US20030023140A1 - Pathlength corrected oximeter and the like - Google Patents

Pathlength corrected oximeter and the like Download PDF

Info

Publication number
US20030023140A1
US20030023140A1 US10/174,482 US17448202A US2003023140A1 US 20030023140 A1 US20030023140 A1 US 20030023140A1 US 17448202 A US17448202 A US 17448202A US 2003023140 A1 US2003023140 A1 US 2003023140A1
Authority
US
United States
Prior art keywords
light
detector
spectrophotometer
tissue
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/174,482
Inventor
Britton Chance
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/307,066 external-priority patent/US4972331A/en
Priority claimed from US07/578,063 external-priority patent/US5122974A/en
Priority claimed from US08/031,945 external-priority patent/US5564417A/en
Priority claimed from US08/076,370 external-priority patent/US5553614A/en
Application filed by Individual filed Critical Individual
Priority to US10/174,482 priority Critical patent/US20030023140A1/en
Publication of US20030023140A1 publication Critical patent/US20030023140A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/41Devices for promoting penis erection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0242Special features of optical sensors or probes classified in A61B5/00 for varying or adjusting the optical path length in the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/41Devices for promoting penis erection
    • A61F2005/411Penile supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1789Time resolved
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1789Time resolved
    • G01N2021/1791Time resolved stroboscopic; pulse gated; time range gated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3181Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed

Definitions

  • the present invention relates to a wearable tissue spectrophotometer for in vivo examination of tissue of a specific target region.
  • Continuous wave (CW) tissue oximeters have been widely used to determine in vivo concentration of an optically absorbing pigment (e.g., hemoglobin, oxyhemoglobin) in biological tissue.
  • the CW oximeters measure attenuation of continuous light in the tissue and evaluate the concentration based on the Beer Lambert equation or modified Beer Lambert absorbance equation.
  • the CW spectrophotometric techniques can not determine ⁇ , C, and ⁇ L> at the same time. If one could assume that the photon pathlength were constant and uniform throughout all subjects, direct quantitation of the constituent concentration (C) using CW oximeters would be possible.
  • the optical migration pathlength varies with the size, structure, and physiology of the internal tissue examined by the CW oximeters.
  • the gray and white matter and the structures thereof are different in various individuals.
  • the photon migration pathlength itself is a function of the relative concentration of absorbing constituents.
  • the pathlength through an organ with a high blood hemoglobin concentration for example, will be different from the same with a low blood hemoglobin concentration.
  • the pathlength is frequently dependent upon the wavelength of the light since the absorption coefficient of many tissue constituents is wavelength dependent. Thus, where possible, it is advantageous to measure the pathlength directly when quantifying the hemoglobin concentration in tissue.
  • the present invention is a pathlength corrected oximeter that utilizes principles of continuous wave spectroscopy and phase modulation spectroscopy.
  • the oximeter is a compact unit constructed to be worn by a subject on the body over long periods of activity.
  • the oximeter is also suitable for tissue monitoring in critical care facilities, in operating rooms while undergoing surgery or in trauma related situations.
  • the oximeter is mounted on a body-conformable support structure placed on the skin.
  • the support structure encapsulates several light emitting diodes (LEDs) generating light of different wavelengths introduced into the examined tissue and several photodiode detectors with interference filters for wavelength specific detection. Since both the LEDs and the photodiodes are placed directly on the skin, there is no need to use optical fibers.
  • the distance between the LEDs and the diode detectors is selected to examine a targeted tissue region.
  • the support structure also includes a conformable barrier, located between the LEDs and the diode detectors, designed to reduce detection of light that migrates subcutaneously from the source to the detector.
  • the support structure may further include means for preventing escape of photons from the skin without being detected; the photon escape preventing means are located around the LEDs and the photodiode detectors.
  • the LEDs, the diode detectors, and the electronic control circuitry of the oximeter are powered by a battery pack adapted to be worn on the body or by the standard 50/60 Hz supply.
  • the electronic circuitry includes a processor for directing operation of the sources, the detectors and for directing the data acquisition and processing.
  • the data may be displayed on a readout device worn by the user, sent by telemetry to a remote location or accumulated in a memory for later use.
  • the oximeter is adapted to measure the attenuation of light migrating from the source to the detector and also to determine the average migration pathlength. The migration pathlength and the intensity attenuation data are then used for direct quantitation of a tissue property.
  • the invention is a spectrophotometer for tissue examination utilizing a measured average pathlength of migrating photons, including
  • an oscillator adapted to generate a carrier waveform of a selected frequency comparable to an average migration time of photons scattered in tissue on paths from an optical input port to an optical detection port; a light source, operatively connected to the oscillator, adapted to generate light of a selected wavelength that is intensity modulated at the frequency and introduced to a subject at the input port; a photodiode detector adapted to detect, at the detection port, light of the selected wavelength that has migrated in the tissue of the subject between the input and detection ports; a phase detector, operatively connected to receive signals from the oscillator and the diode detector, adapted to measure a phase shift between the introduced and the detected light; and a processor adapted to calculate pathlength based on the phase shift, and determine a physiological property of the examined tissue based on the pathlength.
  • the invention is a spectrophotometer for tissue examination utilizing a measured average pathlength of migrating photons, including an oscillator adapted to generate a carrier waveform of a selected frequency comparable to an average migration time of photons scattered in tissue on paths from an optical input port to an optical detection port; a light source, operatively connected to the oscillator, adapted to generate light of a selected wavelength that is intensity modulated at the frequency and introduced to a subject at the input port; a photodiode detector adapted to detect, at the detection port, light of the selected wavelength that has migrated in the tissue of the subject between the input and detection ports; a phase splitter adapted to produce, based on the carrier waveform, first and second reference phase signals of predefined substantially different phase; first and second double balanced mixers adapted to correlate the reference phase signals and signals of the detected radiation to produce therefrom a real output signal and an imaginary output signal, respectively; and a processor adapted to calculate, on the basis of the real output signal and the imaginary
  • the invention is a spectrophotometer for tissue examination utilizing a measured average pathlength of migrating photons, comprising a first oscillator adapted to generate a carrier waveform of a first selected frequency comparable to an average migration time of photons scattered in tissue on paths from an optical input port to an optical detection port; a light source, operatively connected to the oscillator, adapted to generate light of a selected wavelength, intensity modulated at the first frequency, that is introduced to a subject at the input port; a photodiode detector adapted to detect, at the detection port, light of the wavelength that has migrated in the tissue of the subject between the input and detection ports, the detector producing a detection signal at the first frequency corresponding to the detected light; a second oscillator adapted to generate a carrier waveform of a second frequency that is offset on the order of 10 4 Hz from the first frequency; a reference mixer, connected to the first and second oscillators, adapted to generate a reference signal of a frequency approximately equal to
  • Preferred embodiments of these aspects may include one or more of the following features.
  • the spectrophotometer may further include a magnitude detector, connected to the photodiode detector, adapted to measure magnitude of the detected light, and the processor is further adapted to receive the magnitude for determination of the physiological property.
  • the spectrophotometer may further include a low frequency oximeter circuit, switchably connected to the source and the photodiode, adapted to determine absorption of light at the wavelength; and the processor is further adapted to receive absorption values from the oximeter circuit for determination of the physiological property.
  • the spectrophotometer may further include two automatic gain controls adapted to level signals corresponding to the introduced light and the detected light, both the leveled signals being introduced to the phase detector.
  • the photodiode detector may further include a substantially single wavelength filter.
  • the spectrophotometer may further include a second light source, operatively connected to the oscillator, adapted to generate light of a second selected wavelength that is intensity modulated at the first frequency, the radiation being introduced to a subject at a second input port; the photodiode detector further adapted to detect alternately, at the detection port, light of the first and second wavelengths that have migrated in the tissue of the subject between the first and the second input ports and the detection port, respectively; the phase detector further adapted to receive alternately signals corresponding to the detected first and second wavelengths; and the processor further adapted to receive alternately phase shifts from the phase detector, the phase shifts being subsequently used for determination of the physiological property of the tissue.
  • a second light source operatively connected to the oscillator, adapted to generate light of a second selected wavelength that is intensity modulated at the first frequency, the radiation being introduced to a subject at a second input port
  • the photodiode detector further adapted to detect alternately, at the detection port, light of the first and second wavelengths
  • the spectrophotometer may further include a second light source, operatively connected to the oscillator, adapted to generate light of a second selected wavelength that is intensity modulated at the first frequency, the radiation being introduced to a subject at a second input port; a second photodiode detector adapted to detect, at a second detection port, light of the second wavelength that has migrated in the tissue of the subject between the second input port and the second detection port, respectively; a second phase detector, operatively connected to receive a reference signal and a detection signal from the third diode detector, adapted to measure a phase shift between the introduced and the detected light at the second wavelength; and the processor further adapted to receive a second phase shift at the second wavelength, the first and second phase shifts being subsequently used for determination of the physiological property of the tissue.
  • a second light source operatively connected to the oscillator, adapted to generate light of a second selected wavelength that is intensity modulated at the first frequency, the radiation being introduced to a subject at a second input port
  • the two wavelength spectrophotometer may further include a third light source, operatively connected to the oscillator, adapted to generate light of a third selected wavelength that is intensity modulated at the first frequency, the radiation being introduced to a subject at a third input port; a third photodiode detector adapted to detect, at a third detection port, light of the third wavelength that has migrated in the tissue of the subject between the third input port and the third detection port, respectively; a third phase detector, operatively connected to receive a reference signal and a detection signal from the third diode detector, adapted to measure a phase shift between the introduced and the detected light at the third wavelength; and the processor further adapted to receive phase shifts from the phase detector, the first second and third phase shifts being subsequently used for determination of the physiological property of the tissue.
  • a third light source operatively connected to the oscillator, adapted to generate light of a third selected wavelength that is intensity modulated at the first frequency, the radiation being introduced to a subject at a third input port
  • the two or three wavelength spectrophotometer may further include a first, a second (or a third) magnitude detector connected to the first, second (or third) photodiode detectors, respectively, the magnitude detectors being adapted to measure magnitude of the detected light at each of the wavelengths; and the processor further adapted to receive the magnitudes for determination of the physiological property of the tissue.
  • the light source may be a light emitting diode for generating light of a selected wavelength in the visible or infra-red range.
  • the photodiode detector may be a PIN diode or an avalanche diode.
  • the examined physiological property of the tissue may be hemoglobin oxygenation, myoglobin, cytochrome iron and copper, melanin, glucose or other.
  • FIG. 1 is a block diagram of a pathlength corrected oximeter in accordance with the present invention.
  • FIG. 2 is a schematic circuit diagram of a 50.1 MHz (50.125 MHz) oscillator used in the oximeter of FIG. 1.
  • FIG. 3 is a schematic circuit diagram of a PIN diode and a preamplifier used in the oximeter of FIG. 1.
  • FIG. 4 is a schematic circuit diagram of a magnitude detector used in the oximeter of FIG. 1.
  • FIG. 5 is a schematic circuit diagram of a 25 kHz filter used in the oximeter of FIG. 1.
  • FIG. 6 is a schematic diagram of an AGC circuit of the oximeter of FIG. 1.
  • FIG. 7 is a schematic circuit diagram of a phase detector of the oximeter of FIG. 1.
  • FIG. 8A is a plan view of a source-detector probe of the oximeter.
  • FIG. 8B is a transverse cross-sectional view taken on lines 8 B of FIG. 8A further showing the photon migration.
  • One preferred embodiment of the pathlength corrected oximeter utilizes three LEDs for generation of light at three selected wavelengths intensity modulated at a frequency of 50.1 MHz and coupled directly to the examined tissue. At each wavelength, the introduced light is altered by the tissue and is detected by a wide area photodiode placed against the skin. The introduced and detected radiations are compared to determine their relative phase shift that corresponds to an average pathlength of the migrating photons and, furthermore, the light attenuation is determined.
  • the oximeter includes a master oscillator 10 operating at 50.1 MHz connected to a power amplifier 15 of sufficient output power to drive LEDs 22 a , 22 b , and 22 c (for example HLP 20RG or HLP 40RG made by Hitachi) that emit 760 nm, 840 nm, and 905 nm (or 950 nm) light, respectively.
  • a second local oscillator 14 operating at 50.125 MHz and mixer 12 are used to generate a reference frequency 13 of 25 kHz.
  • Each LED directly positioned on the skin has an appropriate heat sink to eliminate uncomfortable temperature increases that could also alter blood perfusion of the surrounding tissue.
  • Three PIN diode detectors 24 a , 24 b , and 24 c are placed at a distance of approximately 5 cm from the LEDs and have a detection area of about 1 cm 2 . Photons migrating a few centimeters deep into the tissue are detected by the respective PIN diodes. The source-detector separation can be increased or decreased to capture deeper or shallower migrating photons.
  • the signals from PIN diodes 24 a , 24 b , and 24 c are amplified by preamplifiers 30 a , 30 b , and 30 c , respectively.
  • the amplified signals ( 32 a , 32 b , 32 c ) are sent to magnitude detectors 36 a , 36 b , and 36 c and to mixers 40 a , 40 b , and 40 c , respectively.
  • the magnitude detectors are used to determine intensity values of detected signals at each wavelength to be used in Eq. 1.
  • Each mixer connected to receive a 50.125 MHz reference signal ( 41 a , 41 b , 41 c ) from local oscillator 14 , converts the detection signal to a 25 kHz frequency signal ( 42 a , 42 b , 42 c ).
  • the mixers are high dynamic range frequency mixers, model SRA-1H, commercially available from Mini-Circuits (Brooklyn N.Y.).
  • the detection signals ( 42 a , 42 b , and 42 c ) are filtered by filters 45 a , 45 b , 45 c , respectively.
  • Phase detectors 60 a , 60 b , and 60 c are used to determine phase shift between the input signal and the detected signal at each wavelength.
  • Each phase detector receives the 25 kHz detection signal ( 54 a , 54 b , 54 c ) and the 25 kHz reference signal ( 56 a , 56 b , 56 c ), both of which are automatically leveled by automatic gain controls 50 and 52 to cover the dynamic range of signal changes.
  • Phase detectors 60 a , 60 b , and 60 c generate phase shift signals ( 62 a , 62 b , 62 c ) corresponding to the migration delay of photons at each wavelength.
  • Each phase shift signal is proportional to the migration pathlength used in calculation algorithms performed by processor 70 .
  • FIG. 2 shows a schematic circuit diagram of a precision oscillator used as the 50.1 MHz master oscillator 10 and 50.125 MHz local oscillator 14 .
  • the oscillator crystals are neutralized for operation in the fundamental resonance mode; this achieves long-term stability.
  • Both oscillators are thermally coupled so that their frequency difference is maintained constant at 25 kHz if a frequency drift occurs.
  • PIN diodes 24 a , 24 b , and 24 c are directly connected to their respective preamplifiers 30 a , 30 b , and 30 c , as shown in FIG. 3.
  • the oximeter uses PIN silicon photodiodes S1723-04 with 10 mm ⁇ 10 mm sensitive area and spectral response in the range of 320 nm to 1060 nm.
  • the detection signal is amplified by stages 29 and 31 , each providing about 20 dB amplification.
  • the NE5205N operational amplifier is powered at +8V to operate in a high gain regime.
  • the 8V signal is supplied by a voltage regulator 33 .
  • the amplified detection signals ( 32 a , 32 b , and 32 c ) are sent to magnitude detectors 36 a , 36 b , and 36 c , shown in FIG. 4.
  • the magnitude values ( 37 a , 37 b , and 37 c ) are sent to processor 70 that calculates the light attenuation ratio or logarithm thereof as shown Eq. 1.
  • the AGC circuit uses MC 1350 integrated circuit for amplification that maintains the input signal of phase detector 60 at substantially constant levels.
  • the amount of gain is selected to be equal for AGCs, 50 and 52 .
  • the signal amplitude is controlled by a feedback network 53 .
  • the AGCs provide a substantially constant amplitude of the detected and reference signals to eliminate variations in the detected phase shift due to cross talk between amplitude and phase changes in the phase detector.
  • each phase detector includes a Schmitt trigger that converts the substantially sinusoidal detection signal ( 54 a , 54 b , 54 c ) and reference signal ( 56 a , 56 b , 56 c ) to square waves.
  • the square waves are input to a detector that has complementary MOS silicon-gate transistors.
  • the phase shift signal is sent to processor 70 .
  • the oximeter is calibrated by measuring the phase shift for a selected distance in a known medium, i.e., using a standard delay unit, and by switching the length of a connector wire to change the electrical delay between master oscillator 10 and local oscillator 14 .
  • source-detector probe 20 includes several LEDs ( 22 a , 22 b , 22 c ) of selected wavelengths and PIN photodiodes ( 24 a , 24 b , 24 c ) mounted in a body-conformable support structure 21 .
  • Structure 21 also includes a photon escape barrier 27 made of a material with selected scattering and absorption properties (for example, styrofoam) designed to return escaping photons back to the examined tissue.
  • the support structure further includes a second conformable barrier 28 , located between the LEDs and the diode detectors, designed to absorb photons directly propagating from the source to the detector and thus prevent detection of photons that migrate subcutaneously.
  • Support structure 21 also includes electronic circuitry 29 encapsulated by an electronic shield 21 a.
  • Each PIN diode is provided with an evaporated single wavelength film filter ( 25 a , 25 b , 25 c ).
  • the filters eliminate the cross talk of different wavelength signals and allow continuous operation of the three light sources, i.e., no time sharing is needed.
  • photodiode detectors has substantial advantages when compared with the photomultiplier tube used in standard phase modulation systems.
  • the photodiodes are placed directly on the skin, i.e., no optical fibers are needed. Furthermore, there is no need to use a high voltage power supply that is necessary for the photomultiplier tube.
  • the photodiodes are much smaller and are easy to place close to the skin. Advantages of the photomultiplier tube are a huge multiplication gain and a possibility of direct mixing at the photomultiplier; this cannot be achieved directly by a photodiode.
  • This invention envisions the use of several different photodiodes such as PIN diode, avalanche diode, and other.
  • the processor uses algorithms that are based on equations described by E. M. Sevick et al. in “Quantitation of Time- and Frequency-Resolved Optical Spectra for the Determination of Tissue Oxygenation” published in Analytical Biochemistry 195, 330 Apr. 15, 1991 which is incorporated by reference as if fully set forth herein.
  • f is modulation frequency of the introduced light which is in the range of 10 MHz to 100 MHz; t ⁇ is the photon migration delay time; c is the speed of photons in the scattering medium; and L ⁇ is the migration pathlength.
  • Equation (2) is valid at low modulation frequencies, i.e., 2 ⁇ f ⁇ a ⁇ c.
  • the modulation frequency of 50 MHz was selected due to the frequency limitation of the LEDs and photodiodes. However, for faster LEDs and photodiodes it may be desirable to use higher modulation frequencies that increase the phase shift.
  • the phase shift is no longer proportional to the mean time of flight ⁇ t>.
  • ⁇ ⁇ a ⁇ ⁇ ⁇ ⁇ ( 1 - g ) ⁇ ⁇ s ⁇ f ⁇ ⁇ 1 - ⁇ a ⁇ ⁇ c 4 ⁇ ⁇ ⁇ ⁇ f ⁇ ( 3 )
  • is the source-detector separation
  • (1 ⁇ g) ⁇ s is effective scattering coefficient
  • f is modulation frequency
  • ⁇ a ⁇ is absorption coefficient at wavelength ⁇ .
  • ⁇ 0 ⁇ represents background scattering and absorption.
  • the wavelengths are in the visible and infra-red range and are selected to have absorbance sensitive (or insensitive) to various tissue components such as water, cytochrome iron and copper, oxy- and deoxygenated forms of hemoglobin, myoglobin, melanin, glucose and other.
  • ⁇ Hb ⁇ 1 and ⁇ Hb0 ⁇ 1 are extinction coefficients for hemoglobin and deoxyhemoglobin that can be stored in a look up table; [Hb], [HbO 2 ] are the tissue concentration of hemoglobin and oxyhemoglobin, respectively; ⁇ ⁇ 1 is background absorbance.
  • processor 70 determines Y based on Eq. (7) using Eq. (2) to determine the average migration pathlength L that is then used in Eq. (1) and to determine ⁇ a ⁇ for each wavelength ⁇ 1 , ⁇ 2 , ⁇ 3 .
  • the spectrophotometer's electronics includes a low frequency module suitably and a high frequency module switchably coupled to the same source-detector probe 20 .
  • the low frequency module and the arrangement of the source-detector probe are substantially similar to the hemoglobinometer described in a copending U.S. patent application Ser. No. 701,127 filed May 16, 1991 which is incorporated by reference as if fully set forth herein.
  • the low frequency module corresponds to a standard oximeter with modulation frequencies in the range of a few hertz to 10 4 hertz and is adapted to provide intensity attenuation data at two or three wavelengths.
  • the LEDs are switched to the high frequency phase modulation unit, similar to the unit of FIG. 1, which determines the average pathlength at each wavelength.
  • the attenuation and pathlength data are sent to processor 70 for determination of a physiological property of the examined tissue.
  • the pathlength corrected oximeter utilizes the same LED sources ( 22 a , 22 b , 22 c ) sinusoidally modulated at a selected frequency comparable to the average migration time of photons scattered in the examined tissue on paths from the optical input port of the LED's to the optical detection part of the photodiode detectors ( 24 a , 24 b , 24 c ), but the electronic circuitry is different.
  • the detector output is put through two wide band double balance mixers (DBM) which are coupled through a 90° phase splitter so that real (R) and imaginary (I) portions of the signal are obtained.
  • the double balance mixers preferably operate at the modulation frequency.
  • the phase ( ⁇ ⁇ ) is the angle whose tangent is the imaginary over the real part.
  • ⁇ ⁇ tan - 1 ⁇ I ⁇ R ⁇ ( 8 )
  • the amplitude is the square root of the sum of the squares of these values, providing the phase shift has been taken out as the residual phase shift ⁇ set to zero.
  • This embodiment uses summing and dividing circuits to calculate the modulation index, which is the quotient of the amplitude over the amplitude plus the DC component obtained from a narrow band detector.
  • M ⁇ A ⁇ A ⁇ + D ⁇ ⁇ C ⁇ ( 10 )
  • the phase processor receives the phase shifts for the phase and amplitude values for two or three wavelengths and calculates the ratio of the phase shifts.
  • the phase shift and the DC amplitude are used to determine a selected tissue property, e.g., hemoglobin oxygenation.

Abstract

A pathlength corrected spectrophotometer for tissue examination includes an oscillator for generating a carrier waveform of a selected frequency, an LED light source for generating light of a selected wavelength that is intensity modulated at the selected frequency introduced to a subject, and a photodiode detector for detecting light that has migrated in the tissue of the subject. The spectrophotometer also includes a phase detector for measuring a phase shift between the introduced and detected light, a magnitude detector for determination of light attenuation in the examined tissue, and a processor adapted to calculate the photon migration pathlength and determine a physiological property of the examined tissue based on the pathlength and on the attenuation data.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of application Ser. No. 07/645,590 filed Jan. 24, 1991 incorporated by reference as if fully set forth herein.[0001]
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a wearable tissue spectrophotometer for in vivo examination of tissue of a specific target region. [0002]
  • Continuous wave (CW) tissue oximeters have been widely used to determine in vivo concentration of an optically absorbing pigment (e.g., hemoglobin, oxyhemoglobin) in biological tissue. The CW oximeters measure attenuation of continuous light in the tissue and evaluate the concentration based on the Beer Lambert equation or modified Beer Lambert absorbance equation. The Beer Lambert equation (1) describes the relationship between the concentration of an absorbent constituent (C), the extinction coefficient (ε), the photon migration pathlength <L>, and the attenuated light intensity (I/I[0003] o). log [ I / I 0 ] L = ε i C i ( 1 )
    Figure US20030023140A1-20030130-M00001
  • The CW spectrophotometric techniques can not determine ε, C, and <L> at the same time. If one could assume that the photon pathlength were constant and uniform throughout all subjects, direct quantitation of the constituent concentration (C) using CW oximeters would be possible. [0004]
  • In tissue, the optical migration pathlength varies with the size, structure, and physiology of the internal tissue examined by the CW oximeters. For example, in the brain, the gray and white matter and the structures thereof are different in various individuals. In addition, the photon migration pathlength itself is a function of the relative concentration of absorbing constituents. As a result, the pathlength through an organ with a high blood hemoglobin concentration, for example, will be different from the same with a low blood hemoglobin concentration. Furthermore, the pathlength is frequently dependent upon the wavelength of the light since the absorption coefficient of many tissue constituents is wavelength dependent. Thus, where possible, it is advantageous to measure the pathlength directly when quantifying the hemoglobin concentration in tissue. [0005]
  • SUMMARY OF THE INVENTION
  • In one aspect, the present invention is a pathlength corrected oximeter that utilizes principles of continuous wave spectroscopy and phase modulation spectroscopy. The oximeter is a compact unit constructed to be worn by a subject on the body over long periods of activity. The oximeter is also suitable for tissue monitoring in critical care facilities, in operating rooms while undergoing surgery or in trauma related situations. [0006]
  • The oximeter is mounted on a body-conformable support structure placed on the skin. The support structure encapsulates several light emitting diodes (LEDs) generating light of different wavelengths introduced into the examined tissue and several photodiode detectors with interference filters for wavelength specific detection. Since both the LEDs and the photodiodes are placed directly on the skin, there is no need to use optical fibers. The distance between the LEDs and the diode detectors is selected to examine a targeted tissue region. The support structure also includes a conformable barrier, located between the LEDs and the diode detectors, designed to reduce detection of light that migrates subcutaneously from the source to the detector. The support structure may further include means for preventing escape of photons from the skin without being detected; the photon escape preventing means are located around the LEDs and the photodiode detectors. [0007]
  • The LEDs, the diode detectors, and the electronic control circuitry of the oximeter are powered by a battery pack adapted to be worn on the body or by the standard 50/60 Hz supply. The electronic circuitry includes a processor for directing operation of the sources, the detectors and for directing the data acquisition and processing. The data may be displayed on a readout device worn by the user, sent by telemetry to a remote location or accumulated in a memory for later use. [0008]
  • The oximeter is adapted to measure the attenuation of light migrating from the source to the detector and also to determine the average migration pathlength. The migration pathlength and the intensity attenuation data are then used for direct quantitation of a tissue property. [0009]
  • In another aspect, the invention is a spectrophotometer for tissue examination utilizing a measured average pathlength of migrating photons, including [0010]
  • an oscillator adapted to generate a carrier waveform of a selected frequency comparable to an average migration time of photons scattered in tissue on paths from an optical input port to an optical detection port; a light source, operatively connected to the oscillator, adapted to generate light of a selected wavelength that is intensity modulated at the frequency and introduced to a subject at the input port; a photodiode detector adapted to detect, at the detection port, light of the selected wavelength that has migrated in the tissue of the subject between the input and detection ports; a phase detector, operatively connected to receive signals from the oscillator and the diode detector, adapted to measure a phase shift between the introduced and the detected light; and a processor adapted to calculate pathlength based on the phase shift, and determine a physiological property of the examined tissue based on the pathlength. [0011]
  • In another aspect, the invention is a spectrophotometer for tissue examination utilizing a measured average pathlength of migrating photons, including an oscillator adapted to generate a carrier waveform of a selected frequency comparable to an average migration time of photons scattered in tissue on paths from an optical input port to an optical detection port; a light source, operatively connected to the oscillator, adapted to generate light of a selected wavelength that is intensity modulated at the frequency and introduced to a subject at the input port; a photodiode detector adapted to detect, at the detection port, light of the selected wavelength that has migrated in the tissue of the subject between the input and detection ports; a phase splitter adapted to produce, based on the carrier waveform, first and second reference phase signals of predefined substantially different phase; first and second double balanced mixers adapted to correlate the reference phase signals and signals of the detected radiation to produce therefrom a real output signal and an imaginary output signal, respectively; and a processor adapted to calculate, on the basis of the real output signal and the imaginary output signal, a phase shift between the introduced light and the detected light, and determine a physiological property of the examined tissue based on the phase shift. [0012]
  • In another aspect, the invention is a spectrophotometer for tissue examination utilizing a measured average pathlength of migrating photons, comprising a first oscillator adapted to generate a carrier waveform of a first selected frequency comparable to an average migration time of photons scattered in tissue on paths from an optical input port to an optical detection port; a light source, operatively connected to the oscillator, adapted to generate light of a selected wavelength, intensity modulated at the first frequency, that is introduced to a subject at the input port; a photodiode detector adapted to detect, at the detection port, light of the wavelength that has migrated in the tissue of the subject between the input and detection ports, the detector producing a detection signal at the first frequency corresponding to the detected light; a second oscillator adapted to generate a carrier waveform of a second frequency that is offset on the order of 10[0013] 4 Hz from the first frequency; a reference mixer, connected to the first and second oscillators, adapted to generate a reference signal of a frequency approximately equal to the difference between the first and second frequencies; a mixer connected to receive signals from the second oscillator and the detection signal and adapted to convert the detection signal to the difference frequency; a phase detector, operatively connected to receive signals from the reference mixer and the converted detection signal, adapted to measure a phase shift between the introduced light and the detected light; and a processor adapted to calculate the pathlength based on the phase shift, and to determine a physiological property of the examined tissue based on the pathlength.
  • Preferred embodiments of these aspects may include one or more of the following features. [0014]
  • The spectrophotometer may further include a magnitude detector, connected to the photodiode detector, adapted to measure magnitude of the detected light, and the processor is further adapted to receive the magnitude for determination of the physiological property. [0015]
  • The spectrophotometer may further include a low frequency oximeter circuit, switchably connected to the source and the photodiode, adapted to determine absorption of light at the wavelength; and the processor is further adapted to receive absorption values from the oximeter circuit for determination of the physiological property. [0016]
  • The spectrophotometer may further include two automatic gain controls adapted to level signals corresponding to the introduced light and the detected light, both the leveled signals being introduced to the phase detector. [0017]
  • The photodiode detector may further include a substantially single wavelength filter. [0018]
  • The spectrophotometer may further include a second light source, operatively connected to the oscillator, adapted to generate light of a second selected wavelength that is intensity modulated at the first frequency, the radiation being introduced to a subject at a second input port; the photodiode detector further adapted to detect alternately, at the detection port, light of the first and second wavelengths that have migrated in the tissue of the subject between the first and the second input ports and the detection port, respectively; the phase detector further adapted to receive alternately signals corresponding to the detected first and second wavelengths; and the processor further adapted to receive alternately phase shifts from the phase detector, the phase shifts being subsequently used for determination of the physiological property of the tissue. [0019]
  • The spectrophotometer may further include a second light source, operatively connected to the oscillator, adapted to generate light of a second selected wavelength that is intensity modulated at the first frequency, the radiation being introduced to a subject at a second input port; a second photodiode detector adapted to detect, at a second detection port, light of the second wavelength that has migrated in the tissue of the subject between the second input port and the second detection port, respectively; a second phase detector, operatively connected to receive a reference signal and a detection signal from the third diode detector, adapted to measure a phase shift between the introduced and the detected light at the second wavelength; and the processor further adapted to receive a second phase shift at the second wavelength, the first and second phase shifts being subsequently used for determination of the physiological property of the tissue. [0020]
  • The two wavelength spectrophotometer may further include a third light source, operatively connected to the oscillator, adapted to generate light of a third selected wavelength that is intensity modulated at the first frequency, the radiation being introduced to a subject at a third input port; a third photodiode detector adapted to detect, at a third detection port, light of the third wavelength that has migrated in the tissue of the subject between the third input port and the third detection port, respectively; a third phase detector, operatively connected to receive a reference signal and a detection signal from the third diode detector, adapted to measure a phase shift between the introduced and the detected light at the third wavelength; and the processor further adapted to receive phase shifts from the phase detector, the first second and third phase shifts being subsequently used for determination of the physiological property of the tissue. [0021]
  • The two or three wavelength spectrophotometer may further include a first, a second (or a third) magnitude detector connected to the first, second (or third) photodiode detectors, respectively, the magnitude detectors being adapted to measure magnitude of the detected light at each of the wavelengths; and the processor further adapted to receive the magnitudes for determination of the physiological property of the tissue. [0022]
  • The light source may be a light emitting diode for generating light of a selected wavelength in the visible or infra-red range. [0023]
  • The photodiode detector may be a PIN diode or an avalanche diode. [0024]
  • The examined physiological property of the tissue may be hemoglobin oxygenation, myoglobin, cytochrome iron and copper, melanin, glucose or other.[0025]
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is a block diagram of a pathlength corrected oximeter in accordance with the present invention. [0026]
  • FIG. 2 is a schematic circuit diagram of a 50.1 MHz (50.125 MHz) oscillator used in the oximeter of FIG. 1. [0027]
  • FIG. 3 is a schematic circuit diagram of a PIN diode and a preamplifier used in the oximeter of FIG. 1. [0028]
  • FIG. 4 is a schematic circuit diagram of a magnitude detector used in the oximeter of FIG. 1. [0029]
  • FIG. 5 is a schematic circuit diagram of a 25 kHz filter used in the oximeter of FIG. 1. [0030]
  • FIG. 6 is a schematic diagram of an AGC circuit of the oximeter of FIG. 1. [0031]
  • FIG. 7 is a schematic circuit diagram of a phase detector of the oximeter of FIG. 1. [0032]
  • FIG. 8A is a plan view of a source-detector probe of the oximeter. [0033]
  • FIG. 8B is a transverse cross-sectional view taken on [0034] lines 8B of FIG. 8A further showing the photon migration.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • One preferred embodiment of the pathlength corrected oximeter utilizes three LEDs for generation of light at three selected wavelengths intensity modulated at a frequency of 50.1 MHz and coupled directly to the examined tissue. At each wavelength, the introduced light is altered by the tissue and is detected by a wide area photodiode placed against the skin. The introduced and detected radiations are compared to determine their relative phase shift that corresponds to an average pathlength of the migrating photons and, furthermore, the light attenuation is determined. [0035]
  • Referring to FIG. 1, the oximeter includes a [0036] master oscillator 10 operating at 50.1 MHz connected to a power amplifier 15 of sufficient output power to drive LEDs 22 a, 22 b, and 22 c (for example HLP 20RG or HLP 40RG made by Hitachi) that emit 760 nm, 840 nm, and 905 nm (or 950 nm) light, respectively. A second local oscillator 14 operating at 50.125 MHz and mixer 12 are used to generate a reference frequency 13 of 25 kHz. Each LED directly positioned on the skin has an appropriate heat sink to eliminate uncomfortable temperature increases that could also alter blood perfusion of the surrounding tissue. Three PIN diode detectors 24 a, 24 b, and 24 c are placed at a distance of approximately 5 cm from the LEDs and have a detection area of about 1 cm2. Photons migrating a few centimeters deep into the tissue are detected by the respective PIN diodes. The source-detector separation can be increased or decreased to capture deeper or shallower migrating photons. The signals from PIN diodes 24 a, 24 b, and 24 c are amplified by preamplifiers 30 a, 30 b, and 30 c, respectively.
  • The amplified signals ([0037] 32 a, 32 b, 32 c) are sent to magnitude detectors 36 a, 36 b, and 36 c and to mixers 40 a, 40 b, and 40 c, respectively. The magnitude detectors are used to determine intensity values of detected signals at each wavelength to be used in Eq. 1. Each mixer, connected to receive a 50.125 MHz reference signal (41 a, 41 b, 41 c) from local oscillator 14, converts the detection signal to a 25 kHz frequency signal (42 a, 42 b, 42 c). The mixers are high dynamic range frequency mixers, model SRA-1H, commercially available from Mini-Circuits (Brooklyn N.Y.). The detection signals (42 a, 42 b, and 42 c) are filtered by filters 45 a, 45 b, 45 c, respectively.
  • [0038] Phase detectors 60 a, 60 b, and 60 c are used to determine phase shift between the input signal and the detected signal at each wavelength. Each phase detector receives the 25 kHz detection signal (54 a, 54 b, 54 c) and the 25 kHz reference signal (56 a, 56 b, 56 c), both of which are automatically leveled by automatic gain controls 50 and 52 to cover the dynamic range of signal changes. Phase detectors 60 a, 60 b, and 60 c generate phase shift signals (62 a, 62 b, 62 c) corresponding to the migration delay of photons at each wavelength. Each phase shift signal is proportional to the migration pathlength used in calculation algorithms performed by processor 70.
  • FIG. 2 shows a schematic circuit diagram of a precision oscillator used as the 50.1 [0039] MHz master oscillator 10 and 50.125 MHz local oscillator 14. The oscillator crystals are neutralized for operation in the fundamental resonance mode; this achieves long-term stability. Both oscillators are thermally coupled so that their frequency difference is maintained constant at 25 kHz if a frequency drift occurs.
  • [0040] PIN diodes 24 a, 24 b, and 24 c are directly connected to their respective preamplifiers 30 a, 30 b, and 30 c, as shown in FIG. 3. The oximeter uses PIN silicon photodiodes S1723-04 with 10 mm×10 mm sensitive area and spectral response in the range of 320 nm to 1060 nm. The detection signal is amplified by stages 29 and 31, each providing about 20 dB amplification. The NE5205N operational amplifier is powered at +8V to operate in a high gain regime. The 8V signal is supplied by a voltage regulator 33. The amplified detection signals (32 a, 32 b, and 32 c) are sent to magnitude detectors 36 a, 36 b, and 36 c, shown in FIG. 4. The magnitude values (37 a, 37 b, and 37 c) are sent to processor 70 that calculates the light attenuation ratio or logarithm thereof as shown Eq. 1.
  • Also referring to FIG. 5, the AGC circuit uses MC 1350 integrated circuit for amplification that maintains the input signal of phase detector [0041] 60 at substantially constant levels. The amount of gain is selected to be equal for AGCs, 50 and 52. The signal amplitude is controlled by a feedback network 53. The AGCs provide a substantially constant amplitude of the detected and reference signals to eliminate variations in the detected phase shift due to cross talk between amplitude and phase changes in the phase detector.
  • Referring to FIG. 6, each phase detector includes a Schmitt trigger that converts the substantially sinusoidal detection signal ([0042] 54 a, 54 b, 54 c) and reference signal (56 a, 56 b, 56 c) to square waves. The square waves are input to a detector that has complementary MOS silicon-gate transistors. The phase shift signal is sent to processor 70.
  • The oximeter is calibrated by measuring the phase shift for a selected distance in a known medium, i.e., using a standard delay unit, and by switching the length of a connector wire to change the electrical delay between [0043] master oscillator 10 and local oscillator 14.
  • Referring to FIGS. 8A and 8B source-[0044] detector probe 20 includes several LEDs (22 a, 22 b, 22 c) of selected wavelengths and PIN photodiodes (24 a, 24 b, 24 c) mounted in a body-conformable support structure 21. Structure 21 also includes a photon escape barrier 27 made of a material with selected scattering and absorption properties (for example, styrofoam) designed to return escaping photons back to the examined tissue. The support structure further includes a second conformable barrier 28, located between the LEDs and the diode detectors, designed to absorb photons directly propagating from the source to the detector and thus prevent detection of photons that migrate subcutaneously. Support structure 21 also includes electronic circuitry 29 encapsulated by an electronic shield 21 a.
  • Each PIN diode is provided with an evaporated single wavelength film filter ([0045] 25 a, 25 b, 25 c). The filters eliminate the cross talk of different wavelength signals and allow continuous operation of the three light sources, i.e., no time sharing is needed.
  • The use of photodiode detectors has substantial advantages when compared with the photomultiplier tube used in standard phase modulation systems. The photodiodes are placed directly on the skin, i.e., no optical fibers are needed. Furthermore, there is no need to use a high voltage power supply that is necessary for the photomultiplier tube. The photodiodes are much smaller and are easy to place close to the skin. Advantages of the photomultiplier tube are a huge multiplication gain and a possibility of direct mixing at the photomultiplier; this cannot be achieved directly by a photodiode. This invention envisions the use of several different photodiodes such as PIN diode, avalanche diode, and other. [0046]
  • The processor uses algorithms that are based on equations described by E. M. Sevick et al. in “Quantitation of Time- and Frequency-Resolved Optical Spectra for the Determination of Tissue Oxygenation” published in Analytical Biochemistry 195, 330 Apr. 15, 1991 which is incorporated by reference as if fully set forth herein. [0047]
  • At each wavelength, the phase shift (θ[0048] λ) (62 a, 62 b, 62 c) is used to calculate the pathlength as follows: θ λ = tan - 1 π f ( t λ ) = tan - 1 2 π f L λ c 2 π f L λ c ( 2 )
    Figure US20030023140A1-20030130-M00002
  • wherein f is modulation frequency of the introduced light which is in the range of 10 MHz to 100 MHz; t[0049] λ is the photon migration delay time; c is the speed of photons in the scattering medium; and Lλ is the migration pathlength.
  • Equation (2) is valid at low modulation frequencies, i.e., 2πf<<μ[0050] a·c. The modulation frequency of 50 MHz was selected due to the frequency limitation of the LEDs and photodiodes. However, for faster LEDs and photodiodes it may be desirable to use higher modulation frequencies that increase the phase shift. At high modulation frequencies, i.e., 2πf>>μa·c, the phase shift is no longer proportional to the mean time of flight <t>. θ λ = a ρ ( 1 - g ) μ s f { 1 - μ a λ c 4 π f } ( 3 )
    Figure US20030023140A1-20030130-M00003
  • wherein ρ is the source-detector separation; (1−g) μ[0051] s is effective scattering coefficient; f is modulation frequency and μa λ is absorption coefficient at wavelength λ. At two wavelength, the ratio of absorption coefficients is determined as follows: μ a λ 1 μ a λ 2 = θ λ 1 - θ 0 λ 1 θ λ 2 - θ 0 λ 2 ( 4 )
    Figure US20030023140A1-20030130-M00004
  • wherein θ[0052] 0 λ represents background scattering and absorption.
  • The wavelengths are in the visible and infra-red range and are selected to have absorbance sensitive (or insensitive) to various tissue components such as water, cytochrome iron and copper, oxy- and deoxygenated forms of hemoglobin, myoglobin, melanin, glucose and other. [0053]
  • For oxygenated and deoxygenated hemoblogin, the absorption coefficient written in terms of Beer Lambert relationship is as follows: [0054] μ a λ 1 = ε H b λ 1 [ H b ] + ε H b O λ 1 [ H b O 2 ] + α λ 1 ( 5 )
    Figure US20030023140A1-20030130-M00005
  • wherein ε[0055] Hb λ1 and εHb0 λ1 are extinction coefficients for hemoglobin and deoxyhemoglobin that can be stored in a look up table; [Hb], [HbO2] are the tissue concentration of hemoglobin and oxyhemoglobin, respectively; αλ1 is background absorbance. The hemoglobin saturation is conventionally defined as follows: Y = [ H b O 2 ] [ H b ] + [ H b O 2 ] ( 6 )
    Figure US20030023140A1-20030130-M00006
  • For a three wavelength measurement, the hemoglobin saturation can be calculated using Eqs. (5) and (6) as follows: [0056] Y = a ( ε H b λ 3 - ε H b λ 2 ) - ( ε H b λ 1 - ε H b λ 2 ) [ ( ε H b O 2 λ 1 - ε H b O 2 λ 2 ) - ( ε H b λ 1 - ε H b λ 2 ) ] - a [ ( ε H b O 2 λ 3 - ( ε H b O 2 λ 2 ) - ( ε H b λ 3 - ε H b λ 2 ) ] w h e r e a = μ a λ 1 - μ a λ 2 μ a λ 3 - μ a λ 2 ( 7 )
    Figure US20030023140A1-20030130-M00007
  • Thus, [0057] processor 70 determines Y based on Eq. (7) using Eq. (2) to determine the average migration pathlength L that is then used in Eq. (1) and to determine μa λ for each wavelength λ1, λ2, λ3.
  • In another embodiment, the spectrophotometer's electronics includes a low frequency module suitably and a high frequency module switchably coupled to the same source-[0058] detector probe 20. The low frequency module and the arrangement of the source-detector probe are substantially similar to the hemoglobinometer described in a copending U.S. patent application Ser. No. 701,127 filed May 16, 1991 which is incorporated by reference as if fully set forth herein. The low frequency module corresponds to a standard oximeter with modulation frequencies in the range of a few hertz to 104 hertz and is adapted to provide intensity attenuation data at two or three wavelengths. Then, the LEDs are switched to the high frequency phase modulation unit, similar to the unit of FIG. 1, which determines the average pathlength at each wavelength. The attenuation and pathlength data are sent to processor 70 for determination of a physiological property of the examined tissue.
  • In another embodiment, the pathlength corrected oximeter utilizes the same LED sources ([0059] 22 a, 22 b, 22 c) sinusoidally modulated at a selected frequency comparable to the average migration time of photons scattered in the examined tissue on paths from the optical input port of the LED's to the optical detection part of the photodiode detectors (24 a, 24 b, 24 c), but the electronic circuitry is different. The detector output is put through two wide band double balance mixers (DBM) which are coupled through a 90° phase splitter so that real (R) and imaginary (I) portions of the signal are obtained. The double balance mixers preferably operate at the modulation frequency. The phase (θλ) is the angle whose tangent is the imaginary over the real part. θ λ = tan - 1 I λ R λ ( 8 )
    Figure US20030023140A1-20030130-M00008
  • The amplitude is the square root of the sum of the squares of these values, providing the phase shift has been taken out as the residual phase shift θ set to zero. [0060]
  • A λ={square root}{square root over ((R λ)2+(I λ)2)}  (9)
  • This embodiment uses summing and dividing circuits to calculate the modulation index, which is the quotient of the amplitude over the amplitude plus the DC component obtained from a narrow band detector. [0061] M λ = A λ A λ + D C λ ( 10 )
    Figure US20030023140A1-20030130-M00009
  • The phase processor receives the phase shifts for the phase and amplitude values for two or three wavelengths and calculates the ratio of the phase shifts. [0062]
  • For each wavelength, the phase shift and the DC amplitude are used to determine a selected tissue property, e.g., hemoglobin oxygenation. [0063]
  • Additional embodiments are within the following claims: [0064]

Claims (21)

1. A spectrophotometer for tissue examination utilizing a measured average pathlength of migrating photons, comprising:
an oscillator adapted to generate a carrier waveform of a selected frequency comparable to an average migration time of photons scattered in tissue on paths from an optical input port to an optical detection port;
a light source, operatively connected to said oscillator, adapted to generate light of a selected wavelength that is intensity modulated at said frequency, said light being introduced to a subject at said input port;
a photodiode detector adapted to detect, at said detection port, light of said wavelength that has migrated in said tissue of the subject between said input and detection ports;
a phase detector, operatively connected to receive signals from said oscillator and said diode detector, adapted to measure a phase shift between said introduced and said detected light;
a processor adapted to determine said pathlength based on said phase shift; and
said processor further adapted to determine a physiological property of the examined tissue based on said pathlength.
2. A spectrophotometer for tissue examination utilizing a measured average pathlength of migrating photons, comprising:
an oscillator adapted to generate a carrier waveform of a selected frequency comparable to an average migration time of photons scattered in tissue on paths from an optical input port to an optical detection port;
a light source, operatively connected to said oscillator, adapted to generate light of a selected wavelength that is intensity modulated at said frequency, said light being introduced to a subject at said input port;
a photodiode detector adapted to detect, at said detection port, light of said wavelength that has migrated in said tissue of the subject between said input and detection ports;
a phase splitter adapted to produce, based on said carrier waveform, first and second reference phase signals of predefined substantially different phase;
first and second double balanced mixers adapted to correlate said reference phase signals and signals of said detected radiation to produce therefrom a real output signal and an imaginary output signal, respectively;
a processor adapted to determine, on the basis of said real output signal and said imaginary output signal, a phase shift between said introduced light and said detected light; and
said processor further adapted to determine a physiological property of the examined tissue based on said phase shift.
3. A spectrophotometer for tissue examination utilizing a measured average pathlength of migrating photons, comprising:
a first oscillator adapted to generate a carrier waveform of a first selected frequency comparable to an average migration time of photons scattered in tissue on paths from an optical input port to an optical detection port;
a light source, operatively connected to said oscillator, adapted to generate light of a selected wavelength that is intensity modulated at said first frequency, said light being introduced to a subject at said input port;
a photodiode detector adapted to detect, at said detection port, light of said wavelength that has migrated in said tissue of the subject between said input and detection ports, said detector producing a detection signal at said first frequency corresponding to said detected light;
a second oscillator adapted to generate a carrier waveform of a second frequency that is offset on the order of 104 Hz from said first frequency;
a reference mixer, connected to said first and second oscillators, adapted to generate a reference signal of a frequency approximately equal to the difference between said first and second frequencies;
a mixer connected to receive signals from said second oscillator and said detection signal and adapted to convert said detection signal to said difference frequency;
a phase detector, operatively connected to receive signals from said reference mixer and said converted detection signal, adapted to measure a phase shift between said introduced light and said detected light,
a processor adapted to determine said pathlength based on said phase shift; and
said processor further adapted to determine a physiological property of the examined tissue based on said pathlength.
4. The spectrophotometer of claims 1, 2 or 3 further comprising:
a magnitude detector, connected to said photodiode detector, adapted to measure magnitude of said detected light, and
said processor further adapted to receive said magnitude for determination of said physiological property.
5. The spectrophotometer of claims 1, 2 or 3 further comprising:
a low frequency oximeter circuit, switchably connected to said source and said photodiode, adapted to determine absorption of light at said wavelength; and
said processor further adapted to receive absorption values from said oximeter circuit for determination of said physiological property.
6. The spectrophotometer of claims 1 or 3 further comprising two automatic gain controls adapted to level signals corresponding to said introduced light and said detected light, both said leveled signals being introduced to said phase detector.
7. The spectrophotometer of claims 1 or 3 further comprising:
a magnitude detector, connected to said photodiode detector, adapted to measure magnitude of said detected light, and
two automatic gain controls adapted to level signals corresponding to said introduced light and said detected light, both said leveled signals being introduced to said phase detector.
8. The spectrophotometer of claims 1, 2 or 3 wherein said light source is a light emitting diode and said selected wavelength is in the visible or infra-red range.
9. The spectrophotometer of claims 1, 2 or 3 wherein said photodiode detector is a PIN diode.
10. The spectrophotometer of claims 1, 2 or 3 wherein said photodiode detector is an avalanche diode.
11. The spectrophotometer of claims 1, 2 or 3 wherein said photodiode detector further comprises a substantially single wavelength filter.
12. The spectrophotometer of claims 1, 2 or 3 further comprising:
a second light source, operatively connected to said oscillator, adapted to generate light of a second selected wavelength that is intensity modulated at said first frequency, said radiation being introduced to a subject at a second input port;
said photodiode detector further adapted to detect alternately, at said detection port, light of said first and second wavelengths that have migrated in said tissue of the subject between the first and said second input ports and said detection port, respectively;
said phase detector further adapted to receive alternately signals corresponding to said detected first and second wavelengths; and
said processor further adapted to receive alternately phase shifts from said phase detector, said phase shifts being subsequently used for determination of said physiological property.
13. The spectrophotometer of claim 12 further comprising:
a magnitude detector, connected to said photodiode detector, adapted to measure magnitude of said detected light at each of said wavelengths, and
said processor further adapted to receive said magnitudes for determination of said physiological property.
14. The spectrophotometer of claims 1 or 3 further comprising:
a second light source, operatively connected to said oscillator, adapted to generate light of a second selected wavelength that is intensity modulated at said first frequency, said radiation being introduced to a subject at a second input port;
a second photodiode detector adapted to detect, at a second detection port, light of said second wavelength that has migrated in said tissue of the subject between said second input port and said second detection port, respectively;
a second phase detector, operatively connected to receive a reference signal and a detection signal from said third diode detector, adapted to measure a phase shift between said introduced and said detected light at said second wavelength; and
said processor further adapted to receive a second phase shift at said second wavelength, said first and second phase shifts being subsequently used for determination of said physiological property.
15. The spectrophotometer of claim 14 further comprising:
a first and a second magnitude detector connected to said first and second photodiode detectors, respectively, said magnitude detectors being adapted to measure magnitude of said detected light at each of said wavelengths, and
said processor further adapted to receive said magnitudes for determination of said physiological property.
16. The spectrophotometer of claims 14 further comprising:
a third light source, operatively connected to said oscillator, adapted to generate light of a third selected wavelength that is intensity modulated at said first frequency, said radiation being introduced to a subject at a third input port;
a third photodiode detector adapted to detect, at a third detection port, light of said third wavelength that has migrated in said tissue of the subject between said third input port and said third detection port, respectively;
a third phase detector, operatively connected to receive a reference signal and a detection signal from said third diode detector, adapted to measure a phase shift between said introduced and said detected light at said third wavelength; and
said processor further adapted to receive phase shifts from said phase detector, said first second and third phase shifts being subsequently used for determination of said physiological property.
17. The spectrophotometer of claim 14 further comprising:
a first, a second and a third magnitude detector connected to said first, second and third photodiode detectors, respectively, said magnitude detectors being adapted to measure magnitude of said detected light at each of said wavelengths; and
said processor further adapted to receive said magnitudes for determination of said physiological property.
18. The spectrophotometer of claim 16 wherein each said light source is a light emitting diode and said selected wavelength is in the visible or infra-red range.
19. The spectrophotometer of claim 16 wherein each said photodiode detector is a PIN diode.
20. The spectrophotometer of claim 16 wherein each said photodiode detector is an avalanche diode.
21. The spectrophotometer of claim 16 wherein each said photodiode detector further comprises a substantially single wavelength filter.
US10/174,482 1989-02-06 2002-06-18 Pathlength corrected oximeter and the like Abandoned US20030023140A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/174,482 US20030023140A1 (en) 1989-02-06 2002-06-18 Pathlength corrected oximeter and the like

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US07/307,066 US4972331A (en) 1989-02-06 1989-02-06 Phase modulated spectrophotometry
US07/578,063 US5122974A (en) 1989-02-06 1990-09-05 Phase modulated spectrophotometry
US64559091A 1991-01-24 1991-01-24
US08/031,945 US5564417A (en) 1991-01-24 1993-03-16 Pathlength corrected oximeter and the like
US08/076,370 US5553614A (en) 1988-12-21 1993-06-14 Examination of biological tissue using frequency domain spectroscopy
US08/731,443 US6134460A (en) 1988-11-02 1996-10-15 Spectrophotometers with catheters for measuring internal tissue
US09/299,284 US6183414B1 (en) 1999-04-26 1999-04-26 Technique for restoring plasticity to tissues of a male or female organ
US10/174,482 US20030023140A1 (en) 1989-02-06 2002-06-18 Pathlength corrected oximeter and the like

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/299,284 Continuation US6183414B1 (en) 1989-02-06 1999-04-26 Technique for restoring plasticity to tissues of a male or female organ

Publications (1)

Publication Number Publication Date
US20030023140A1 true US20030023140A1 (en) 2003-01-30

Family

ID=23154125

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/299,284 Expired - Lifetime US6183414B1 (en) 1989-02-06 1999-04-26 Technique for restoring plasticity to tissues of a male or female organ
US10/174,482 Abandoned US20030023140A1 (en) 1989-02-06 2002-06-18 Pathlength corrected oximeter and the like

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/299,284 Expired - Lifetime US6183414B1 (en) 1989-02-06 1999-04-26 Technique for restoring plasticity to tissues of a male or female organ

Country Status (1)

Country Link
US (2) US6183414B1 (en)

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221370A1 (en) * 2002-10-01 2004-11-11 Nellcor Puritan Bennett Incorporated Headband with tension indicator
US20050197579A1 (en) * 2004-03-08 2005-09-08 Nellcor Puritan Bennett Incorporated Method and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US20060030764A1 (en) * 1999-04-14 2006-02-09 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US20060135860A1 (en) * 2003-01-10 2006-06-22 Baker Clark R Jr Signal quality metrics design for qualifying data for a physiological monitor
US20060195041A1 (en) * 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US20060195028A1 (en) * 2003-06-25 2006-08-31 Don Hannula Hat-based oximeter sensor
US20070032714A1 (en) * 2001-07-19 2007-02-08 Nellcor Puritan Bennett Inc. Nuisance alarm reductions in a physiological monitor
US20070073124A1 (en) * 2005-09-29 2007-03-29 Li Li System and method for removing artifacts from waveforms
US20070093721A1 (en) * 2001-05-17 2007-04-26 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US20070106137A1 (en) * 2004-03-09 2007-05-10 Baker Clark R Jr Pulse oximetry signal correction using near infrared absorption by water
US20070129647A1 (en) * 2000-07-28 2007-06-07 Lynn Lawrence A System and method for CO2 and oximetry integration
US20080076977A1 (en) * 2006-09-26 2008-03-27 Nellcor Puritan Bennett Inc. Patient monitoring device snapshot feature system and method
US20080076986A1 (en) * 2006-09-20 2008-03-27 Nellcor Puritan Bennett Inc. System and method for probability based determination of estimated oxygen saturation
US20080081956A1 (en) * 2006-09-29 2008-04-03 Jayesh Shah System and method for integrating voice with a medical device
US20080081970A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Pulse oximetry sensor switchover
US20080082338A1 (en) * 2006-09-29 2008-04-03 O'neil Michael P Systems and methods for secure voice identification and medical device interface
US20080081974A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Pathological condition detector using kernel methods and oximeters
US20080082339A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated System and method for secure voice identification in a medical device
US20080097175A1 (en) * 2006-09-29 2008-04-24 Boyce Robin S System and method for display control of patient monitor
US20080114226A1 (en) * 2006-09-29 2008-05-15 Doug Music Systems and methods for user interface and identification in a medical device
US20080114211A1 (en) * 2006-09-29 2008-05-15 Edward Karst System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US20080189783A1 (en) * 2006-09-29 2008-08-07 Doug Music User interface and identification in a medical device system and method
US20080200775A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Maneuver-based plethysmographic pulse variation detection system and method
US20080200819A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Orthostasis detection system and method
US20080214906A1 (en) * 2006-03-21 2008-09-04 Nellcor Puritan Bennett Llc Patient Monitoring Help Video System and Method
US20080221426A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc Methods and apparatus for detecting misapplied optical sensors
US20080221427A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US20080255436A1 (en) * 2005-03-03 2008-10-16 Nellcor Puritain Bennett Incorporated Method for Enhancing Pulse Oximery Calculations in the Presence of Correlated Artifacts
US20090005662A1 (en) * 2004-02-25 2009-01-01 Nellcor Puritan Bennett Inc Oximeter Ambient Light Cancellation
US20090082651A1 (en) * 2004-03-08 2009-03-26 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US20090080007A1 (en) * 2007-09-25 2009-03-26 Brother Kogyo Kabushiki Kaisha Printing device and method therefor
US20090154573A1 (en) * 2007-12-13 2009-06-18 Nellcor Puritan Bennett Llc Signal Demodulation
US20090171173A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for reducing motion artifacts in a sensor
US20090171172A1 (en) * 2008-12-19 2009-07-02 Nellcor Puritan Bennett Llc Method and system for pulse gating
US20090171167A1 (en) * 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc System And Method For Monitor Alarm Management
US20090171226A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for evaluating variation in the timing of physiological events
US20090171166A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Oximeter with location awareness
US20090171174A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for maintaining battery life
US20090209839A1 (en) * 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc Methods And Systems For Alerting Practitioners To Physiological Conditions
US20090210163A1 (en) * 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc System And Method For Evaluating Physiological Parameter Data
US20090247850A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Manually Powered Oximeter
US20090247852A1 (en) * 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc System and method for facilitating sensor and monitor communication
US20090247851A1 (en) * 2008-03-26 2009-10-01 Nellcor Puritan Bennett Llc Graphical User Interface For Monitor Alarm Management
US20090247845A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc System And Method For Estimating Blood Analyte Concentration
US20090247083A1 (en) * 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc Wavelength Selection And Outlier Detection In Reduced Rank Linear Models
US20090248320A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Benett Llc System And Method For Unmixing Spectroscopic Observations With Nonnegative Matrix Factorization
US20090247854A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc Retractable Sensor Cable For A Pulse Oximeter
US20090253971A1 (en) * 2005-10-28 2009-10-08 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US20090281838A1 (en) * 2008-05-07 2009-11-12 Lawrence A. Lynn Medical failure pattern search engine
US20090326335A1 (en) * 2008-06-30 2009-12-31 Baker Clark R Pulse Oximeter With Wait-Time Indication
US20090327515A1 (en) * 2008-06-30 2009-12-31 Thomas Price Medical Monitor With Network Connectivity
US20100076319A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Pathlength-Corrected Medical Spectroscopy
US20100076337A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Medical Sensor And Technique For Using The Same
US20100081897A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Transmission Mode Photon Density Wave System And Method
US20100081899A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc System and Method for Photon Density Wave Pulse Oximetry and Pulse Hemometry
US20100081890A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc System And Method For Enabling A Research Mode On Physiological Monitors
US20100079292A1 (en) * 1997-01-27 2010-04-01 Lawrence A. Lynn Microprocessor system for the analysis of physiologic and financial datasets
US20100113908A1 (en) * 2008-10-31 2010-05-06 Nellcor Puritan Bennett Llc System And Method For Facilitating Observation Of Monitored Physiologic Data
US20100113909A1 (en) * 2008-10-31 2010-05-06 Nellcor Puritan Bennett Llc System And Method For Facilitating Observation Of Monitored Physiologic Data
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US20100174161A1 (en) * 2006-02-10 2010-07-08 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US20100240972A1 (en) * 2009-03-20 2010-09-23 Nellcor Puritan Bennett Llc Slider Spot Check Pulse Oximeter
US7822453B2 (en) 2002-10-01 2010-10-26 Nellcor Puritan Bennett Llc Forehead sensor placement
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
US7848891B2 (en) 2006-09-29 2010-12-07 Nellcor Puritan Bennett Llc Modulation ratio determination with accommodation of uncertainty
US20110029865A1 (en) * 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Control Interface For A Medical Monitor
US20110071366A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Determination Of A Physiological Parameter
US20110071373A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Time-Division Multiplexing In A Multi-Wavelength Photon Density Wave System
US20110071376A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Determination Of A Physiological Parameter
US20110071368A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Medical Device Interface Customization Systems And Methods
US20110071598A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Photoacoustic Spectroscopy Method And System To Discern Sepsis From Shock
US20110071371A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Wavelength-Division Multiplexing In A Multi-Wavelength Photon Density Wave System
US20110077470A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Patient Monitor Symmetry Control
US20110077485A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Method Of Analyzing Photon Density Waves In A Medical Monitor
US20110074342A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Wireless electricity for electronic devices
US20110077547A1 (en) * 2009-09-29 2011-03-31 Nellcor Puritan Bennett Llc Spectroscopic Method And System For Assessing Tissue Temperature
US7922665B2 (en) 2006-09-28 2011-04-12 Nellcor Puritan Bennett Llc System and method for pulse rate calculation using a scheme for alternate weighting
US8007441B2 (en) 2004-03-08 2011-08-30 Nellcor Puritan Bennett Llc Pulse oximeter with alternate heart-rate determination
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8195262B2 (en) 2004-02-25 2012-06-05 Nellcor Puritan Bennett Llc Switch-mode oximeter LED drive with a single inductor
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
US8364221B2 (en) 2005-09-30 2013-01-29 Covidien Lp Patient monitoring alarm escalation system and method
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8380271B2 (en) 2006-06-15 2013-02-19 Covidien Lp System and method for generating customizable audible beep tones and alarms
US8391943B2 (en) 2010-03-31 2013-03-05 Covidien Lp Multi-wavelength photon density wave system using an optical switch
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US8494606B2 (en) 2009-08-19 2013-07-23 Covidien Lp Photoplethysmography with controlled application of sensor pressure
US8498683B2 (en) 2010-04-30 2013-07-30 Covidien LLP Method for respiration rate and blood pressure alarm management
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8571621B2 (en) 2009-09-24 2013-10-29 Covidien Lp Minimax filtering for pulse oximetry
US8610769B2 (en) 2011-02-28 2013-12-17 Covidien Lp Medical monitor data collection system and method
US8666467B2 (en) 2001-05-17 2014-03-04 Lawrence A. Lynn System and method for SPO2 instability detection and quantification
US8696593B2 (en) 2006-09-27 2014-04-15 Covidien Lp Method and system for monitoring intracranial pressure
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
CN104068865A (en) * 2014-04-24 2014-10-01 辛勤 Oxyhemoglobin saturation measuring method and portable device
US8862194B2 (en) 2008-06-30 2014-10-14 Covidien Lp Method for improved oxygen saturation estimation in the presence of noise
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US8983800B2 (en) 2003-01-13 2015-03-17 Covidien Lp Selection of preset filter parameters based on signal quality
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
CN105286883A (en) * 2015-09-11 2016-02-03 蚌埠医学院 Pulse hemoglobin concentration non-invasive measurement method and device
US9380982B2 (en) 2010-07-28 2016-07-05 Covidien Lp Adaptive alarm system and method
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9585606B2 (en) 2009-09-29 2017-03-07 Covidien Lp Oximetry assembly
US20170143242A1 (en) * 2008-05-22 2017-05-25 St. Louis Medical Devices, Inc. Method and system for non-invasive optical blood glucose detection utilizing spectral data analysis
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
US10241033B2 (en) 2010-03-05 2019-03-26 Seiko Epson Corporation Spectroscopic sensor device and electronic equipment
US10542919B2 (en) 2008-03-25 2020-01-28 St. Louis Medical Devices, Inc. Method and system for non-invasive blood glucose detection utilizing spectral data of one or more components other than glucose

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287474B1 (en) 2002-08-22 2012-10-16 Koenig J Frank Method and apparatus for noninvasively increasing whole body blood flow and noninvasive physical exercise of limbs from the outside and from within the limb to treat diseases throughout the body
US7037257B1 (en) * 2002-08-22 2006-05-02 Koenig J Frank Erectile dysfuction treatments comprising momentary vacuum therapy alone or with medications
US7037256B2 (en) * 2002-10-16 2006-05-02 Soma Blue, Inc. Method, system and kit for treatment of Peyronie's disease
US8137262B2 (en) * 2002-10-16 2012-03-20 Augusta Medical Systems, Inc. Kit, system and method to treat erectile dysfunction
US20050119521A1 (en) * 2003-12-02 2005-06-02 Pitcher Rex L. Vacuum exercise device for promoting expansion of soft-tissue
US7572220B2 (en) * 2005-04-19 2009-08-11 Nanma Manufacturing Co., Ltd. Collapsible vacuum device
US20070156014A1 (en) * 2005-12-29 2007-07-05 Nikos Zafirakis Angled male member enlargement pump
US8500626B2 (en) * 2008-05-15 2013-08-06 Alagin Research LLC System and method for treating and/or preventing erection problems
US20100130813A1 (en) * 2008-11-24 2010-05-27 Dmitri Dozortsev Method and apparatus for attaining lucid dream state
US20140142374A1 (en) 2012-11-21 2014-05-22 ExploraMed NC6, LLC Devices and Methods for Promoting Female Sexual Wellness
SE537386C2 (en) * 2012-11-30 2015-04-14 Nuelle Inc Apparatus for promoting female sexual well-being
CN107205881B (en) * 2015-02-17 2021-05-28 株式会社典雅 Pressure reducing device of ejaculation stimulating device
US20170224522A1 (en) * 2016-02-05 2017-08-10 Global Health & Innovation Vacuum therapy apparatus
US10588817B2 (en) * 2016-02-11 2020-03-17 Kevin Joseph Dorsey Vacuum-driven personal device
US11154414B2 (en) * 2018-05-15 2021-10-26 Nugyn, Inc. Apparatus and methods for treating venous occlusive disorders
US11179267B2 (en) * 2018-05-15 2021-11-23 Nugyn, Inc. Apparatus and methods for treating venous occlusive disorders
CN112545738A (en) * 2020-12-18 2021-03-26 上海乐斟电子科技有限公司 Water-gas dual-purpose electric erection aid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1225341A (en) * 1913-11-29 1917-05-08 Otto Lederer Surgical device.
US4378008A (en) * 1981-05-15 1983-03-29 Osbon Sr Geddings D Erection aid device
US4856498A (en) * 1987-03-30 1989-08-15 Osbon Medical Systems, Ltd. Vacuum generating and constriction apparatus for augmenting male potency
US5083556A (en) * 1990-05-31 1992-01-28 Osbon Medical Systems, Ltd. Penile cincture band operational apparatus
US5094230A (en) * 1991-09-19 1992-03-10 Clark Jr Buford E Method and apparatus for treating Peyronie's disease
US5195943A (en) * 1991-09-30 1993-03-23 Chaney John L Male organ restrictor ring applicator
US5421808A (en) * 1993-07-30 1995-06-06 Osbon Medical Systems, Ltd. Battery-operated male organ conditioning appliance
US5951460A (en) * 1996-01-11 1999-09-14 Vollrath; Andrew J. Non-invasive penile erection device

Cited By (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US20100079292A1 (en) * 1997-01-27 2010-04-01 Lawrence A. Lynn Microprocessor system for the analysis of physiologic and financial datasets
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US20100234705A1 (en) * 1997-01-27 2010-09-16 Lynn Lawrence A System and Method for Automatic Detection of a Plurality of SP02 Time Series Pattern Types
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US8133176B2 (en) 1999-04-14 2012-03-13 Tyco Healthcare Group Lp Method and circuit for indicating quality and accuracy of physiological measurements
US20060030764A1 (en) * 1999-04-14 2006-02-09 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US10058269B2 (en) 2000-07-28 2018-08-28 Lawrence A. Lynn Monitoring system for identifying an end-exhalation carbon dioxide value of enhanced clinical utility
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US20070129647A1 (en) * 2000-07-28 2007-06-07 Lynn Lawrence A System and method for CO2 and oximetry integration
US8666467B2 (en) 2001-05-17 2014-03-04 Lawrence A. Lynn System and method for SPO2 instability detection and quantification
US20070093721A1 (en) * 2001-05-17 2007-04-26 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US8862196B2 (en) 2001-05-17 2014-10-14 Lawrence A. Lynn System and method for automatic detection of a plurality of SP02 time series pattern types
US11439321B2 (en) 2001-05-17 2022-09-13 Lawrence A. Lynn Monitoring system for identifying an end-exhalation carbon dioxide value of enhanced clinical utility
US10366790B2 (en) 2001-05-17 2019-07-30 Lawrence A. Lynn Patient safety processor
US10354753B2 (en) 2001-05-17 2019-07-16 Lawrence A. Lynn Medical failure pattern search engine
US10297348B2 (en) 2001-05-17 2019-05-21 Lawrence A. Lynn Patient safety processor
US10032526B2 (en) 2001-05-17 2018-07-24 Lawrence A. Lynn Patient safety processor
US9031793B2 (en) 2001-05-17 2015-05-12 Lawrence A. Lynn Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US20070032714A1 (en) * 2001-07-19 2007-02-08 Nellcor Puritan Bennett Inc. Nuisance alarm reductions in a physiological monitor
US8838196B2 (en) 2001-07-19 2014-09-16 Covidien Lp Nuisance alarm reductions in a physiological monitor
US8401606B2 (en) 2001-07-19 2013-03-19 Covidien Lp Nuisance alarm reductions in a physiological monitor
US8401607B2 (en) 2001-07-19 2013-03-19 Covidien Lp Nuisance alarm reductions in a physiological monitor
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US20060195041A1 (en) * 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US7698909B2 (en) 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
US20110009723A1 (en) * 2002-10-01 2011-01-13 Nellcor Puritan Bennett Llc Forehead sensor placement
US7822453B2 (en) 2002-10-01 2010-10-26 Nellcor Puritan Bennett Llc Forehead sensor placement
US8452367B2 (en) 2002-10-01 2013-05-28 Covidien Lp Forehead sensor placement
US7899509B2 (en) 2002-10-01 2011-03-01 Nellcor Puritan Bennett Llc Forehead sensor placement
US20040221370A1 (en) * 2002-10-01 2004-11-11 Nellcor Puritan Bennett Incorporated Headband with tension indicator
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US20060135860A1 (en) * 2003-01-10 2006-06-22 Baker Clark R Jr Signal quality metrics design for qualifying data for a physiological monitor
US8983800B2 (en) 2003-01-13 2015-03-17 Covidien Lp Selection of preset filter parameters based on signal quality
US7877126B2 (en) 2003-06-25 2011-01-25 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US7979102B2 (en) 2003-06-25 2011-07-12 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US20060264722A1 (en) * 2003-06-25 2006-11-23 Don Hannula Hat-based oximeter sensor
US20060264724A1 (en) * 2003-06-25 2006-11-23 Don Hannula Hat-based oximeter sensor
US20060195028A1 (en) * 2003-06-25 2006-08-31 Don Hannula Hat-based oximeter sensor
US20060264725A1 (en) * 2003-06-25 2006-11-23 Don Hannula Hat-based oximeter sensor
US7809420B2 (en) 2003-06-25 2010-10-05 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US7877127B2 (en) 2003-06-25 2011-01-25 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US7813779B2 (en) 2003-06-25 2010-10-12 Nellcor Puritan Bennett Llc Hat-based oximeter sensor
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US8195262B2 (en) 2004-02-25 2012-06-05 Nellcor Puritan Bennett Llc Switch-mode oximeter LED drive with a single inductor
US8874181B2 (en) 2004-02-25 2014-10-28 Covidien Lp Oximeter ambient light cancellation
US8315684B2 (en) 2004-02-25 2012-11-20 Covidien Lp Oximeter ambient light cancellation
US20090005662A1 (en) * 2004-02-25 2009-01-01 Nellcor Puritan Bennett Inc Oximeter Ambient Light Cancellation
US20090082651A1 (en) * 2004-03-08 2009-03-26 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8611977B2 (en) 2004-03-08 2013-12-17 Covidien Lp Method and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US20050197579A1 (en) * 2004-03-08 2005-09-08 Nellcor Puritan Bennett Incorporated Method and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US7890154B2 (en) 2004-03-08 2011-02-15 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8560036B2 (en) 2004-03-08 2013-10-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US20110092785A1 (en) * 2004-03-08 2011-04-21 Nellcor Puritan Bennett Llc Selection of Ensemble Averaging Weights for a Pulse Oximeter Based on Signal Quality Metrics
US8007441B2 (en) 2004-03-08 2011-08-30 Nellcor Puritan Bennett Llc Pulse oximeter with alternate heart-rate determination
US20080009690A1 (en) * 2004-03-09 2008-01-10 Nellcor Puritan Bennett Llc Pulse oximetry motion artifact rejection using near infrared absorption by water
US20070106137A1 (en) * 2004-03-09 2007-05-10 Baker Clark R Jr Pulse oximetry signal correction using near infrared absorption by water
US8195263B2 (en) 2004-03-09 2012-06-05 Nellcor Puritan Bennett Llc Pulse oximetry motion artifact rejection using near infrared absorption by water
US8175670B2 (en) 2004-03-09 2012-05-08 Nellcor Puritan Bennett Llc Pulse oximetry signal correction using near infrared absorption by water
US9351674B2 (en) 2005-03-03 2016-05-31 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US8818475B2 (en) 2005-03-03 2014-08-26 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US8423109B2 (en) 2005-03-03 2013-04-16 Covidien Lp Method for enhancing pulse oximery calculations in the presence of correlated artifacts
US20080255436A1 (en) * 2005-03-03 2008-10-16 Nellcor Puritain Bennett Incorporated Method for Enhancing Pulse Oximery Calculations in the Presence of Correlated Artifacts
US8744543B2 (en) 2005-09-29 2014-06-03 Covidien Lp System and method for removing artifacts from waveforms
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US20070073124A1 (en) * 2005-09-29 2007-03-29 Li Li System and method for removing artifacts from waveforms
US8364221B2 (en) 2005-09-30 2013-01-29 Covidien Lp Patient monitoring alarm escalation system and method
US8238994B2 (en) 2005-10-28 2012-08-07 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US20090253971A1 (en) * 2005-10-28 2009-10-08 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US8728001B2 (en) 2006-02-10 2014-05-20 Lawrence A. Lynn Nasal capnographic pressure monitoring system
US20100174161A1 (en) * 2006-02-10 2010-07-08 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US8702606B2 (en) 2006-03-21 2014-04-22 Covidien Lp Patient monitoring help video system and method
US20080214906A1 (en) * 2006-03-21 2008-09-04 Nellcor Puritan Bennett Llc Patient Monitoring Help Video System and Method
US8380271B2 (en) 2006-06-15 2013-02-19 Covidien Lp System and method for generating customizable audible beep tones and alarms
US8538500B2 (en) 2006-09-20 2013-09-17 Covidien Lp System and method for probability based determination of estimated oxygen saturation
US8064975B2 (en) 2006-09-20 2011-11-22 Nellcor Puritan Bennett Llc System and method for probability based determination of estimated oxygen saturation
US20080076986A1 (en) * 2006-09-20 2008-03-27 Nellcor Puritan Bennett Inc. System and method for probability based determination of estimated oxygen saturation
US20080076977A1 (en) * 2006-09-26 2008-03-27 Nellcor Puritan Bennett Inc. Patient monitoring device snapshot feature system and method
US8696593B2 (en) 2006-09-27 2014-04-15 Covidien Lp Method and system for monitoring intracranial pressure
US8801622B2 (en) 2006-09-28 2014-08-12 Covidien Lp System and method for pulse rate calculation using a scheme for alternate weighting
US7922665B2 (en) 2006-09-28 2011-04-12 Nellcor Puritan Bennett Llc System and method for pulse rate calculation using a scheme for alternate weighting
US10022058B2 (en) 2006-09-28 2018-07-17 Covidien Lp System and method for pulse rate calculation using a scheme for alternate weighting
US7698002B2 (en) 2006-09-29 2010-04-13 Nellcor Puritan Bennett Llc Systems and methods for user interface and identification in a medical device
US7925511B2 (en) 2006-09-29 2011-04-12 Nellcor Puritan Bennett Llc System and method for secure voice identification in a medical device
US20080082338A1 (en) * 2006-09-29 2008-04-03 O'neil Michael P Systems and methods for secure voice identification and medical device interface
US20080081974A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Pathological condition detector using kernel methods and oximeters
US20080081956A1 (en) * 2006-09-29 2008-04-03 Jayesh Shah System and method for integrating voice with a medical device
US20080082339A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated System and method for secure voice identification in a medical device
US20080097175A1 (en) * 2006-09-29 2008-04-24 Boyce Robin S System and method for display control of patient monitor
US20080114226A1 (en) * 2006-09-29 2008-05-15 Doug Music Systems and methods for user interface and identification in a medical device
US20080114211A1 (en) * 2006-09-29 2008-05-15 Edward Karst System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US20080189783A1 (en) * 2006-09-29 2008-08-07 Doug Music User interface and identification in a medical device system and method
US8160726B2 (en) 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc User interface and identification in a medical device system and method
US20080081970A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Pulse oximetry sensor switchover
US8160668B2 (en) 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc Pathological condition detector using kernel methods and oximeters
US8160683B2 (en) 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc System and method for integrating voice with a medical device
US20110098544A1 (en) * 2006-09-29 2011-04-28 Nellcor Puritan Bennett Llc System and method for integrating voice with a medical device
US7706896B2 (en) 2006-09-29 2010-04-27 Nellcor Puritan Bennett Llc User interface and identification in a medical device system and method
US8728059B2 (en) 2006-09-29 2014-05-20 Covidien Lp System and method for assuring validity of monitoring parameter in combination with a therapeutic device
US7848891B2 (en) 2006-09-29 2010-12-07 Nellcor Puritan Bennett Llc Modulation ratio determination with accommodation of uncertainty
US8068890B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Pulse oximetry sensor switchover
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US20100141391A1 (en) * 2006-09-29 2010-06-10 Nellcor Puritan Bennett Llc User interface and identification in a medical device system and method
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US20080200819A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Orthostasis detection system and method
US20080200775A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Maneuver-based plethysmographic pulse variation detection system and method
US20080221427A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US20080221426A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc Methods and apparatus for detecting misapplied optical sensors
US20090080007A1 (en) * 2007-09-25 2009-03-26 Brother Kogyo Kabushiki Kaisha Printing device and method therefor
US20090154573A1 (en) * 2007-12-13 2009-06-18 Nellcor Puritan Bennett Llc Signal Demodulation
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US20090171167A1 (en) * 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc System And Method For Monitor Alarm Management
US20090171226A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for evaluating variation in the timing of physiological events
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US20090171166A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Oximeter with location awareness
US20090171174A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for maintaining battery life
US20090171173A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for reducing motion artifacts in a sensor
US8781753B2 (en) 2008-02-19 2014-07-15 Covidien Lp System and method for evaluating physiological parameter data
US8275553B2 (en) 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US11298076B2 (en) 2008-02-19 2022-04-12 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US20090210163A1 (en) * 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc System And Method For Evaluating Physiological Parameter Data
US20090209839A1 (en) * 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc Methods And Systems For Alerting Practitioners To Physiological Conditions
US11147482B2 (en) 2008-03-25 2021-10-19 St. Louis Medical Devices, Inc. Method and system for non-invasive blood glucose measurement using signal change of the non-glucose components induced by the presence of glucose
US10542919B2 (en) 2008-03-25 2020-01-28 St. Louis Medical Devices, Inc. Method and system for non-invasive blood glucose detection utilizing spectral data of one or more components other than glucose
US20090247851A1 (en) * 2008-03-26 2009-10-01 Nellcor Puritan Bennett Llc Graphical User Interface For Monitor Alarm Management
US8140272B2 (en) 2008-03-27 2012-03-20 Nellcor Puritan Bennett Llc System and method for unmixing spectroscopic observations with nonnegative matrix factorization
US20090248320A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Benett Llc System And Method For Unmixing Spectroscopic Observations With Nonnegative Matrix Factorization
US20090247854A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc Retractable Sensor Cable For A Pulse Oximeter
US20090247845A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc System And Method For Estimating Blood Analyte Concentration
US20090247850A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Manually Powered Oximeter
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US20090247852A1 (en) * 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc System and method for facilitating sensor and monitor communication
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
US20090247083A1 (en) * 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc Wavelength Selection And Outlier Detection In Reduced Rank Linear Models
US20090281838A1 (en) * 2008-05-07 2009-11-12 Lawrence A. Lynn Medical failure pattern search engine
US11553859B2 (en) 2008-05-22 2023-01-17 St. Louis Medical Devices, Inc. Method and system for non-invasive optical blood glucose detection utilizing spectral data analysis
US11076781B2 (en) 2008-05-22 2021-08-03 St. Louis Medical Devices, Inc. Method and system for non-invasive optical blood glucose detection utilizing spectral data analysis
US10973442B2 (en) 2008-05-22 2021-04-13 St. Louis Medical Devices, Inc. Method and system for non-invasive optical blood glucose detection utilizing spectral data analysis
US10959650B2 (en) 2008-05-22 2021-03-30 St. Louis Medical Devices, Inc. Method and system for non-invasive optical blood glucose detection utilizing spectral data analysis
US10080515B2 (en) * 2008-05-22 2018-09-25 St. Louis Medical Devices, Inc. Method and system for non-invasive optical blood glucose detection utilizing spectral data analysis
US10070809B2 (en) * 2008-05-22 2018-09-11 St. Louis Medical Devices, Inc. Method and system for non-invasive optical blood glucose detection utilizing spectral data analysis
US20170143242A1 (en) * 2008-05-22 2017-05-25 St. Louis Medical Devices, Inc. Method and system for non-invasive optical blood glucose detection utilizing spectral data analysis
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
US20090327515A1 (en) * 2008-06-30 2009-12-31 Thomas Price Medical Monitor With Network Connectivity
US8862194B2 (en) 2008-06-30 2014-10-14 Covidien Lp Method for improved oxygen saturation estimation in the presence of noise
US20090326335A1 (en) * 2008-06-30 2009-12-31 Baker Clark R Pulse Oximeter With Wait-Time Indication
USD736250S1 (en) 2008-06-30 2015-08-11 Covidien Lp Portion of a display panel with an indicator icon
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US20100076319A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Pathlength-Corrected Medical Spectroscopy
US20100076337A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Medical Sensor And Technique For Using The Same
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US20100081899A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc System and Method for Photon Density Wave Pulse Oximetry and Pulse Hemometry
US20100081897A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Transmission Mode Photon Density Wave System And Method
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US20100081890A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc System And Method For Enabling A Research Mode On Physiological Monitors
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US20100113909A1 (en) * 2008-10-31 2010-05-06 Nellcor Puritan Bennett Llc System And Method For Facilitating Observation Of Monitored Physiologic Data
US9993208B2 (en) 2008-10-31 2018-06-12 Covidien Lp System and method for facilitating observation of monitored physiologic data
US8622916B2 (en) 2008-10-31 2014-01-07 Covidien Lp System and method for facilitating observation of monitored physiologic data
US20100113908A1 (en) * 2008-10-31 2010-05-06 Nellcor Puritan Bennett Llc System And Method For Facilitating Observation Of Monitored Physiologic Data
US20090171172A1 (en) * 2008-12-19 2009-07-02 Nellcor Puritan Bennett Llc Method and system for pulse gating
US20100240972A1 (en) * 2009-03-20 2010-09-23 Nellcor Puritan Bennett Llc Slider Spot Check Pulse Oximeter
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US9380969B2 (en) 2009-07-30 2016-07-05 Covidien Lp Systems and methods for varying a sampling rate of a signal
US20110029865A1 (en) * 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Control Interface For A Medical Monitor
US8494606B2 (en) 2009-08-19 2013-07-23 Covidien Lp Photoplethysmography with controlled application of sensor pressure
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8704666B2 (en) 2009-09-21 2014-04-22 Covidien Lp Medical device interface customization systems and methods
US20110071373A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Time-Division Multiplexing In A Multi-Wavelength Photon Density Wave System
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US20110071368A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Medical Device Interface Customization Systems And Methods
US20110071371A1 (en) * 2009-09-21 2011-03-24 Nellcor Puritan Bennett Llc Wavelength-Division Multiplexing In A Multi-Wavelength Photon Density Wave System
US8855749B2 (en) 2009-09-24 2014-10-07 Covidien Lp Determination of a physiological parameter
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8571621B2 (en) 2009-09-24 2013-10-29 Covidien Lp Minimax filtering for pulse oximetry
US20110071598A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Photoacoustic Spectroscopy Method And System To Discern Sepsis From Shock
US20110071376A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Determination Of A Physiological Parameter
US8923945B2 (en) 2009-09-24 2014-12-30 Covidien Lp Determination of a physiological parameter
US20110071366A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Determination Of A Physiological Parameter
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US9597023B2 (en) 2009-09-29 2017-03-21 Covidien Lp Oximetry assembly
US20110077547A1 (en) * 2009-09-29 2011-03-31 Nellcor Puritan Bennett Llc Spectroscopic Method And System For Assessing Tissue Temperature
US8376955B2 (en) 2009-09-29 2013-02-19 Covidien Lp Spectroscopic method and system for assessing tissue temperature
US9585606B2 (en) 2009-09-29 2017-03-07 Covidien Lp Oximetry assembly
US20110077470A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Patient Monitor Symmetry Control
US8401608B2 (en) 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
US20110077485A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Method Of Analyzing Photon Density Waves In A Medical Monitor
US20110074342A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Wireless electricity for electronic devices
US10241033B2 (en) 2010-03-05 2019-03-26 Seiko Epson Corporation Spectroscopic sensor device and electronic equipment
US8391943B2 (en) 2010-03-31 2013-03-05 Covidien Lp Multi-wavelength photon density wave system using an optical switch
US8498683B2 (en) 2010-04-30 2013-07-30 Covidien LLP Method for respiration rate and blood pressure alarm management
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US9380982B2 (en) 2010-07-28 2016-07-05 Covidien Lp Adaptive alarm system and method
US8610769B2 (en) 2011-02-28 2013-12-17 Covidien Lp Medical monitor data collection system and method
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
CN104068865A (en) * 2014-04-24 2014-10-01 辛勤 Oxyhemoglobin saturation measuring method and portable device
CN105286883A (en) * 2015-09-11 2016-02-03 蚌埠医学院 Pulse hemoglobin concentration non-invasive measurement method and device

Also Published As

Publication number Publication date
US6183414B1 (en) 2001-02-06

Similar Documents

Publication Publication Date Title
US6708048B1 (en) Phase modulation spectrophotometric apparatus
EP0689398B1 (en) Pathlength corrected oximeter
US20030023140A1 (en) Pathlength corrected oximeter and the like
US6263221B1 (en) Quantitative analyses of biological tissue using phase modulation spectroscopy
US6246892B1 (en) Phase modulation spectroscopy
Chance et al. Phase measurement of light absorption and scatter in human tissue
US5187672A (en) Phase modulation spectroscopic system
US6714805B2 (en) Method and apparatus for noninvasively monitoring hemoglobin concentration and oxygen saturation
US8606342B2 (en) Pulse and active pulse spectraphotometry
CA2494030C (en) Method for spectrophotometric blood oxygenation monitoring
US5553614A (en) Examination of biological tissue using frequency domain spectroscopy
US5137023A (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
JP3433498B2 (en) Method and apparatus for measuring internal information of scattering medium
Lindberg et al. Photoplethysmography: Part 2 influence of light source wavelength
JP3844815B2 (en) Method and apparatus for measuring absorption information of scatterers
JP3619969B2 (en) Light sensor with multiple light sources
US5419321A (en) Non-invasive medical sensor
US7236813B2 (en) Optical device
US5513642A (en) Reflectance sensor system
JP3247694B2 (en) Time and frequency domain spectrometer for measuring hypoxia
RU2040912C1 (en) Optical method and device for determining blood oxygenation
JP3359756B2 (en) Biological light measurement device
GB2244128A (en) Non-invasive medical sensor
Bal et al. The determination of absorption and reduced scattering coefficients of optical phantoms using a frequency-domain multi-distance method in a non-contact manner
JPH1082732A (en) Optical measuring equipment

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION