である。FIG. 2 is a characteristic diagram of the present embodiment.

【図3】 本実施例の変更例である。FIG. 3 is a modified example of the present embodiment.

【符号の説明】[Explanation of symbols]

10:光増幅ファイバ 12:励起光源 14:WDM光カップラ 16:光ファイバ・グレーティング 18:光アイソレータ 20:光ファイバ・グレーティング 10: Optical amplification fiber 12: Pump light source 14: WDM optical coupler 16: Optical fiber grating 18: Optical isolator 20: Optical fiber grating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 俊男 東京都新宿区西新宿2丁目3番2号国際電 信電話株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshio Tani 2-3-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo International Telephone & Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光増幅媒体と、 励起光を発生する励起光源と、 当該励起光源の発生する励起光を当該光増幅媒体に供給
する励起光供給手段と、 当該光増幅媒体の一側に配置され、当該光増幅媒体から
の当該励起光を選択的に反射するが、光増幅の対象光を
透過する第1の反射部材とからなることを特徴とする光
増幅器。
1. An optical amplification medium, an excitation light source for generating excitation light, excitation light supply means for supplying excitation light generated by the excitation light source to the optical amplification medium, and disposed on one side of the optical amplification medium And a first reflecting member that selectively reflects the excitation light from the optical amplification medium but transmits the light to be amplified.
【請求項2】 更に、当該光増幅媒体の他側に配置さ
れ、当該光増幅媒体からの当該励起光を選択的に反射す
るが、光増幅の対象光を透過する第2の反射部材を具備
する請求項1に記載の光増幅器。
And a second reflection member disposed on the other side of the optical amplifying medium for selectively reflecting the excitation light from the optical amplifying medium but transmitting the target light for optical amplification. The optical amplifier according to claim 1, wherein:
JP9242424A 1997-09-08 1997-09-08 Light amplifier Withdrawn JPH1187823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9242424A JPH1187823A (en) 1997-09-08 1997-09-08 Light amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9242424A JPH1187823A (en) 1997-09-08 1997-09-08 Light amplifier

Publications (1)

Publication Number Publication Date
JPH1187823A true JPH1187823A (en) 1999-03-30

Family

ID=17088910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9242424A Withdrawn JPH1187823A (en) 1997-09-08 1997-09-08 Light amplifier

Country Status (1)

Country Link
JP (1) JPH1187823A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41247E1 (en) 1997-04-01 2010-04-20 Lockheed Martin Corporation Optical transport system
JP2016189406A (en) * 2015-03-30 2016-11-04 Kddi株式会社 Optical amplifier
WO2017073143A1 (en) * 2015-10-27 2017-05-04 ソニー株式会社 Particle detection device
WO2023157177A1 (en) * 2022-02-17 2023-08-24 日本電信電話株式会社 Optical fiber amplifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41247E1 (en) 1997-04-01 2010-04-20 Lockheed Martin Corporation Optical transport system
JP2016189406A (en) * 2015-03-30 2016-11-04 Kddi株式会社 Optical amplifier
WO2017073143A1 (en) * 2015-10-27 2017-05-04 ソニー株式会社 Particle detection device
US10215684B2 (en) 2015-10-27 2019-02-26 Sony Corporation Fine particle detection device
WO2023157177A1 (en) * 2022-02-17 2023-08-24 日本電信電話株式会社 Optical fiber amplifier

Similar Documents

Publication Publication Date Title
JP2928149B2 (en) Optical fiber amplifier
JP2734209B2 (en) Optical fiber amplifier
US6353499B2 (en) Optical fiber amplifier with oscillating pump energy
US6487006B1 (en) Simultaneous single mode and multi-mode propagation of signals in a double clad optical fiber
JPH08330650A (en) Optical amplifier
JPH1187824A (en) Light amplifier
JPH1187823A (en) Light amplifier
US7119948B2 (en) Optical amplifier apparatus and method
US5235604A (en) Optical amplifier using semiconductor laser as multiplexer
EP1030415A2 (en) Optical fiber amplifier and method of amplifying an optical signal
JP3251223B2 (en) Optical amplifier
US6252701B1 (en) Optical fiber amplifier
JP2000286489A (en) Optical amplifier
JPH11242130A (en) Light source module incorporating synthesizing function, optical amplifier using this module, and bidirectional optical transmission equipment
JPH09200146A (en) Optical fiber amplifier
KR20030069362A (en) Dispersion-compensated raman optical fiber amplifier
JPH0854580A (en) Bidirectional optical amplifier
JP2682870B2 (en) Optical amplifier
JP2744471B2 (en) Optical amplification transmission circuit
JPH0540283A (en) Optical amplifying method
JP3324675B2 (en) Optical amplifier and optical amplification method
JP2663873B2 (en) Light source for measuring transmission characteristics
EP0942501A2 (en) Optical fiber light amplifier
KR19980068861A (en) 2-stage fiber amplifier using reflectometer
JPH0854511A (en) Optical amplifier

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207