JPH1082732A - Optical measuring equipment - Google Patents

Optical measuring equipment

Info

Publication number
JPH1082732A
JPH1082732A JP23774696A JP23774696A JPH1082732A JP H1082732 A JPH1082732 A JP H1082732A JP 23774696 A JP23774696 A JP 23774696A JP 23774696 A JP23774696 A JP 23774696A JP H1082732 A JPH1082732 A JP H1082732A
Authority
JP
Japan
Prior art keywords
light
subject
wavelength
wavelengths
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23774696A
Other languages
Japanese (ja)
Inventor
Yoshio Tsunasawa
義夫 綱沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP23774696A priority Critical patent/JPH1082732A/en
Publication of JPH1082732A publication Critical patent/JPH1082732A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a measurement while distinguishing in the depth direction by employing a transmitting light containing different wavelengths and differentiating the distance between a light transmitting point and a light receiving point on a subject depending on the wavelength. SOLUTION: A light transmitting part S is set at one end of an optical fiber 3 connected with a light source 2. A light of two sets of wavelength is transmitted through a subject 9 from the same transmitting point. A set of wavelengths λL1, λL2 has longer wavelength than a set of wavelengths λS1, λS2. A detecting section DS detects a set of short wavelength and a detecting section DL detects a set of long wavelength. A detector 5-1 is disposed at the end of an optical fiber 4 and a processing circuit 5-3 performs signal processing through a preamplifier 5-2, and the like. The distance dS between the detecting section DS and the transmitting part S is set shorter than the distance dL between the detecting section DL and the transmitting part S. The detecting section DS receives light of short wavelengths λS1, λS2 and measures a shallow part of the subject 9. The detecting section DL receives light of long wavelengths λL1, λL2 and measures a deep part of the subject 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光CTや生体酸素
モニター等の被検体に光を照射し、透過散乱光を検出し
て被検体内の情報を測定する光測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measurement apparatus for irradiating a subject with light, such as an optical CT or a biological oxygen monitor, and detecting transmitted scattered light to measure information in the subject.

【0002】[0002]

【従来の技術】被検体に可視光や近赤外光等の光を照射
し、被検体内を透過散乱した光を検出して、被検体内の
情報を非破壊的に測定する光測定装置が知られている。
このような光測定装置を生体に適用した測定装置として
光CTや生体酸素モニターがある。被検体としては、可
視光や近赤外光等の光を透過することができる性質のも
のであれば可能であり、生体の他に動物や植物や青果物
等に適用することもできる。
2. Description of the Related Art A light measuring device that irradiates a subject with light such as visible light or near-infrared light, detects light transmitted and scattered in the subject, and non-destructively measures information in the subject. It has been known.
Optical CT and biological oxygen monitors are examples of measuring devices that apply such an optical measuring device to a living body. The object can be any object that can transmit light such as visible light or near-infrared light, and can be applied to animals, plants, fruits and vegetables, etc. in addition to living organisms.

【0003】光CT等の光測定装置は、被検体送光手段
と受光手段を距離をおいて配置し、送光手段から測定光
を被検体内に照射し、被検体内を透過あるいは散乱した
光を受光手段で受光し、該測定光に基づいて測定データ
を得る装置であり、生体中のオキシヘモグロビンおよび
デオキシヘモグロビンの無侵襲定量方法に適用すること
ができる。
[0003] In a light measuring device such as an optical CT, a light transmitting means and a light receiving means are arranged at a distance from each other, and a measuring light is irradiated from the light transmitting means into the object and transmitted or scattered in the object. This is a device that receives light with a light receiving unit and obtains measurement data based on the measurement light, and can be applied to a non-invasive quantification method of oxyhemoglobin and deoxyhemoglobin in a living body.

【0004】この光測定装置の無侵襲定量測定への適用
として、一組の送光部と受光部を用いてオキシヘモグロ
ビンおよびデオキシヘモグロビンの初期値からの変化量
を求める方法や、複数の検出出力から測定時における絶
対値を求める方法が提案されている。
[0004] As an application of this optical measuring device to noninvasive quantitative measurement, a method of determining the amount of change in oxyhemoglobin and deoxyhemoglobin from an initial value using a set of a light transmitting unit and a light receiving unit, a plurality of detection outputs There has been proposed a method of obtaining an absolute value at the time of measurement from the above.

【0005】[0005]

【発明が解決しようとする課題】光測定装置では、被検
体の深さ方向の情報が求められる場合がある。例えば、
生体中のオキシヘモグロビンやデオキシヘモグロビンの
測定では、皮膚に近い浅い部分と深い部分の状態が求め
られる場合がある。しかしながら、従来の光測定装置に
より測定される測定データは、被検体全体に対するもの
であり、被検体の深さ方向について区別して測定するこ
とが困難であるという問題点がある。
In the light measuring device, information on the depth direction of the subject may be required. For example,
In the measurement of oxyhemoglobin and deoxyhemoglobin in a living body, the state of a shallow portion and a deep portion close to the skin may be required. However, the measurement data measured by the conventional optical measurement device is for the entire subject, and there is a problem that it is difficult to measure separately in the depth direction of the subject.

【0006】例えば、従来の光測定装置による生体酸素
モニターが測定する組織中のオキシヘモグロビンとデオ
キシヘモグロビンの量は、送光部と受光部の下側にある
組織全体のオキシヘモグロビンおよびデオキシヘモグロ
ビンの量であって、皮膚や生体の浅い部分と、深い分析
部とを区別して測定することは困難となっている。
For example, the amount of oxyhemoglobin and deoxyhemoglobin in a tissue measured by a biological oxygen monitor using a conventional light measuring device is determined by the amount of oxyhemoglobin and deoxyhemoglobin in the entire tissue below the light transmitting part and the light receiving part. However, it is difficult to make a distinction between a shallow part of skin or a living body and a deep analysis part for measurement.

【0007】そこで、本発明は前記した従来の光測定装
置の問題点を解決し、深さ方向について区別して測定で
きることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the conventional optical measuring device and to enable the measurement to be performed separately in the depth direction.

【0008】[0008]

【課題を解決するための手段】本発明の光測定装置は、
被検体に送光し、被検体中を散乱あるいは透過した光を
受光することによって被検体を光学的に測定する光測定
装置において、送光光は異なる波長を含む光であり、こ
の波長に応じて被検体上の送光点と受光点との距離を異
ならせるものである。これによって、深さ方向について
区別して測定する。
The light measuring device of the present invention comprises:
In an optical measurement device that transmits light to a subject and optically measures the subject by receiving light scattered or transmitted through the subject, the transmitted light is light containing different wavelengths. Thus, the distance between the light transmitting point and the light receiving point on the subject is made different. Thereby, the measurement is performed separately in the depth direction.

【0009】被検体上に送光点と受光点の組を複数個形
成し、一の波長の光を被検体内に一の送光点から入射
し、被検体内を通過した該波長の光を一の受光点から受
光する場合、入射する光の波長に応じて送光点と受光点
との距離を変える。一般に、被検体に対して送光点と受
光点を設定した場合、送光点と受光点の生体組織等の散
乱体の深さの各部分の受光量への寄与は、図1に示す特
性を示すことが知られている。図1は、点状吸収体に対
する寄与関数と呼ばれるものであり、図中に示す濃淡
は、点状の吸収体を散乱体内で移動させていき、検出光
量の減衰の程度を表しており、検出光量の減衰が大きい
場所ほど濃く表示している。この寄与関数の形状は、送
光,受光点間の距離に依存し、この距離が大きいほど被
検体の深い部分の寄与は大きくなる。
A plurality of pairs of a light transmitting point and a light receiving point are formed on an object, and light of one wavelength is incident on the object from one light transmitting point and passed through the object. Is received from one light receiving point, the distance between the light transmitting point and the light receiving point is changed according to the wavelength of the incident light. In general, when a light transmitting point and a light receiving point are set for a subject, the contribution of the light transmitting point and the light receiving point to the amount of light received by each part of the depth of a scatterer such as a biological tissue is represented by the characteristic shown in FIG. It is known that FIG. 1 shows what is called a contribution function for a point-like absorber, and the shading shown in the figure indicates the degree of attenuation of the detected light amount by moving the point-like absorber in the scatterer. The places where the amount of light attenuation is large are displayed darker. The shape of the contribution function depends on the distance between the light transmitting and receiving points, and the greater the distance, the greater the contribution of the deep part of the subject.

【0010】この特性を利用して、2つの異なる距離間
で送受光を行い、短い距離で配置した送受光手段から浅
い部分の情報を求め、長い距離で配置した送受光手段か
ら深い部分の情報を求めることが考えられる。しかしな
がら、ここに1つの問題がある。というのは、試料中の
吸収体濃度の変化が等しい場合でも、送・受光距離が大
きい検出器の方が、送・受光距離が小さい検出器より
も、受光された信号の変化分が大きいということがあ
る。これは、送受光距離に依存して光が試料内を通過す
る平均光路長が変わり、大きい送受光距離の方が平均光
路長が大きくなるからである。従って、浅い部分を測ろ
うとして送・受光距離を小さくすると、受光された信号
の変化が小さくなってしまい目的を達しない。言い換え
れば、送・受光距離を変えると、深さ情報と、測定感度
の情報の両者が合わさってしまい、深さ方向だけを区別
して測定することにつながらない。
Utilizing this characteristic, transmission / reception is performed between two different distances, information on a shallow portion is obtained from transmission / reception means arranged at a short distance, and information on a deep portion is obtained from transmission / reception means arranged at a long distance. It is possible to ask for. However, there is one problem here. This is because even if the change in the absorber concentration in the sample is the same, a detector with a longer transmission / reception distance has a larger change in the received signal than a detector with a shorter transmission / reception distance. Sometimes. This is because the average optical path length of light passing through the sample changes depending on the distance between light transmission and reception, and the longer the light transmission and reception distance, the longer the average optical path length. Therefore, if the transmission / reception distance is reduced to measure a shallow portion, the change in the received signal is reduced, and the purpose is not achieved. In other words, if the transmission / reception distance is changed, both the depth information and the information on the measurement sensitivity are combined, which does not lead to the measurement in the depth direction alone.

【0011】この問題を解決するため、本発明の光測定
装置は、送光光を異なる波長を含んだ光とし、この異な
る波長と、送光点と受光点との距離とを組み合わせるこ
とによって、深さ方向について区別して測定を行う。吸
光体の吸光係数の大きさは、波長によって異なり、例え
ば、図2に示すオキシヘモグロビンとデオキシヘモグロ
ビンの波長に対する吸光係数の特性では、両者がクロス
する800nm付近の吸光係数は常用対数で0.2mM
-1・cm-1であるのに対して、550nmにおける吸光
係数は常用対数で10mM-1・cm-1であり、約50倍
の差がある。なお、習慣に従い化学の分野で使われる常
用対数を底とする吸光度に基づく吸収係数を「吸光係
数」と記し、物理の分野で使われる自然対数を底とする
ものを「吸収係数μa」と記すことにする。本発明の光
測定装置は、この波長による吸光係数の相違と、前記し
た送光,受光点間の距離による吸収の寄与特性とを組み
合わせるものである。
[0011] In order to solve this problem, the light measuring apparatus of the present invention uses light having different wavelengths as transmitted light, and combines the different wavelengths with the distance between the light transmitting point and the light receiving point. The measurement is performed separately in the depth direction. The magnitude of the extinction coefficient of the light absorber varies depending on the wavelength. For example, in the characteristics of the extinction coefficient with respect to the wavelength of oxyhemoglobin and deoxyhemoglobin shown in FIG. 2, the extinction coefficient at around 800 nm where both cross is 0.2 mM in common logarithm.
Whereas a -1 · cm -1, the absorption coefficient at 550nm is 10 mM -1 · cm -1 in common logarithm, a difference of approximately 50 times. In addition, the absorption coefficient based on the absorbance based on the common logarithm used in the field of chemistry according to customs is referred to as “extinction coefficient”, and the one based on the natural logarithm used in the field of physics is referred to as “absorption coefficient μa”. I will. The light measuring device of the present invention combines the difference of the extinction coefficient depending on the wavelength with the contribution characteristic of the absorption depending on the distance between the light transmitting and receiving points.

【0012】ここで50倍という吸収係数の違いが直接
現れるのは、散乱物質を含まない透明な試料の場合であ
る。この場合は吸収係数μaに対して(μa×距離)と
いう量が光の減衰に対応する。
Here, the 50-fold difference in the absorption coefficient directly appears in the case of a transparent sample containing no scattering substance. In this case, the amount (μa × distance) with respect to the absorption coefficient μa corresponds to the light attenuation.

【0013】これに対して、ここで対象にしている生体
のような、強い散乱物質を含む試料の場合には、透明試
料の(μa×距離)が直接現れるではなく、吸収係数μ
aと散乱係数μs’の両者によって決まる実効減衰係数
μeff が吸収量に関係する。この実効減衰係数μeff は
μeff =(3μaμs’)1/2 で与えられ、(μeff*
距離)という量が強い散乱物質を含む試料の場合の光の
減衰を規定する。μeff の式に平方根が入っているの
で、後述するように吸収体の本来の吸収係数に50倍の
相違があるとき、実効減衰係数に換算すると7倍程度に
圧縮される。この程度の相違は、2つの送光・受光距離
を選ぶときにはむしろ手頃な相違であり好都合な点とな
る。
On the other hand, in the case of a sample containing a strongly scattering substance, such as a living body, the (μa × distance) of the transparent sample does not directly appear but an absorption coefficient μ.
The effective attenuation coefficient μeff determined by both a and the scattering coefficient μs ′ is related to the amount of absorption. The effective attenuation coefficient μeff is given by μeff = (3 μaμs ′) 1/2 , and (μeff *
The distance) defines the light attenuation for a sample containing a strong scattering material. Since the square root is included in the equation of μeff, if the original absorption coefficient of the absorber has a difference of 50 times as described later, the absorption is reduced to about 7 times in terms of the effective attenuation coefficient. This difference is rather convenient when selecting two light transmission / reception distances, and is advantageous.

【0014】次に、実効減衰係数μeff の効果を次の式
を用いて説明する。一般に、単位1の強度の点状(デル
タ関数)の光を半無限体の表面の1点に入射するとき、
入射点からρmm離れた点で受光される光の強度R
(a,μeff )の対数は以下の式(1)によって表され
る。 lnR(a,μeff ) =−aμeff +ln(aμeff +1)−3lna+ln(Z0 /2π) …(1) ここで、aは入射点と受光点間の距離をρmm,Z0 =
1/μs’(なお、μs’は等価散乱係数(=(1−
g)μs;μsは散乱係数、gは非等方性パラメータ)
である)としたとき、a=(ρ2 +Z02 1/2で表され
る値である。また、μeff は実効減衰係数であり、吸収
係数をμaとしたとき、(3μa・μs’)1/2 で表さ
れる。また、lnは自然対数を表している。
Next, the effect of the effective attenuation coefficient μeff will be described using the following equation. Generally, when a point-like (delta function) light having an intensity of unit 1 is incident on a point on the surface of a semi-infinite body,
Intensity R of light received at a point ρmm away from the point of incidence
The logarithm of (a, μeff) is represented by the following equation (1). lnR (a, μeff) = − aμeff + ln (aμeff + 1) -3lna + ln (Z0 / 2π) (1) where a is the distance between the incident point and the light receiving point, ρmm, Z0 =
1 / μs ′ (μs ′ is an equivalent scattering coefficient (= (1-
g) μs; μs is a scattering coefficient, g is an anisotropic parameter)
Is a value represented by a = (ρ 2 + Z 0 2 ) 1/2 . Μeff is an effective attenuation coefficient, and is represented by (3 μa · μs ′) 1/2 when an absorption coefficient is μa. Further, ln represents a natural logarithm.

【0015】以下、上記式(1)を用いて、上記した実
効減衰係数μeff (=(3μa・μs’)1/2 )は、送
受光間の距離および深さ方向の吸収の程度を表している
ことを示す。ここで、吸収係数の程度がα倍異なる2つ
の異なる実効減衰係数μeff1とμeff2(=α・μeff1)
の吸収について、以下の式(2)が成り立てば、受光点
における光強度Rが同じとなる。
Hereinafter, using the above equation (1), the effective attenuation coefficient μeff (= (3 μa · μs ′) 1/2 ) represents the distance between transmission and reception and the degree of absorption in the depth direction. To indicate that Here, two different effective attenuation coefficients μeff1 and μeff2 (= α · μeff1) whose absorption coefficients differ by α times.
If the following equation (2) holds true for the absorption of light, the light intensity R at the light receiving point becomes the same.

【0016】 0=(a1 μeff1−α・a2 μeff1) +ln{(α・a2 μeff1+1)/(a1 μeff1+1)} −3ln(a2 /a1) …(2) 上式(2)が常に成り立つのは、以下の式(3)が成り
立つときである。 a1 =α・a2 …(3) 従って、aは(ρ2 +Z02 1/2で表される値であっ
て、主に送受光点間の距離ρで定まる値であるため、上
記式(3)は、実効減衰係数μeff の相違の程度は送受
光点間の距離の相違程度に対応することを示している。
さらに、前記した図1の寄与関数が示す、送光,受光点
間の距離と被検体の深さと相関関係から、実効減衰係数
μeff の相違の程度は被検体の深さ方向の相違程度に対
応することが分かる。
0 = (a1 μeff1−α · a2 μeff1) + ln {(α · a2 μeff1 + 1) / (a1 μeff1 + 1)} − 3ln (a2 / a1) (2) The above equation (2) always holds. This is when Expression (3) below holds. a1 = α · a2 (3) Accordingly, a is a value represented by (ρ 2 + Z 0 2 ) 1/2 , and is a value mainly determined by the distance ρ between the transmitting and receiving points. 3) indicates that the difference in the effective attenuation coefficient μeff corresponds to the difference in the distance between the transmitting and receiving points.
Further, from the correlation between the distance between the light transmitting and receiving points and the depth of the subject, which is shown by the contribution function of FIG. 1, the degree of difference in the effective attenuation coefficient μeff corresponds to the degree of difference in the depth direction of the subject. You can see that

【0017】ここで、図2に示されるヘモグロビンの吸
光係数の値(単位mM-1・cm-1)を常用対数から自然
対数でかつmmあたりに変換してmmあたりの吸収係数
を求めると、800nmでは0.046mM-1・mm-1
となり、550nmでは2.3mM-1・mm-1となる。
このmMあたりの吸収係数に生体中のヘモグロビンの濃
度0.3mMをかけると、吸収係数μaは1mm当たり
800nmでは0.014となり、550nmでは0.
69となる。この値を用いて、800nmと550nm
の異なる波長での実効減衰係数μeff を求めると、それ
ぞれ0.2(=(3×0.014×1)1/2 ),1.4
3(=(3×0.69×1)1/2 )となる。なお、散乱
係数μs’は1mm-1とする。
Here, when the value of the absorption coefficient of hemoglobin (unit: mM −1 · cm −1 ) shown in FIG. 2 is converted from a common logarithm to a natural logarithm and per mm to obtain an absorption coefficient per mm, At 800 nm, 0.046 mM -1 · mm -1
At 550 nm, it is 2.3 mM -1 · mm -1 .
If the absorption coefficient per mM is multiplied by 0.3 mM of the concentration of hemoglobin in the living body, the absorption coefficient μa becomes 0.014 at 800 nm per mm, and becomes 0.14 at 550 nm.
69. Using this value, 800 nm and 550 nm
Are calculated as 0.2 (= (3 × 0.014 × 1) 1/2 ) and 1.4, respectively.
3 (= (3 × 0.69 × 1) 1/2 ). The scattering coefficient μs ′ is 1 mm −1 .

【0018】従って、ヘモグロビンの実効減衰係数μef
f は800nmと550nmでは、約7倍異なる。この
実効減衰係数μeff が7倍異なることは、受光点での受
光感度を同じとすると、550nmの光は800nmの
光と比較して、吸収の強さが約7倍大きく、また、深さ
方向で約7分の1の深さの情報を出力することを示して
いる。従って、同程度の受光感度で測定する場合、送受
光間の距離と波長とを組み合わせることによって、受光
感度の低下を減少させながら、深さ方向について区別し
て測定することができる。
Therefore, the effective attenuation coefficient μef of hemoglobin
f differs about 7 times between 800 nm and 550 nm. The fact that the effective attenuation coefficient μeff is seven times different is that, assuming that the light receiving sensitivity at the light receiving point is the same, the absorption intensity of 550 nm light is about 7 times larger than that of 800 nm light, and the depth direction is Indicates that information about 1/7 of the depth is output. Therefore, when measuring at the same level of light receiving sensitivity, by combining the distance between the sending and receiving light and the wavelength, it is possible to separately measure in the depth direction while reducing the decrease in light receiving sensitivity.

【0019】本発明の第1の実施形態は、送受光間の距
離が異なる複数の送・受光部を用い距離が短い方には短
い波長の光を用い、送受光間の距離が長い方には長い波
長の光を用いるものであり、これによって、短い波長に
よる測定で被検体の浅い部分の測定を行い、長い波長に
よる測定で被検体の深い部分の測定を行う。典型的な波
長の例としては、被検体の浅い部分の測定を行う波長域
を500nmから650nmとし、被検体の深い部分の
測定を行う波長域を650nmから1000nmとする
ものであり、これによって、生体中のヘモグロビンとデ
オキシヘモグロビンの測定を深さ方向で区別して測定す
る。
In the first embodiment of the present invention, a plurality of transmitting / receiving sections having different distances between transmitting and receiving light are used, and light having a shorter wavelength is used for a shorter distance, and light having a shorter wavelength is used for a longer distance between transmitting and receiving. Uses light of a long wavelength, thereby measuring a shallow part of the subject by measurement at a short wavelength and measuring a deep part of the subject by measurement at a long wavelength. As an example of a typical wavelength, the wavelength range for measuring the shallow portion of the subject is 500 nm to 650 nm, and the wavelength range for measuring the deep portion of the subject is 650 nm to 1000 nm. The measurement of hemoglobin and deoxyhemoglobin in a living body is performed while being distinguished in the depth direction.

【0020】ここで、オキシヘモグロビン、デオキシヘ
モグロビンの2成分を分離して測定することを元敵とす
るときは、浅い部分の測定に短波長域の例えば560n
m,580nmの2波長の組を、深いブロック部位の測
定に長波長域の例えば760nm,830nmの2波長
の組を用いる。浅い方、深い方のそれぞれの組に対し
て、2つの未知数の連立方程式を解いてオキシヘモグロ
ビン、デオキシヘモグロビンの吸収係数が等しくなる波
長を、短波長域,長波長域から選ぶこともできる。例え
ば、短波長域を560nmに、長波長域を800nmに
する。また、この中間として、長波長域を2波長、短波
長域を1波長等とする変形も可能である。
Here, when it is originally intended to separate and measure the two components of oxyhemoglobin and deoxyhemoglobin, the measurement of a shallow portion should be performed in a short wavelength region such as 560 n.
A set of two wavelengths of m and 580 nm and a set of two wavelengths of 760 nm and 830 nm in a long wavelength range are used for measuring a deep block portion. By solving a system of two unknowns for each of the shallow and deep sets, the wavelength at which the absorption coefficients of oxyhemoglobin and deoxyhemoglobin become equal can be selected from the short wavelength range and the long wavelength range. For example, the short wavelength range is set to 560 nm, and the long wavelength range is set to 800 nm. In addition, a modification in which the long wavelength region is set to two wavelengths and the short wavelength region is set to one wavelength is also possible in the middle.

【0021】さらに、短波長域,長波長域にそれぞれ3
波長以上を選択する変形も可能である。3波長以上の場
合には、いわゆるオーバー・デターミネーションの場合
であって、最小自乗法の連立方程式となるが、これらの
光源と検出器との距離が1つの場合に行われている方法
と同じである。
Further, 3 in each of a short wavelength region and a long wavelength region.
Variations that select more than the wavelength are also possible. In the case of three or more wavelengths, this is the case of so-called over-determination, which is a simultaneous equation of the least squares method, but is the same as the method performed when the distance between these light sources and the detector is one. It is.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照しながら詳細に説明する。図3は、本発明の光測定
装置の一実施の形態を説明するための概略ブロック図で
ある。なお、図3は、1つの送光部に対して2つの受光
部を設けた構成例を示している。図3において、光測定
装置1は、送光部Sと検出部DsとDL を備え、被検体
9に接して取り付けられる。送光部Sは、光ファイバー
3の一端とすることができ、光ファイバー3の他端は光
源3に接続され、2つの波長の組(λL1, λL2)と(λ
S1, λS2)の光が送光され、同一の送光点から被検体9
内に入射される。なお、ここで、波長λL1, λL2の組は
波長λS1, λS2の組より長波長とする。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 3 is a schematic block diagram for explaining one embodiment of the light measuring device of the present invention. FIG. 3 shows a configuration example in which two light receiving units are provided for one light transmitting unit. In FIG. 3, the light measuring device 1 includes a light transmitting section S, detecting sections Ds and DL, and is mounted in contact with the subject 9. The light transmitting unit S can be one end of the optical fiber 3, and the other end of the optical fiber 3 is connected to the light source 3, and a pair of two wavelengths (λL1, λL2) and (λ
S1, λS2) is transmitted, and the subject 9 is transmitted from the same transmitting point.
It is incident inside. Here, the set of wavelengths λL1, λL2 is longer than the set of wavelengths λS1, λS2.

【0023】検出部DS は短波長の組λS1, λS2を検出
し、検出部DL は長波長の組λL1,λL2を検出する部分
であり、光ファイバー4の一端あるいは、シリコンダイ
オード等の光−電気変換素子とすることができる。検出
部DS ,DL を光ファイバー4の一端で構成する場合に
は、他端にシリコンダイオード等の検出器5−1を設け
る。検出器5−1の出力は、プリアンプ5−2等を介し
て処理回路5−3で信号処理が行われて、例えば酸素化
度や血液量等を求める演算を行う。
The detecting section DS detects the short-wavelength pairs λS1 and λS2, and the detecting section DL detects the long-wavelength pairs λL1 and λL2. One end of the optical fiber 4 or a light-to-electric converter such as a silicon diode. It can be an element. When the detection units DS and DL are formed at one end of the optical fiber 4, a detector 5-1 such as a silicon diode is provided at the other end. The output of the detector 5-1 is subjected to signal processing in a processing circuit 5-3 via a preamplifier 5-2 or the like, and an operation for obtaining, for example, the degree of oxygenation or blood volume is performed.

【0024】短波長を検出する検出部Dsと送光部Sと
の距離dS は、長波長を検出する検出部DL と送光部S
との距離dL より短く設定する。この距離dS ,dL
は、測定する被検体内の深さに応じて設定することがで
きる。検出部DS は短波長λS の光を受光し、被検体9
の浅い部分を測定し、他方、検出部DL は短波長λL の
光を受光し、被検体9の深い部分を測定する。
The distance dS between the detecting section Ds for detecting the short wavelength and the light transmitting section S is determined by the detecting section DL and the transmitting section S for detecting the long wavelength.
The distance is set shorter than the distance dL. This distance dS, dL
Can be set according to the depth in the subject to be measured. The detector DS receives the light having the short wavelength λs,
The detector DL receives light of the short wavelength λL and measures the deep part of the subject 9.

【0025】図4は、本発明の光測定装置の他の実施の
形態を説明するための概略ブロック図であり、2つの送
光部に対して1つの受光部を設けた構成例である。図4
において、光測定装置1は、送光部SS と送光部SL と
検出部Dを備え、被検体9に接して取り付けられる。送
光部SS ,SL は、それぞれ一端に光源が接続された光
ファイバーの端部とすることができ、異なる二つの組波
長λS1, λS2,λL1, λL2が送光され、異なる送光点か
ら被検体9内に入射される。
FIG. 4 is a schematic block diagram for explaining another embodiment of the light measuring device of the present invention, and is an example of a configuration in which one light receiving unit is provided for two light transmitting units. FIG.
1, the light measuring device 1 includes a light transmitting section SS, a light transmitting section SL, and a detecting section D, and is mounted in contact with the subject 9. The light transmitting sections SS and SL can be ends of an optical fiber each having a light source connected to one end. Two different sets of wavelengths λS1, λS2, λL1, λL2 are transmitted, and the subject is transmitted from different transmitting points. 9 is incident.

【0026】検出部Dは短波長の二波長λS1, λS2およ
び長波長の二波長λL1, λL2を検出する部分であり、前
記図3と同様に、光ファイバーあるいは検出器とするこ
とができる。短波長を入射する送光部SS と検出部Dと
の距離dS は、長波長を入射する送光部SL 検出部Dと
の距離dL より短く設定する。この距離dS ,dL は、
測定する被検体内の深さに応じて設定することができ
る。検出部Dは短波長λS1, λS2の光を受光して被検体
9の4つの浅い部分を測定し、長波長λL1, λL2の光を
受光して被検体9の深い部分を測定する。受光する波長
λの区別は、各波長(長波長側の2波長,短波長側の2
波長)は時間的に順次点灯するので共通の検出器で受光
した後容易に弁別することができる。なお、図3,4の
被検体9内の斜線部分は、短波長λS1, λS2および長波
長λL1, λL2の光の吸収によって測定が行われる部分を
概略的に示している。
The detection section D is a section for detecting two short wavelengths λS1 and λS2 and two long wavelengths λL1 and λL2, and can be an optical fiber or a detector as in FIG. The distance dS between the light transmitting section SS for the short wavelength incidence and the detecting section D is set shorter than the distance dL between the light transmitting section SL and the detecting section D for the long wavelength incident. The distances dS and dL are
It can be set according to the depth in the subject to be measured. The detector D receives the light of the short wavelengths λS1 and λS2 to measure four shallow portions of the subject 9 and receives the light of the long wavelengths λL1 and λL2 to measure the deep portion of the subject 9. The wavelength λ to be received is distinguished from each wavelength (two wavelengths on the long wavelength side and two wavelengths on the short wavelength side).
Wavelength) are sequentially turned on in time, so that they can be easily distinguished after being received by a common detector. Note that the hatched portions in the subject 9 in FIGS. 3 and 4 schematically show the portions where the measurement is performed by absorbing the light having the short wavelengths λS1, λS2 and the long wavelengths λL1, λL2.

【0027】前記図3,4に示す実施形態は、各波長の
組について1組の送受光手段によって初期からの変化量
を測定するものである。これに対して、図5に示す本発
明の光測定装置の別の実施の形態は、各波長の組に対し
て設置距離の異なる2組の送受光手段を構成し、これに
よって、絶対値の測定を行うものである。
In the embodiment shown in FIGS. 3 and 4, the change from the initial stage is measured by one set of light transmitting and receiving means for each set of wavelengths. On the other hand, another embodiment of the optical measurement device of the present invention shown in FIG. 5 is configured with two sets of light transmitting and receiving means having different installation distances for each set of wavelengths, thereby providing an absolute value. The measurement is performed.

【0028】設置距離の異なる2組の送受光手段によっ
て得られる測定値を用いることによって、被検体の光学
定数である吸収係数μaと等価散乱係数μS との積を絶
対値で求めることが知られている。また、この光学定数
の複数の組の比を求めることによって例えば酸素化度等
の絶対値を求めることが知られている。
It is known that the product of the absorption coefficient μa, which is the optical constant of the subject, and the equivalent scattering coefficient μS is obtained as an absolute value by using the measured values obtained by two sets of light transmitting and receiving means having different installation distances. ing. It is also known to obtain an absolute value such as a degree of oxygenation by calculating the ratio of a plurality of sets of the optical constants.

【0029】そこで、図5に示す実施形態では、光測定
装置1は、送光部SS と送光部SLと検出部D1 と検出
部Dを備え、被検体9に接して取り付けられる。送光部
SS,SL は、それぞれ一端に光源が接続された光ファ
イバーの端部とすることができる。送光部SS からは、
短波長域の2波長λS1, λS2を送光し、送光部SL から
は、長波長域の2波長λL1, λL2を送光する。これら合
計4つの波長は、順次時間的に切り換えて送光される。
一方検出部も2つ設置されているが、これらは絶対値測
定のためであり、短波長,長波長の全てを受光する。す
なわち、2つの検出部D1 ,D2 は、短波長域、長波長
域の4つの波長の光をすべて受光する。図5の配置に示
すように、D1 ,D2 は長波長用光源SL からかなり離
れているので、深い部分の測定に寄与する。ところが送
光部SS を、検出部D1 ,D2 の間に配置していること
がポイントであり、このため、共通の検出部、D1 ,D
2が浅い部分用の送光部SS に対して、近距離にはいち
された巧みな構造となっている。この様にして、従来の
絶対値測定型の測定部に、単に短波長側の送光部SS を
追加するだけで、図5の構造ができることが実用上重要
である。該検出部D1 および検出部D2 は、前記図3,
4と同様に、光ファイバーあるいは検出器とすることが
できる。
Therefore, in the embodiment shown in FIG. 5, the light measuring device 1 includes a light transmitting unit SS, a light transmitting unit SL, a detecting unit D1, and a detecting unit D, and is mounted in contact with the subject 9. The light transmitting sections SS and SL can be ends of optical fibers each having a light source connected to one end. From the light transmitting section SS,
The two wavelengths .lambda.S1 and .lambda.S2 in the short wavelength range are transmitted, and the two wavelengths .lambda.L1 and .lambda.L2 in the long wavelength range are transmitted from the light transmitting section SL. These four total wavelengths are sequentially switched in time and transmitted.
On the other hand, two detectors are also provided, which are for measuring the absolute value, and receive both short wavelengths and long wavelengths. That is, the two detectors D1 and D2 receive all of the light having the four wavelengths of the short wavelength region and the long wavelength region. As shown in the arrangement of FIG. 5, D1 and D2 are far away from the long-wavelength light source SL, and thus contribute to the measurement of deep parts. However, the point is that the light transmitting unit SS is disposed between the detecting units D1 and D2, and therefore, the common detecting units D1 and D2
2 has a clever structure that is provided at a short distance from the light transmitting section SS for a shallow portion. In this way, it is practically important that the structure shown in FIG. 5 can be formed by simply adding the light transmitting section SS on the short wavelength side to the conventional absolute value measuring type measuring section. The detection unit D1 and the detection unit D2 are the same as those in FIG.
Similarly to 4, it can be an optical fiber or a detector.

【0030】短波長を入射する送光部SS と検出部D1
との距離dS1は、送光部SL と検出部D1 との距離dL1
より短く設定し、これによって、検出部D1 は短波長λ
S1の光を受光して被検体9の浅い部分を測定し、長波長
λL1の光を受光して被検体9の深い部分を測定する。ま
た、短波長を入射する送光部SS と検出部D2 との距離
dS2は、長波長を入射する送光部SL と検出部D2 との
距離dL2より短く設定し、これによって、検出部D2 は
短波長λS2の光を受光して被検体9の浅い部分を測定
し、長波長λL2の光を受光して被検体9の深い部分を測
定する。
A light transmitting section Ss and a detecting section D1 for receiving short wavelength light.
Is the distance dL1 between the light transmitting unit SL and the detecting unit D1.
The detection unit D1 is set to be shorter than the short wavelength λ.
The light of S1 is received to measure the shallow portion of the subject 9, and the light of long wavelength λL1 is received to measure the deep portion of the subject 9. In addition, the distance dS2 between the light transmitting unit SS and the detecting unit D2 for entering the short wavelength is set shorter than the distance dL2 between the light transmitting unit SL and the detecting unit D2 for entering the long wavelength. The light of the short wavelength λS2 is received to measure a shallow portion of the subject 9, and the light of the long wavelength λL2 is received to measure the deep portion of the subject 9.

【0031】さらに、上記2組の出力を用いることによ
って絶対値の測定を行うことができる。さらに、各長波
長および短波長において、異なる波長λS1, λS2,およ
びλL1, λL1を入射して、前記光学定数を複数組求め、
これらの組の間の比を求めることによって、例えば被検
体の酸素化度の絶対値を求めることができる。
Further, the absolute value can be measured by using the two sets of outputs. Further, at each of the long and short wavelengths, different wavelengths λS1, λS2, and λL1, λL1 are incident, and a plurality of sets of the optical constants are obtained.
By determining the ratio between these sets, for example, the absolute value of the degree of oxygenation of the subject can be determined.

【0032】次に、本発明の光測定装置の構成例につい
て説明する。図6は本発明の光測定装置の一構成例を説
明する図である。図6に示す構成例は、前記図5の実施
形態に対応するものであり、プローブ6内に短波長の光
を送光する送光部SS と長波長の光を送光する送光部S
L と検出部D1 ,検出部D2 を備え、その端部を被検体
9側に向けて設置する。送光部SL および送光部SS は
光ファイバー3−1,3−2を通して光源部2に接続さ
れ、LDあるいはLEDの光源2−1〜2−4からそれ
ぞれ波長λL1,λL2および波長λS1,λS2を受けて、被
検体9に入射する。また、検出部D1 ,検出部D2 はプ
ローブ6から外部に検出出力D1out,D2outを出力す
る。
Next, an example of the configuration of the light measuring device of the present invention will be described. FIG. 6 is a diagram illustrating an example of the configuration of the light measurement device according to the present invention. The configuration example shown in FIG. 6 corresponds to the embodiment of FIG. 5 described above, and includes a light transmitting unit SS for transmitting light of a short wavelength and a light transmitting unit S for transmitting light of a long wavelength in the probe 6.
L, a detection unit D1, and a detection unit D2 are provided, and their ends are set to face the subject 9 side. The light transmitting unit SL and the light transmitting unit SS are connected to the light source unit 2 through optical fibers 3-1 and 3-2, and transmit the wavelengths λL1 and λL2 and the wavelengths λS1 and λS2 from the LD or LED light sources 2-1 to 2-4, respectively. Then, the light enters the subject 9. The detectors D1 and D2 output detection outputs D1out and D2out from the probe 6 to the outside.

【0033】また、図7は本発明の光測定装置の他の構
成例を説明する図である。図7に示す構成例は、検出部
をCCDカメラ7により構成するものであり、暗室8内
に短波長の光を送光する送光部SS と長波長の光を送光
する送光部SL とを備え、被検体9からの光をCCDカ
メラ7で検出する。送光部SL および送光部SS は光フ
ァイバーを通して光源部2に接続され、それぞれ波長λ
L1,λL2および波長λS1,λS2を受けて、被検体9に入
射すし、CCDカメラ7は被検体からの光の内測定可能
範囲12内の光を受け検出を行う。送光部において、送
光部SL の周囲に遮光板10あるいは減光用フィルター
11を設け、送光部SL の外側に送光部SS を配置し、
この構成によって、波長と送受光間の距離の組み合わせ
を構成する。
FIG. 7 is a view for explaining another example of the configuration of the light measuring device of the present invention. In the configuration example shown in FIG. 7, the detection unit is configured by the CCD camera 7, and the light transmission unit SS that transmits short wavelength light and the light transmission unit SL that transmits long wavelength light into the dark room 8. The CCD camera 7 detects light from the subject 9. The light transmitting unit SL and the light transmitting unit SS are connected to the light source unit 2 through an optical fiber, and each has a wavelength λ.
Receiving L1, λL2 and wavelengths λS1, λS2, the light is incident on the subject 9, and the CCD camera 7 receives and detects light within the measurable range 12 of the light from the subject. In the light transmitting unit, a light shielding plate 10 or a light reducing filter 11 is provided around the light transmitting unit SL, and the light transmitting unit SS is disposed outside the light transmitting unit SL.
With this configuration, a combination of the wavelength and the distance between the transmission and reception is configured.

【0034】図8を用いて、図7の構成による受光状態
を説明する。図8において、送光部SL から入射した光
は長波長であるため、送光点付近での減衰の程度は少な
く、図8(b)に示すように被検体の表面から出る光の
強度(図中の破線)は大きくなる。そこで、送光部SL
の周囲に設けた遮光板あるいは減光用フィルターによっ
てこの光を遮光あるいは減光して、CCDが測定光でき
る強度範囲となるように光強度のバランスをとる。ま
た、送光部SL から入射した光は短波長であるため、図
8(b)に示すように送光点付近における光の吸収が強
いため(図中の破線)、送光部SL の周囲から比較的弱
い光が出る。そのため、遮光板あるいは減光用フィルタ
ー等を用いることなる測定を行うことができる。このよ
うにして、送光部付近について面状の光強度を測定し
て、前記と同様に被検体の濃度等の測定を行う。
The light receiving state of the configuration shown in FIG. 7 will be described with reference to FIG. In FIG. 8, since the light incident from the light transmitting section SL has a long wavelength, the degree of attenuation near the light transmitting point is small, and as shown in FIG. The broken line in the figure) becomes larger. Therefore, the light transmission section SL
This light is shielded or dimmed by a light shielding plate or a dimming filter provided around, and the light intensity is balanced so that the intensity range can be measured by the CCD. Further, since the light incident from the light transmitting section SL has a short wavelength, the light absorption near the light transmitting point is strong as shown in FIG. Emits relatively weak light. Therefore, it is possible to perform a measurement using a light shielding plate or a dimming filter. In this way, the planar light intensity is measured around the light transmitting unit, and the measurement of the concentration of the subject is performed in the same manner as described above.

【0035】図9は、図7の構成例に適用する送光部S
の構成例である。この構成例では、同軸の光ファイバー
を用い、中心部分を長波長の光を送光する送光部SL と
し、周囲を短波長の光を送光する送光部SS とするもの
である。この構成では、送光部SS を減光器として構成
することができる。
FIG. 9 shows a light transmitting unit S applied to the configuration example of FIG.
This is an example of the configuration. In this configuration example, a coaxial optical fiber is used, and a central portion is a light transmitting portion SL for transmitting long wavelength light, and a peripheral portion is a light transmitting portion SS for transmitting short wavelength light. In this configuration, the light transmitting section SS can be configured as a dimmer.

【0036】本発明の光測定装置によれば、光路長を小
さくすると同時に吸収が大きな波長域を選択して、光路
長と実効減衰係数の積を同等とすることによって、被検
体の浅い部分に対しても検出感度を下げることなく測定
を行うことができる。また、測定対象をヘモグロビンと
する場合には、深部用の長波長域に近赤外域を用い、浅
い部分用の短波長域に可視域を用いることができる。ま
た、可視域を用いることによって、可視域に吸収域を持
つ皮膚の色素のメラニンを吸収の補正を行うことができ
る。
According to the optical measurement device of the present invention, the wavelength range in which absorption is large is selected while the optical path length is reduced, and the product of the optical path length and the effective attenuation coefficient is made equal. On the other hand, the measurement can be performed without lowering the detection sensitivity. When hemoglobin is to be measured, a near-infrared region can be used for a long wavelength region for a deep portion, and a visible region can be used for a short wavelength region for a shallow portion. In addition, by using the visible region, it is possible to correct the absorption of melanin, a pigment in skin having an absorption region in the visible region.

【0037】[0037]

【発明の効果】以上説明したように、本発明の光測定装
置によれば、深さ方向について区別して測定できること
ができる。
As described above, according to the optical measurement device of the present invention, it is possible to perform measurement separately in the depth direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】点状吸収体に対する寄与関数を示す図である。FIG. 1 is a diagram showing a contribution function for a point-like absorber.

【図2】オキシヘモグロビンとデオキシヘモグロビンの
波長に対する吸収係数の特性図である。
FIG. 2 is a characteristic diagram of absorption coefficients of oxyhemoglobin and deoxyhemoglobin with respect to wavelength.

【図3】本発明の光測定装置の一実施の形態を説明する
ための概略ブロック図である。
FIG. 3 is a schematic block diagram for explaining an embodiment of the optical measurement device of the present invention.

【図4】本発明の光測定装置の他の実施の形態を説明す
るための概略ブロック図である。
FIG. 4 is a schematic block diagram for explaining another embodiment of the light measuring device of the present invention.

【図5】本発明の光測定装置の別の実施の形態を説明す
るための概略ブロック図である。
FIG. 5 is a schematic block diagram for explaining another embodiment of the light measuring device of the present invention.

【図6】本発明の光測定装置の一構成例を説明する図で
ある。
FIG. 6 is a diagram illustrating a configuration example of a light measuring device according to the present invention.

【図7】本発明の光測定装置の他の構成例を説明する図
である。
FIG. 7 is a diagram illustrating another configuration example of the optical measurement device of the present invention.

【図8】本発明の光測定装置の他の構成例の受光状態を
説明する図である。
FIG. 8 is a diagram illustrating a light receiving state of another configuration example of the light measuring device according to the present invention.

【図9】本発明の光測定装置の他の構成例の送光部の例
である。
FIG. 9 is an example of a light transmitting unit of another configuration example of the light measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1…光測定装置、2…光源、3,4…光ファイバー、5
…測定装置、6…プローブ、7…CCDカメラ、8…暗
室、9…被検体、10…遮光板、11…減光フィルタ
ー、12…測定可能範囲、S…送光部、D…検出部。
DESCRIPTION OF SYMBOLS 1 ... Optical measuring device, 2 ... Light source, 3, 4 ... Optical fiber, 5
... Measurement device, 6 ... Probe, 7 ... CCD camera, 8 ... Dark room, 9 ... Subject, 10 ... Light shield plate, 11 ... Dark filter, 12 ... Measurable range, S ... Light transmission unit, D ... Detection unit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検体に送光し、被検体中を散乱あるい
は透過した光を受光することによって被検体を光学的に
測定する光測定装置において、前記送光光は異なる波長
を含み、被検体上において送光点と受光点との距離を前
記波長に応じて異ならせることを特徴とする光測定装
置。
1. An optical measuring device for transmitting light to a subject and optically measuring the subject by receiving light scattered or transmitted through the subject, wherein the transmitted light includes different wavelengths, An optical measurement device, wherein a distance between a light transmitting point and a light receiving point on a specimen is varied according to the wavelength.
JP23774696A 1996-09-09 1996-09-09 Optical measuring equipment Withdrawn JPH1082732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23774696A JPH1082732A (en) 1996-09-09 1996-09-09 Optical measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23774696A JPH1082732A (en) 1996-09-09 1996-09-09 Optical measuring equipment

Publications (1)

Publication Number Publication Date
JPH1082732A true JPH1082732A (en) 1998-03-31

Family

ID=17019865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23774696A Withdrawn JPH1082732A (en) 1996-09-09 1996-09-09 Optical measuring equipment

Country Status (1)

Country Link
JP (1) JPH1082732A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508110A (en) * 2005-09-08 2009-02-26 ビオプティックス・インコーポレイテッド Optical probe for optical imaging system
JP4530429B1 (en) * 2009-04-14 2010-08-25 株式会社ファインテック LED inspection method and LED inspection apparatus
JP2016508766A (en) * 2013-01-22 2016-03-24 イブウォッチ,リミティド ライアビリティ カンパニー Transcutaneous sensor geometry
EP3563758A1 (en) * 2012-09-27 2019-11-06 ivWatch, LLC Systems and methods for mitigating the effects of tissue blood volume changes to aid in diagnosing infiltration or extravasation in animalia tissue

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508110A (en) * 2005-09-08 2009-02-26 ビオプティックス・インコーポレイテッド Optical probe for optical imaging system
JP2013061345A (en) * 2005-09-08 2013-04-04 Vioptix Inc Device
JP2015007643A (en) * 2005-09-08 2015-01-15 ビオプティックス・インコーポレイテッドVioptix,Inc. Method
JP4530429B1 (en) * 2009-04-14 2010-08-25 株式会社ファインテック LED inspection method and LED inspection apparatus
JP2010266424A (en) * 2009-04-14 2010-11-25 Finetec Co Ltd Led inspection method and led inspection device
EP3563758A1 (en) * 2012-09-27 2019-11-06 ivWatch, LLC Systems and methods for mitigating the effects of tissue blood volume changes to aid in diagnosing infiltration or extravasation in animalia tissue
EP2830488A4 (en) * 2013-01-22 2016-08-17 Ivwatch Llc Geometry of a transcutaneous sensor
JP2018015588A (en) * 2013-01-22 2018-02-01 イブウォッチ,リミティド ライアビリティ カンパニー Geometry of transcutaneous sensor
JP2018020157A (en) * 2013-01-22 2018-02-08 イブウォッチ,リミティド ライアビリティ カンパニー Geometry of transcutaneous sensor
JP2018020160A (en) * 2013-01-22 2018-02-08 イブウォッチ,リミティド ライアビリティ カンパニー Geometry of transcutaneous sensor
JP2018175902A (en) * 2013-01-22 2018-11-15 イブウォッチ,リミティド ライアビリティ カンパニー Geometry of transcutaneous sensor
JP2018183638A (en) * 2013-01-22 2018-11-22 イブウォッチ,リミティド ライアビリティ カンパニー Geometry of transcutaneous sensor
JP2016508766A (en) * 2013-01-22 2016-03-24 イブウォッチ,リミティド ライアビリティ カンパニー Transcutaneous sensor geometry
JP2019205837A (en) * 2013-01-22 2019-12-05 イブウォッチ,リミティド ライアビリティ カンパニー Geometry of transcutaneous sensor
JP2020121187A (en) * 2013-01-22 2020-08-13 イブウォッチ,リミティド ライアビリティ カンパニー Geometry of transcutaneous sensor

Similar Documents

Publication Publication Date Title
JP3433498B2 (en) Method and apparatus for measuring internal information of scattering medium
JP4701468B2 (en) Biological information measuring device
US5360004A (en) Non-invasive determination of analyte concentration using non-continuous radiation
KR0145695B1 (en) Non-invasive measurement of blood glucose
EP0627619B1 (en) Method for measuring scattering medium and apparatus for the same
JP5175179B2 (en) Improved blood oxygenation monitoring method by spectrophotometry
CN1089571C (en) Pathlength corrected oximeter and the like
JP3433534B2 (en) Method and apparatus for measuring scattering and absorption characteristics in scattering medium
JP5693548B2 (en) apparatus
US6078833A (en) Self referencing photosensor
US5666956A (en) Instrument and method for non-invasive monitoring of human tissue analyte by measuring the body's infrared radiation
JP3184521B2 (en) Measuring device and measuring system for determining concentration
US20030023140A1 (en) Pathlength corrected oximeter and the like
JP2000506048A (en) Calibration for subsequent monitoring of biological compounds
JPH08509287A (en) Spectrophotometric inspection of small size tissue
JPH09501073A (en) Instrument and method for measuring cerebral oxygen concentration by spectrophotometer
JPH08502912A (en) Method and apparatus for the analytical determination of glucose concentration in biological matrices
EP0352923A1 (en) Spectrophotometric apparatus and method for monitoring oxygen saturation
JPH07501230A (en) Device for measuring components of human or animal tissue
US5246004A (en) Infrared cholesterol sensor
JPH11230901A (en) Measuring apparatus for reflection of light
JP4714822B2 (en) Non-destructive measuring device for light scatterers
WO2007060583A2 (en) Method and apparatus for determining concentrations of analytes in a turbid medium
EP0623307A1 (en) Non-invasive determination of constituent concentration using non-continuous radiation
JPH1082732A (en) Optical measuring equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202