JPH1082207A - Vibration isolating device - Google Patents

Vibration isolating device

Info

Publication number
JPH1082207A
JPH1082207A JP23876696A JP23876696A JPH1082207A JP H1082207 A JPH1082207 A JP H1082207A JP 23876696 A JP23876696 A JP 23876696A JP 23876696 A JP23876696 A JP 23876696A JP H1082207 A JPH1082207 A JP H1082207A
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation device
elastic member
support member
bellows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23876696A
Other languages
Japanese (ja)
Other versions
JP3779000B2 (en
Inventor
Harutaka Furuike
治孝 古池
Hidekazu Kobayashi
秀和 小林
Tetsuo Kaneda
哲男 兼田
Toichi Sakai
藤一 坂井
Kazushi Ogawa
一志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP23876696A priority Critical patent/JP3779000B2/en
Publication of JPH1082207A publication Critical patent/JPH1082207A/en
Application granted granted Critical
Publication of JP3779000B2 publication Critical patent/JP3779000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent vibrations resulting from wind load, etc., at the normal time to a vibration isolating device, to obviate the application of reaction higher than a fixed value by releasing the rigid constraint of a structure at the time of the burdening of load higher than a fixed value and to avert the increase of the response acceleration of the structure by changing the natural frequency of the structure, etc., in response to load. SOLUTION: The vibration isolating device 1 interposed between a structure S and a foundation F has a support member 9 and a bellows 2 disposed in parallel with the support member 9 on the inside of the support member 9. A laminated vibration isolating rubber 7 is arranged in series with the lower section of the bellows 2, the support member 9 is composed of an inner- circumferential side arcuate section 9a and an outer-circumferential side arcuate section 9b manufactured in an insert type in the vertical direction, and both arcuate sections 9a, 9b are connected through a detaching member 11. The detaching member 11 is constituted so as to be detached by specified set cutting load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は免震装置に関する。
さらに詳しくは、ビルディングや橋梁等の構造物とその
基礎との間および/または二つの構造物の間に介装して
構造物の免震・制震を図るための免震装置において、構
造物と基礎との実質的に鉛直方向の相対変位および/ま
たは二つの構造物の実質的に鉛直方向の相対変位を剛に
拘束し、且つ、この拘束を解放して弾力的に拘束するた
めの免震装置であって、装着対象構造物に加わる振動を
抑制するとともに、該振動による荷重が所定値を超えな
いようにする免震装置に関する。
TECHNICAL FIELD The present invention relates to a seismic isolation device.
More specifically, in a seismic isolation device interposed between a structure such as a building or a bridge and its foundation and / or between two structures to achieve seismic isolation / vibration control of the structure, For rigidly constraining the substantially vertical relative displacement of the structure and the foundation and / or the substantially vertical relative displacement of the two structures, and for releasing the restraint for elastic restraint. The present invention relates to a seismic device that suppresses vibration applied to a structure to be mounted and prevents a load caused by the vibration from exceeding a predetermined value.

【0002】[0002]

【従来の技術】従来、建造物等の免震装置のうち、水平
方向成分の振動とともに鉛直方向成分の振動に対しても
免震効果が奏されうるもの、また、主に鉛直方向成分の
振動に対して免震効果が奏されうるものが種々提案され
ている。
2. Description of the Related Art Conventionally, among seismic isolation devices for buildings and the like, those capable of exerting a seismic isolation effect not only on the vibration of the horizontal component but also on the vibration of the vertical component, and mainly on the vibration of the vertical component There are various proposals that can achieve a seismic isolation effect.

【0003】たとえば、特開平1−83744号公報お
よび特開平5−302452号公報には、基礎に形成さ
れたピット内に永久磁石等の磁場発生器を備え、このピ
ット内に間隙をおいて没入するように構造物の下端近傍
に前記磁場発生器とは異なる極性の磁場発生器(電磁石
等)を備えた免震装置が開示されている。すなわち、構
造物の重量を磁力によって支持しようというものであ
る。このようにして、建造物と基礎との間に水平方向お
よび鉛直方向の磁力を作用せしめることにより、特別の
支承を設けずに水平方向の反力機構と鉛直方向の反力機
構とをまかなうことを期待したものである。以下、この
免震装置を従来技術1と呼ぶ。
For example, JP-A-1-83744 and JP-A-5-302452 disclose a magnetic field generator such as a permanent magnet in a pit formed on a base, and immerse the pit with a gap therebetween. Thus, a seismic isolation device having a magnetic field generator (electromagnet or the like) having a polarity different from the magnetic field generator near the lower end of the structure is disclosed. That is, the weight of the structure is to be supported by magnetic force. In this way, by applying horizontal and vertical magnetic forces between the building and the foundation, the horizontal reaction mechanism and the vertical reaction mechanism can be covered without providing a special support. Is expected. Hereinafter, this seismic isolation device is referred to as Conventional Technology 1.

【0004】また、特開平7−173955号公報に
は、ベローズと積層免震ゴムとを鉛直方向に直列に連結
した免震装置が開示されている。この免震装置は構造物
と基礎との間および/または二つの構造物の間に介装さ
れ、そのベローズおよび積層免震ゴムの双方の弾力性に
よって構造物に対する加振力を低減しようというもので
ある。したがって、構造物の重量はベローズおよび積層
免震ゴムに均等に支持されている。そして、ベローズは
その外周を入れ子式の一対の円筒部材によって囲まれて
おり、それによってベローズには振動荷重のうちの縦方
向(鉛直方向)成分のみが負荷されるように構成されて
いる。一方、積層免震ゴムのみが水平方向の振動を抑制
するように構成されている。以下、この免震装置を従来
技術2と呼ぶ。
Japanese Patent Application Laid-Open No. 7-173955 discloses a seismic isolation device in which bellows and laminated seismic isolation rubber are connected in series in the vertical direction. The seismic isolation device is interposed between the structure and the foundation and / or between the two structures, and is intended to reduce the excitation force on the structure by the elasticity of both the bellows and the laminated seismic isolation rubber. It is. Therefore, the weight of the structure is evenly supported by the bellows and the laminated seismic isolation rubber. The bellows is surrounded on its outer periphery by a pair of nested cylindrical members, so that only the vertical (vertical) component of the vibration load is applied to the bellows. On the other hand, only the laminated seismic isolation rubber is configured to suppress horizontal vibration. Hereinafter, this seismic isolation device is referred to as Conventional Technology 2.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、叙上の
従来技術1は、磁力によって橋梁等の構造物を支持する
ものであるため、きわめて大きい磁力が要求されること
から高出力の電磁石が必要となり、装置が大がかりなも
のとなる。さらに、地震によって多発する停電への対応
がきわめて不十分であり、現時点では非現実的な技術で
ある。
However, the prior art 1 described above uses a magnetic force to support a structure such as a bridge, so that an extremely large magnetic force is required, so that a high-output electromagnet is required. However, the device becomes large-scale. Furthermore, the response to power outages that occur frequently due to earthquakes is extremely inadequate, and is currently unrealistic.

【0006】また、叙上の従来技術1、2のいずれも、
一定のバネ定数を有する弾性部材(ゴム、ベローズまた
は磁石の磁力)によって構造物を基礎にいわば固定する
ものである。したがって、免震効果を向上させるために
は免震装置のバネ定数を低くする必要があるが、そうし
た場合、平常時においても風荷重や交通機関等による振
動によって揺れ動くことがある。
[0006] Both of the above prior arts 1 and 2
The structure is fixed on a foundation by an elastic member (rubber, bellows or magnetic force of a magnet) having a constant spring constant. Therefore, in order to improve the seismic isolation effect, it is necessary to lower the spring constant of the seismic isolation device. However, in such a case, the seismic isolation device may oscillate due to wind loads or vibrations caused by transportation.

【0007】さらに、前述のように一定のバネ定数を有
する弾性部材によって固定された構造物と基礎とからな
る一つの振動系は定まった固有振動数を有している。し
たがって、たとえば発生する地震波の特性によっては前
記振動系の応答加速度が増大し、さらには共振し、構造
物の振動が増幅されて構造物に許容値を超える応力が発
生することがあり、構造物の損傷、損壊を招くおそれが
ある。
Further, as described above, one vibration system composed of a structure and a base fixed by an elastic member having a constant spring constant has a fixed natural frequency. Therefore, for example, depending on the characteristics of the generated seismic wave, the response acceleration of the vibration system increases, and furthermore, resonates, the vibration of the structure is amplified, and a stress exceeding an allowable value may be generated in the structure, and Damage or damage.

【0008】[0008]

【課題を解決するための手段】本発明は、主に鉛直方向
成分の振動荷重に対する免震装置に、実質的に剛体の支
持装置を備えることによって平常時の風荷重や交通機関
等による振動を抑制し、さらに、この支持部材に所定値
以上の荷重によって切り離される切り離し部材を設ける
ことにより、振動によって基礎と構造物とからおよび/
または二つの構造物から所定値以上の相互反力が負荷さ
れたときに構造物の剛な拘束を解いて弾性的に拘束し、
構造物に所定値以上の反力が加わることを防止するとと
もに、免震装置を含む構造物全体の固有振動数を低下せ
しめてその応答加速度の増大を防止するものである。か
かる構成により、地震等による構造物の損傷、損壊を効
果的に防止しようとするものである。
SUMMARY OF THE INVENTION According to the present invention, a seismic isolation device for a vibration component mainly in a vertical direction is provided with a substantially rigid support device to reduce a wind load in normal times and vibrations caused by transportation. In addition, by providing the supporting member with a separating member that is separated by a load equal to or more than a predetermined value, the supporting member is separated from the foundation and the structure by vibration and / or
Or, when a mutual reaction force of a predetermined value or more is applied from two structures, the rigid restraint of the structure is released and elastically restrained,
It is intended to prevent a reaction force of a predetermined value or more from being applied to the structure and to reduce the natural frequency of the entire structure including the seismic isolation device, thereby preventing the response acceleration from increasing. With such a configuration, the structure is intended to be effectively prevented from being damaged or damaged by an earthquake or the like.

【0009】[0009]

【発明の実施の形態】本発明の免震装置は、構造物と基
礎との間および/または二つの構造物の間に介装され
る、構造物と基礎との実質的に鉛直方向の相対変位およ
び/または二つの構造物の実質的に鉛直方向の相対変位
を拘束および解放するための免震装置であって、所定値
以上の荷重によって切り離される切り離し部材を介装し
た実質的に剛体の支持部材と、構造物と基礎との相対変
位および/または二つの構造物の相対変位に応じて自ら
変位しつつ反力を生じる第一弾性部材とを備えており、
前記支持部材と第一弾性部材とが、上方の前記構造物の
荷重を並列状で支持するように構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The seismic isolation device of the present invention is provided with a substantially vertical relative position between a structure and a foundation interposed between the structure and a foundation and / or between two structures. A seismic isolation device for restraining and releasing a displacement and / or a relative vertical displacement of two structures, wherein the seismic isolation device is a substantially rigid body having a separating member separated by a load greater than a predetermined value. A supporting member, and a first elastic member that generates a reaction force while displacing itself according to the relative displacement between the structure and the foundation and / or the relative displacement between the two structures,
The support member and the first elastic member are configured to support the load of the upper structure in parallel.

【0010】したがって、構造物に加えられた振動の鉛
直方向成分を先ずは剛体の支持部材が受けるため、平常
時においては風荷重や交通機関等に起因する振動が、通
常の免震装置を有さない構造物についてと同程度に防止
される。一方、地震等によって大きな加振力が加わる
と、その荷重が前記切り離し部材に予め設定された値を
越えたときに切り離し部材が切り離され、剛体の支持部
材に代わって第一弾性部材が構造物を弾性的に支持する
こととなって構造物に加わる荷重が緩和される。また、
免震装置を含めた構造物の固有振動数が低下し、構造物
の応答加速度の増大や共振が防止される。その結果、構
造物の損傷を防止しうる。また、免震装置全体のうち、
破断する部位(切り離し部材の部分)が定まるため、メ
ンテナンスが容易となり、免震装置の再使用も容易とな
る。
[0010] Therefore, since the vertical component of the vibration applied to the structure is first received by the rigid support member, the vibration caused by the wind load or the transportation system in normal times has the ordinary seismic isolation device. This is prevented to the same extent as for structures that do not. On the other hand, when a large excitation force is applied due to an earthquake or the like, the separating member is separated when the load exceeds a preset value to the separating member, and the first elastic member is replaced with a structural member instead of the rigid supporting member. Is elastically supported, so that the load applied to the structure is reduced. Also,
The natural frequency of the structure including the seismic isolation device is reduced, and an increase in the response acceleration and resonance of the structure are prevented. As a result, damage to the structure can be prevented. Also, of the whole seismic isolation device,
Since the part to be broken (part of the separating member) is determined, maintenance becomes easy, and reuse of the seismic isolation device becomes easy.

【0011】そして、前記支持部材と前記第一弾性部材
とが一対で免震要素を構成しており、複数個の該免震要
素が構造物と基礎との間および/または二つの構造物間
に直列状に介装されており、各免震要素の支持部材にお
ける切り離し部材が、それぞれ異なる荷重によって切り
離されるように構成された免震装置にあっては、振動が
大きくなった場合、最小の切り離し荷重に設定された一
個の切り離し部材が先ず切り離される。その結果、複数
個の該免震要素のうちの当該一個における支持部材が作
用しなくなって当該免震要素の第一弾性部材が荷重を受
けるため、免震装置全体のバネ定数が低下する。そし
て、加振力が増大すれば次の切り離し部材が切り離され
るという具合に、加振力が増大するほどバネ定数が低下
していくことになる。つまり、前記一個の切り離し部材
が先ず切り離されることによって免震装置と構造物とか
らなる振動系の固有振動数が低下するため、万が一構造
物が共振して構造物の応答加速度が増加しようとしても
固有振動数の変化によって共振が解消される。したがっ
て、複数個の該免震要素の各設定切り離し荷重のうちの
最大値を、構造物の許容荷重に設定しておけば、前述の
作用を奏しうるとともに、許容荷重以下に相当する振動
に対しても好適に損傷を防止することができる。また、
免震要素の個数を増加させれば多数段階に固有振動数が
変化しうるので、どのような振動数特性の加振力にも対
応することができる。
The support member and the first elastic member constitute a pair of seismic isolation elements, and the plurality of seismic isolation elements are provided between a structure and a foundation and / or between two structures. In a seismic isolation device that is interposed in series and is configured so that the separating members in the support members of each seismic isolation element are separated by different loads, if the vibration increases, the minimum One separating member set to a separating load is first separated. As a result, the support member of the one of the plurality of seismic isolation elements does not work and the first elastic member of the seismic isolation element receives a load, so that the spring constant of the entire seismic isolation device decreases. Then, as the exciting force increases, the next separating member is separated, and as the exciting force increases, the spring constant decreases. In other words, the natural frequency of the vibration system including the seismic isolation device and the structure is reduced by separating the one separation member first, so that even if the structure resonates and the response acceleration of the structure is to be increased, The resonance is canceled by the change in the natural frequency. Therefore, if the maximum value among the set separation loads of the plurality of seismic isolation elements is set to the allowable load of the structure, the above-described action can be achieved, and the vibration corresponding to the allowable load or less can be obtained. However, damage can be suitably prevented. Also,
If the number of seismic isolation elements is increased, the natural frequency can be changed in many stages, so that it is possible to cope with an exciting force of any frequency characteristic.

【0012】また、前記支持部材と前記第一弾性部材と
が一対で免震要素を構成しており、該免震要素と直列状
に、第一弾性部材より高い弾性係数を有する第二弾性部
材が配設された免震装置にあっては、平常時の風荷重や
交通機関等に起因する振動が抑制されることはもとよ
り、より大きな地震荷重に対してもその振動エネルギを
この第二弾性部材が吸収しうるため、切り離し部材の分
離に先立って地震による構造物の振動を抑制する効果が
奏される。それ以上の加振力に対しては上述のごとき切
り離し部材の作用によって固有振動数の変化による免震
効果が奏される。また、振動の水平方向成分に対しても
この第二弾性部材が有効に作用して免震効果が奏され
る。
The support member and the first elastic member constitute a pair of seismic isolation elements, and a second elastic member having a higher elastic modulus than the first elastic member in series with the seismic isolation element. In the seismic isolation device, the vibration load due to wind loads and transportation during normal times is suppressed, and the vibration energy is also transferred to the second elastic Since the members can be absorbed, the effect of suppressing the vibration of the structure due to the earthquake before the separation member is separated is exerted. For the further exciting force, a seismic isolation effect due to a change in the natural frequency is exerted by the action of the separating member as described above. The second elastic member also effectively acts on the horizontal component of the vibration, so that the seismic isolation effect is achieved.

【0013】さらに、前記支持部材と前記第一弾性部材
とが一対で免震要素を構成しており、該免震要素と直列
状に配設される、第一弾性部材より高い弾性係数を有す
る第二弾性部材が複数個配設された免震装置にあって
は、振動の水平方向成分に対して、複数個の第二弾性部
材が各々有効に作用し、支持部材と第一弾性部材とに作
用する振動の水平方向成分を低減することができる。ま
た、このように多重化することによって鉛直・水平のい
ずれの方向にも免震・制振の効果を向上することができ
る点で有利である。
[0013] Further, the support member and the first elastic member constitute a pair of seismic isolation elements, and have a higher elastic modulus than the first elastic member and are arranged in series with the seismic isolation element. In the seismic isolation device in which a plurality of second elastic members are provided, the plurality of second elastic members effectively act on the horizontal component of the vibration, and the support member and the first elastic member Can be reduced in the horizontal direction component of the vibration acting on. Further, such multiplexing is advantageous in that the effect of seismic isolation and vibration control can be improved in both vertical and horizontal directions.

【0014】叙上の免震装置に、前記支持部材と前記第
一弾性部材との一対で免震要素を構成し、該免震要素と
直列状に滑り支承を配設することにより、前述した振動
の鉛直方向成分に対する免震効果を奏しうるうえに、滑
り支承の作用によって水平方向の振動に対しても免震効
果が奏され、いわば三次元免震が可能となる。
In the above seismic isolation device, a pair of the support member and the first elastic member constitutes a seismic isolation element, and a sliding bearing is disposed in series with the seismic isolation element, thereby providing the above-described structure. In addition to being able to exert a seismic isolation effect on the vertical component of the vibration, the effect of the sliding bearing is also effective against horizontal vibrations, so that three-dimensional seismic isolation can be achieved.

【0015】叙上の免震装置において、前記第一弾性部
材をベローズから構成すれば、簡易且つコンパクトな構
成によって固有振動数の低下を図ることができる点で好
ましい。ベローズとしては、ステンレス鋼等の高強度の
金属から構成するのが望ましく、また、一枚の金属板か
ら形成されたものに限定されることはなく、同心状に複
数枚重ね合わされたベローズを用いてもよい。
In the above seismic isolation device, it is preferable that the first elastic member is formed of a bellows, since the natural frequency can be reduced by a simple and compact structure. It is desirable that the bellows be made of a high-strength metal such as stainless steel, and the bellows is not limited to one formed of a single metal plate, and a plurality of bellows concentrically stacked are used. You may.

【0016】さらに、このベローズ内を加圧するための
作動流体供給器を配設すれば、支持すべき構造物の重量
および振動荷重に応じた支持力をベローズに付与しうる
点で好ましい。また、前述のように複数枚を同心状に重
ね合わせたベローズの各ベローズ間に作動流体を圧入し
てもよい。
Further, it is preferable to provide a working fluid supply device for pressurizing the inside of the bellows, since a supporting force corresponding to the weight and vibration load of the structure to be supported can be applied to the bellows. Further, the working fluid may be press-fitted between the bellows of a plurality of bellows which are concentrically stacked as described above.

【0017】前記作動流体供給器に作動流体の蓄圧タン
クを配設し、該蓄圧タンクの容積を増減調節しうるよう
に構成すれば、この容積を変化させることによって第一
弾性部材のバネ定数を変更調節することができるので好
ましい。容積を変化させる手法としては、たとえば、蓄
圧タンク内に仕切り板を内装しておき、ネジ式等によっ
てその仕切り板を上下させて仕切り板の一方側(作用
側)の容積を変化させるものであってもよい。または、
蓄圧タンク内に水や油等の非圧縮性流体を注入すること
により、気相体積を変化させるものであってもよい。
If a pressure accumulating tank for the working fluid is provided in the working fluid supply device so that the volume of the pressure accumulating tank can be increased or decreased, the spring constant of the first elastic member is changed by changing the volume. It is preferable because it can be changed and adjusted. As a method of changing the volume, for example, a partition plate is provided inside a pressure accumulation tank, and the partition plate is moved up and down by a screw type or the like to change the volume on one side (operating side) of the partition plate. You may. Or
The gas phase volume may be changed by injecting an incompressible fluid such as water or oil into the accumulator tank.

【0018】前記第二弾性部材を積層免震ゴムから形成
すれば、公知のものを使用できるので設計および製造を
容易に行いうる点で好ましい。
If the second elastic member is formed of laminated seismic isolation rubber, a known material can be used, which is preferable in that design and manufacture can be easily performed.

【0019】前記支持部材を実質的に環状に配設し、前
記第一弾性部材を支持部材の内側に配設すれば、コンパ
クトな構成によって叙上の作用を奏しうる点で好まし
い。
It is preferable that the support member is disposed substantially in a ring shape and the first elastic member is disposed inside the support member, since the above-described operation can be achieved with a compact configuration.

【0020】なお、特許請求の範囲でいう「環状」と
は、円環状はもとより、四角管状等の多角環状、楕円環
状等を含む意味で用いている。さらに、「環状に配設さ
れ」るとは支持部材の形状が連続した環状を呈している
ことに限定する趣旨ではなく、たとえば、複数個の支持
部材が断続的に、且つ、全体的に環状に配列されたよう
なものも含む意味である。
It is to be noted that the term "annular" used in the claims includes not only a circular ring but also a polygonal ring such as a square tube, an elliptical ring, and the like. Further, “arranged in an annular shape” does not mean that the shape of the support member is a continuous annular shape. For example, a plurality of support members are intermittently and entirely annular. It is meant to include those arranged in.

【0021】[0021]

【実施例】以下、添付図面に記載の実施例を参照しつつ
本発明の免震装置を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The seismic isolation device of the present invention will be described below with reference to the embodiments shown in the accompanying drawings.

【0022】図1は本発明の免震装置が適用される橋梁
の概略図であり、(a)は免震装置が橋脚と基礎構造物
との間に介装された状態を示し、(b)は免震装置が橋
桁と橋脚との間に介装された状態を示す。図2は本発明
の免震装置の一実施例を示す一部切欠き斜視図、図3は
図2のIII−III線断面図、図4は本発明の免震装
置の他の実施例を示す断面図、図5は図4の免震装置に
おける切り離し部材の一例を示す図4のV部拡大図、図
6は図4の免震装置における切り離し部材の他の例を示
す図4のV部に相当する拡大図、図7は図4の免震装置
における作動流体供給器の一例を示す概略断面図であ
る。
FIG. 1 is a schematic view of a bridge to which the seismic isolation device of the present invention is applied. FIG. 1A shows a state in which the seismic isolation device is interposed between a pier and a foundation structure, and FIG. ) Indicates a state in which the seismic isolation device is interposed between the bridge girder and the pier. FIG. 2 is a partially cutaway perspective view showing one embodiment of the seismic isolation device of the present invention, FIG. 3 is a sectional view taken along the line III-III of FIG. 2, and FIG. FIG. 5 is an enlarged view of a portion V of FIG. 4 showing an example of a separating member in the seismic isolation device of FIG. 4, and FIG. 6 is a V of FIG. 4 showing another example of the separating member in the seismic isolation device of FIG. FIG. 7 is a schematic sectional view showing an example of a working fluid supply device in the seismic isolation device of FIG.

【0023】図1(a)に示す橋梁Bには橋脚Pと基礎
Fとの間に免震装置1が装着されており、図1(b)に
示す橋梁Bには橋桁Rと橋脚Pとの間に免震装置1が装
着されている。
The bridge B shown in FIG. 1A is provided with a seismic isolation device 1 between the pier P and the foundation F, and the bridge B shown in FIG. The seismic isolation device 1 is mounted between the two.

【0024】図2には前記図1(a)に示す免震装置1
が示されている。この免震装置1は図4に示す他の実施
例に係る免震装置21中の一免震要素22に実質的に該
当する。したがって、図4も併せて参照すれば理解し易
い。
FIG. 2 shows the seismic isolation device 1 shown in FIG.
It is shown. This seismic isolation device 1 substantially corresponds to one seismic isolation element 22 in a seismic isolation device 21 according to another embodiment shown in FIG. Therefore, it is easy to understand if FIG. 4 is also referred to.

【0025】この免震装置1の上部には、ステンレス鋼
製のベローズ2が上面プレート3と中間プレート4との
間に溶接等によって内外気密に固着されることにより配
設されている。また、免震装置1の下部には、前記中間
プレート4と下面プレート5との間に、溝・臍連結部6
により積層免震ゴム7が配設されている。上面プレート
3は上部橋脚Pの下端に溝・臍連結部6によって連結さ
れており、下面プレート5は滑り支承8を介して基礎F
の上に配設されている。
Above the seismic isolation device 1, a stainless steel bellows 2 is disposed between the upper surface plate 3 and the intermediate plate 4 by being tightly sealed inside and outside by welding or the like. In addition, in the lower part of the seismic isolation device 1, between the intermediate plate 4 and the lower surface plate 5, a groove
Thus, a laminated seismic isolation rubber 7 is provided. The upper plate 3 is connected to the lower end of the upper pier P by a groove / umbilicus connection portion 6, and the lower plate 5 is connected to the foundation F via a sliding bearing 8.
It is arranged above.

【0026】滑り支承2は、下面プレート5に固定され
る上側シュー8aと基礎Fに固定される下側シュー8b
とから構成され、上側シュー8aと下側シュー8bとの
間には滑り面8cが形成されている。両滑り面8cはと
もに公知のテフロン加工された面や滑らかな面に仕上げ
られたステンレス鋼等から形成されている。なお、滑り
面はいずれか一方のみに形成してもよい。
The sliding bearing 2 includes an upper shoe 8a fixed to the lower plate 5 and a lower shoe 8b fixed to the foundation F.
And a sliding surface 8c is formed between the upper shoe 8a and the lower shoe 8b. Both sliding surfaces 8c are formed of a known Teflon-finished surface, a smooth surface-finished stainless steel, or the like. The sliding surface may be formed on only one of the sliding surfaces.

【0027】前記積層免震ゴム7は、ゴム板7aと金属
板7bとが交互に積層された公知のものである。この積
層免震ゴム7は、前記従来技術における磁力式免震装置
やベローズに比較するとバネ定数ははるかに大きいた
め、平常時の風荷重や交通機関によって構造物が鉛直方
向に大きく揺れることはない。
The laminated seismic isolation rubber 7 is of a known type in which rubber plates 7a and metal plates 7b are alternately laminated. Since the laminated seismic isolation rubber 7 has a much larger spring constant than the magnetic seismic isolation device and the bellows in the prior art, the structure does not greatly shake in the vertical direction due to the wind load or transportation in normal times. .

【0028】図3も併せて参照すれば明らかなように、
前記ベローズ2の外周側にはベローズ2を取り囲むよう
に三個の円弧状の支持部材9が前記上面プレート3と中
間プレート4との間にボルト10によって固定配設され
ている。この支持部材9は内周側円弧部9aと外周側円
弧部9bとが内外に重なり合うように嵌合しており、両
者は切り離し部材11によって相互に連結されている。
したがって、前記ベローズ2には水平方向の剪断荷重が
負荷されることはなく、前記切り離し部材11が分離さ
れない限り鉛直方向の外力が負荷することもない。本実
施例では、一個の支持部材9は一片の内周側円弧部9a
と一片の外周側円弧部9bとから構成されているが、図
6に示すように、一方を二片のものとし、他方をその二
片間に貫入しうる一片のものから構成してもよい。
As is clear from FIG. 3 as well,
On the outer peripheral side of the bellows 2, three arc-shaped support members 9 are fixedly disposed between the upper surface plate 3 and the intermediate plate 4 so as to surround the bellows 2 by bolts 10. The support member 9 is fitted so that the inner peripheral side arc portion 9a and the outer peripheral side arc portion 9b overlap inside and outside, and both are connected to each other by a separating member 11.
Therefore, a horizontal shear load is not applied to the bellows 2 and a vertical external force is not applied unless the separating member 11 is separated. In the present embodiment, one support member 9 is a piece of the inner circumferential side arc portion 9a.
And one piece of the outer peripheral side arc portion 9b, but as shown in FIG. 6, one piece may be made of two pieces and the other piece may be made of one piece that can penetrate between the two pieces. .

【0029】図4からも明らかなように、内周側円弧部
9aと外周側円弧部9bとの重なり合い寸法を大きく取
っている。これは、地震等のときに切り離し部材11の
分離後、両円弧部9a、9bが互いの相対移動によって
その嵌合が外れることを防止しうるのはもとより、両円
弧部9a、9bの端縁が上面プレート3および中間プレ
ート4に当接してベローズ2の過大な撓みをも防止しう
るからである。
As is clear from FIG. 4, the overlapping dimension between the inner circular arc portion 9a and the outer circular arc portion 9b is set large. This is because not only can the two arc portions 9a and 9b be prevented from being disengaged by the relative movement of each other after the separation member 11 is separated in the event of an earthquake or the like, but also the edges of the two arc portions 9a and 9b can be prevented. Is in contact with the upper plate 3 and the intermediate plate 4 to prevent the bellows 2 from being excessively bent.

【0030】なお、本発明は前記積層免震ゴム7を含ま
ずにベローズ2と支持部材9とのセットのみから構成さ
れた免震装置をも含むが、かかる免震装置も平常時の風
荷重や交通機関によって構造物が鉛直方向に大きく揺れ
ることはなく、切り離し部材11の分離によって振動を
減衰せしめ、構造物の応答加速度の増大を防止するとい
う効果を奏しうる。
The present invention also includes a seismic isolation device that does not include the laminated seismic isolation rubber 7 but includes only the set of the bellows 2 and the support member 9. The structure is not largely shaken in the vertical direction by traffic or transportation, and the vibration can be attenuated by the separation of the separation member 11, thereby preventing the response acceleration of the structure from increasing.

【0031】また、図示の支持部材9はベローズ2を含
めたメンテナンス性を考慮して間隔を置いた複数個のも
のにしたが、とくにかかる構成に限定されることはな
く、たとえば、連続した円環状等のものでもよい。
Although the illustrated supporting member 9 is a plurality of members spaced apart in consideration of maintainability including the bellows 2, the supporting member 9 is not particularly limited to such a structure. It may be annular or the like.

【0032】この切り離し部材11は、図5および図6
に示すように外周側円弧部9bから内周側円弧部9aに
達する有底穴12dに装入されたシェアーピン12cか
ら構成されている。このシェアーピン12cは、中間部
における内周側円弧部9aと外周側円弧部9bとの境界
面に対応する位置に縮径された切断予定部12bが形成
されたものである。そして、このシェアーピン12cを
前記有底穴12dに装入したのち、ネジ付きのプラグ1
2aによって閉止している。もちろん、前記シェアーピ
ン12cとプラグ12aとを一体に形成したものであっ
てもよい。さらに、前記有底穴12dに代えて貫通孔を
形成し、貫通孔の両開口端それぞれをプラグ12aによ
って閉止するようにしてもよい。同一材料のシェアーピ
ン12cでは、基本的にはその切断予定部12bの断面
積によって切り離し荷重が設定される。振動荷重の鉛直
方向成分によって、内周側円弧部9aと外周側円弧部9
bとが相対移動するとシェアーピン12cに剪断荷重が
負荷され、最弱部たる前記切断予定部12bにその強度
以上の剪断荷重が加わったときに切断される。
FIG. 5 and FIG.
As shown in the figure, the pin comprises a shear pin 12c inserted into a bottomed hole 12d extending from the outer circular arc portion 9b to the inner circular arc portion 9a. The shear pin 12c has a cut-out portion 12b having a reduced diameter formed at a position corresponding to a boundary surface between the inner circumferential arc portion 9a and the outer circumferential arc portion 9b in the intermediate portion. After the shear pin 12c is inserted into the bottomed hole 12d, the plug 1 with a screw is inserted.
It is closed by 2a. Of course, the shear pin 12c and the plug 12a may be integrally formed. Further, a through hole may be formed instead of the bottomed hole 12d, and both open ends of the through hole may be closed by plugs 12a. In the case of the shear pins 12c of the same material, the separation load is basically set according to the cross-sectional area of the portion to be cut 12b. The inner peripheral side arc portion 9a and the outer peripheral side arc portion 9 depend on the vertical component of the vibration load.
When the shearing force is applied to the shear pin 12c, the shear pin 12c is cut.

【0033】叙上の構成により、平常時の風荷重や交通
機関による振動を効果的に防止し、地震等による大きな
振動荷重が全切り離し部材11の設定荷重を越えたとき
にシェアピン12cが切断してベローズ2が振動荷重を
受けることとなり、その弾性によってこれを減衰せしめ
る。
With the above-described configuration, wind loads in normal times and vibrations caused by transportation are effectively prevented, and when a large vibration load due to an earthquake or the like exceeds the set load of all the separating members 11, the shear pin 12c is cut off. As a result, the bellows 2 receives a vibration load, which is attenuated by its elasticity.

【0034】図3および図4に示すように前記中間プレ
ート4には、ベローズ2の内部に圧搾空気を供給するた
めの空気供給通路13が穿設されている。そして、ベロ
ーズ2が支持すべき荷重、たとえば構造物の重量に応じ
て内圧を設定し、それによってベローズ2の初期撓みを
設定する。
As shown in FIGS. 3 and 4, an air supply passage 13 for supplying compressed air to the inside of the bellows 2 is formed in the intermediate plate 4. Then, the internal pressure is set according to the load to be supported by the bellows 2, for example, the weight of the structure, and thereby the initial bending of the bellows 2 is set.

【0035】図3に示すように、前記圧搾空気を供給す
る手段として高圧空気タンク(特許請求の範囲でいう蓄
圧タンクに該当)15が配設されている。この高圧空気
タンク15には図示しないコンプレッサ等から圧搾空気
が供給される。また、高圧空気タンク15の内容積がベ
ローズ2の内容積とともに内部空気の圧縮代を決定する
ため、ベローズ2のバネ定数を決定する一要素となる。
したがって、高圧空気タンク15の内容積を変化させる
ことによりベローズ2のバネ定数を調節することができ
る。高圧空気タンク15の内容積を変化させる手段とし
て、図7に示すように、高圧空気タンク15内にネジ1
6によって上下しうる可動仕切板17を配備している。
この可動仕切板17を上下することにより、高圧空気タ
ンク15の有効容積たる可動仕切板17より上方の空間
の容積を変化させるのである。なお、前記ネジ16の部
分は高圧空気の漏れを防止するようにシール剤を塗布す
る等のシーリング施工を施している。
As shown in FIG. 3, a high-pressure air tank (corresponding to an accumulator tank) 15 is provided as a means for supplying the compressed air. Compressed air is supplied to the high-pressure air tank 15 from a compressor (not shown) or the like. In addition, the internal volume of the high-pressure air tank 15 and the internal volume of the bellows 2 determine the compression allowance of the internal air, and thus serve as one factor in determining the spring constant of the bellows 2.
Therefore, the spring constant of the bellows 2 can be adjusted by changing the internal volume of the high-pressure air tank 15. As means for changing the internal volume of the high-pressure air tank 15, as shown in FIG.
A movable partition plate 17 that can be moved up and down by 6 is provided.
By moving the movable partition plate 17 up and down, the volume of the space above the movable partition plate 17 which is the effective volume of the high-pressure air tank 15 is changed. The screw 16 is subjected to sealing such as applying a sealing agent to prevent leakage of high-pressure air.

【0036】また、内容積変化の他の手段としては、た
とえば、高圧空気タンク15内に任意量の水や油等の非
圧縮性流体を注入して気相体積部分を変化させ、該気相
体積部分によってベローズ2のバネ定数を調節すること
も有効である。そうすることにより、きわめて容易にバ
ネ定数を調節することができる。
As another means for changing the internal volume, for example, an arbitrary amount of an incompressible fluid such as water or oil is injected into the high-pressure air tank 15 to change the volume of the gas phase. It is also effective to adjust the spring constant of the bellows 2 by the volume. By doing so, the spring constant can be adjusted very easily.

【0037】高圧空気タンク15からベローズ2内への
連通は、途中に振動対策としての可撓らせん部18aが
形成された配管18によってなされる。
The communication from the high-pressure air tank 15 to the inside of the bellows 2 is made by a pipe 18 having a flexible helical portion 18a formed on the way as a measure against vibration.

【0038】図4に示される免震装置21は、図2の免
震装置1が実質的に複数段積層されたものである。した
がって、共通の構成要素には共通の符号を付して説明す
る。なお、この免震装置21においては、ベローズ2と
支持部材9とのセット(以下、免震要素22と呼ぶ)の
個数は積層免震ゴム7の個数より一個多いが、本発明で
はとくにこの個数に限定されることはない。また、もち
ろん個数は四個(三個)に限定されず、四個(三個)未
満であっても四個(三個)を超える個数であってもよ
い。本実施例では免震要素22が複数個配設されている
点に以下のごとき意味がある。
The seismic isolation device 21 shown in FIG. 4 is substantially the seismic isolation device 1 of FIG. Therefore, common components will be described with common reference numerals. In this seismic isolation device 21, the number of sets of bellows 2 and support members 9 (hereinafter referred to as seismic isolation elements 22) is one more than the number of laminated seismic isolation rubbers 7. It is not limited to. The number is not limited to four (three), but may be less than four (three) or more than four (three). In the present embodiment, the point that a plurality of seismic isolation elements 22 are provided has the following meaning.

【0039】本免震装置21の利点は、必要に応じて各
免震要素22における切り離し部材11の設定破断力を
互いに異なる値に設定できることである。すなわち、本
実施例では一個の免震要素22における全切り離し部材
11の設定破断力が、各々の免震要素22について異な
る値として設定されている。たとえば、図中の最上段の
免震要素たる第一免震要素221の設定破断力を最小に
し、以下、第二免震要素222、第三免震要素223、
第四免震要素224の順番に大きくしていく。そうすれ
ば、発生する地震の強度に応じて小さい設定破断力の切
り離し部材11が分離し、好適に免震装置21のバネ定
数、引いては振動系の固有振動数を変化させうるため、
構造物の応答加速度の増大を効果的に防止しうる。
An advantage of the seismic isolation device 21 is that the set breaking forces of the separation members 11 in the respective seismic isolation elements 22 can be set to different values as needed. That is, in this embodiment, the set breaking force of all the separating members 11 in one seismic isolation element 22 is set as a different value for each seismic isolation element 22. For example, the set breaking force of the first seismic isolation element 221 as the uppermost seismic isolation element in the figure is minimized, and the second seismic isolation element 222, the third seismic isolation element 223,
The size of the fourth seismic isolation element 224 is increased. Then, the separation member 11 having a small set breaking force is separated according to the strength of the generated earthquake, and the spring constant of the seismic isolation device 21 and, consequently, the natural frequency of the vibration system can be changed.
An increase in the response acceleration of the structure can be effectively prevented.

【0040】本発明においては、とくに設定破断力の大
きさの順に免震要素を配列する必要はない。一方、全免
震要素のベローズ2のバネ定数は必ずしも同一にする必
要はない。
In the present invention, it is not necessary to arrange the seismic isolation elements in the order of the set breaking force. On the other hand, the spring constants of the bellows 2 of all the seismic isolation elements need not necessarily be the same.

【0041】(実施例)図4に示される免震装置22を
以下のとおり製造した。すなわち、ベローズは、板厚を
2mmの8枚のステンレス鋼板から形成し、上面プレー
トと中間プレートそれぞれの受圧径を80cmとし(受
圧面積が5.03×103 cm2 )、一個あたり、ベロ
ーズ山数を3山とし、山高さを10cmとし、ベローズ
軸方向長さを20cmとし、内部空気圧力を60kgf
/cm2 とした。また、高圧空気タンクの容積を9.8
2×104 cm3 とした。
Example A seismic isolation device 22 shown in FIG. 4 was manufactured as follows. That is, the bellows are formed from eight stainless steel plates each having a thickness of 2 mm, the pressure receiving diameter of each of the top plate and the intermediate plate is 80 cm (pressure receiving area is 5.03 × 10 3 cm 2 ), and each bellows has a bellows mountain. The number is three peaks, the peak height is 10 cm, the length in the bellows axial direction is 20 cm, and the internal air pressure is 60 kgf.
/ Cm 2 . Further, the volume of the high-pressure air tank is set to 9.8.
It was 2 × 10 4 cm 3 .

【0042】以上から、四個合計のベローズ自体および
内部高圧空気のバネ定数は7.45×103 kgf/c
mとなる。また、支持しうる荷重は3.02×102
onfとなる。
From the above, the spring constant of the four bellows itself and the internal high-pressure air is 7.45 × 10 3 kgf / c.
m. The load that can be supported is 3.02 × 10 2 t.
onf.

【0043】積層免震ゴムは、一個あたり、全高を10
cmとし、外径を88cmとし、バネ定数を5×105
kgf/cm以上とする。
The total height of the laminated seismic isolation rubber is 10
cm, the outer diameter is 88 cm, and the spring constant is 5 × 10 5
kgf / cm or more.

【0044】以上から、直列三個の積層免震ゴムのバネ
定数は1.7×105 kgf/cm以上となる。
As described above, the spring constant of the three laminated seismic isolation rubbers is 1.7 × 10 5 kgf / cm or more.

【0045】支持部材は、内径を110cmとし、円弧
部の板厚を10cmとすると、バネ定数が5.65×1
7 kgf/cmとなり、ベローズのバネ定数を無視し
うるほど大きい。また、前記荷重は十分に支持すること
ができる。
Assuming that the inner diameter of the supporting member is 110 cm and the thickness of the arc portion is 10 cm, the spring constant is 5.65 × 1.
0 7 kgf / cm, and the larger negligibly the spring constant of the bellows. Further, the load can be sufficiently supported.

【0046】かかる図4の免震装置を、門形橋梁の四本
の橋脚それぞれに配設すると、全体で1.2×103
onfの荷重を支持できる。また、支持部材の切り離し
部材が分離する前の固有振動数は3.7Hz以上とな
り、全免震要素の全切り離し部材が分離した後の固有振
動数は0.78Hzとなる。多くの地震波の周波数が1
Hz以上であることを鑑みれば、十分な免震効果を発揮
しうることがわかる。もちろん、四個の免震要素の全切
り離し部材が順次分離していくことにより、徐々に固有
振動数が減少していくことになり、種々の地震波に対し
て免震効果が発揮される。
When the seismic isolation device shown in FIG. 4 is disposed on each of the four piers of the portal bridge, a total of 1.2 × 10 3 t
Onf load can be supported. In addition, the natural frequency before the separation member of the support member is separated is 3.7 Hz or more, and the natural frequency after all the separation members of all seismic isolation elements are separated is 0.78 Hz. The frequency of many seismic waves is 1
In view of the fact that the frequency is higher than Hz, it is understood that a sufficient seismic isolation effect can be exhibited. Of course, the natural frequency is gradually reduced by sequentially separating all the separating members of the four seismic isolation elements, and the seismic isolation effect is exerted on various seismic waves.

【0047】叙上の実施例においては第一弾性部材をベ
ローズから構成したが、本発明ではとくにベローズに限
定されることはなく、ベローズに代えてコイルバネ等を
用いてもよい。
In the embodiment described above, the first elastic member is constituted by the bellows. However, the present invention is not particularly limited to the bellows, and a coil spring or the like may be used instead of the bellows.

【0048】[0048]

【発明の効果】本発明によれば、構造物に加えられた振
動の鉛直方向成分を先ず剛体の支持部材が受けるため、
平常時においては風荷重や交通機関等に起因する振動
が、通常の免震装置を有さない構造物についてと同程度
に防止される。一方、地震等によって大きな加振力が加
わると、その荷重が前記切り離し部材に予め設定された
値を越えたときに切り離し部材が切り離され、剛体の支
持部材に代わって第一弾性部材が構造物を弾性的に支持
することとなって構造物に加わる荷重が緩和される。ま
た、免震装置を含めた構造物の固有振動数が低下し、構
造物の応答加速度の増大や共振が防止される。その結
果、構造物の損傷を防止しうる。また、免震装置全体の
うち、破断する部位(切り離し部材の部分)が定まるた
め、メンテナンスが容易となり、免震装置の再使用も容
易となる。
According to the present invention, the rigid support member first receives the vertical component of the vibration applied to the structure.
Under normal circumstances, vibrations caused by wind loads and transportation are prevented to the same extent as structures that do not have ordinary seismic isolation devices. On the other hand, when a large excitation force is applied due to an earthquake or the like, the separating member is separated when the load exceeds a preset value to the separating member, and the first elastic member is replaced with a structural member instead of the rigid supporting member. Is elastically supported, so that the load applied to the structure is reduced. In addition, the natural frequency of the structure including the seismic isolation device is reduced, and an increase in the response acceleration and resonance of the structure are prevented. As a result, damage to the structure can be prevented. In addition, since a part to be broken (a part of the separating member) in the entire seismic isolation device is determined, maintenance is facilitated, and reuse of the seismic isolation device is also facilitated.

【0049】さらに、かかる免震装置を直列に複数段配
設することにより、振動荷重に応じて切り離し部材が先
ず切り離されるので、その都度、免震装置のバネ定数が
低下するとともに、免震装置と構造物とからなる振動系
の固有振動数が低下する。したがって、どのような振動
数特性の加振力に対しても構造物の応答加速度の増大が
防止される。
Further, by arranging the seismic isolation devices in a plurality of stages in series, the separating member is first separated according to the vibration load, so that each time the spring constant of the seismic isolation device decreases, And the natural frequency of the vibration system composed of the structure decreases. Therefore, an increase in the response acceleration of the structure to the excitation force having any frequency characteristic is prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の免震装置が適用される橋梁の概略図で
あり、(a)は免震装置が橋脚と基礎構造物との間に介
装された状態を示し、(b)は免震装置が橋桁と橋脚と
の間に介装された状態を示す。
FIG. 1 is a schematic view of a bridge to which a seismic isolation device of the present invention is applied, (a) shows a state where the seismic isolation device is interposed between a pier and a foundation, and (b) shows This shows a state in which the seismic isolation device is interposed between the bridge girder and the pier.

【図2】本発明の免震装置の一実施例を示す一部切欠き
斜視図である。
FIG. 2 is a partially cutaway perspective view showing one embodiment of the seismic isolation device of the present invention.

【図3】図2のIII−III線断面図である。FIG. 3 is a sectional view taken along line III-III of FIG. 2;

【図4】本発明の免震装置の他の実施例を示す断面図で
ある。
FIG. 4 is a sectional view showing another embodiment of the seismic isolation device of the present invention.

【図5】図4の免震装置における切り離し部材の一例を
示す図4のV部拡大図である。
5 is an enlarged view of a part V of FIG. 4 showing an example of a separating member in the seismic isolation device of FIG. 4;

【図6】図4の免震装置における切り離し部材の他の例
を示す図4のV部に相当する拡大図である。
6 is an enlarged view showing another example of the separating member in the seismic isolation device of FIG. 4 and corresponding to a portion V in FIG. 4;

【図7】図4の免震装置における作動流体供給器の一例
を示す概略断面図である。
FIG. 7 is a schematic sectional view showing an example of a working fluid supply device in the seismic isolation device of FIG.

【符号の説明】[Explanation of symbols]

1、21・・・免震装置 2・・・ベローズ 3・・・上面プレート 4・・・中間プレート 5・・・下面プレート 7・・・積層免震ゴム 8・・・滑り支承 9・・・支持部材 11・・・切り離し部材 12c・・シェアーピン 15・・・高圧空気タンク 1, 21 ... seismic isolation device 2 ... bellows 3 ... top plate 4 ... intermediate plate 5 ... bottom plate 7 ... laminated seismic isolation rubber 8 ... sliding bearing 9 ... Supporting member 11: separating member 12c shear pin 15: high-pressure air tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 兼田 哲男 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 坂井 藤一 東京都江東区南砂2丁目11番1号 川崎重 工業株式会社東京設計事務所内 (72)発明者 小川 一志 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuo Kaneda 1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries, Ltd. Inside Akashi Plant (72) Inventor Fujiichi Sakai 2-1-1, Minamisuna, Koto-ku, Tokyo Kawasaki Heavy Industries, Ltd.Tokyo Design Office (72) Inventor Kazushi Ogawa 1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries, Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 構造物と基礎との間および/または二つ
の構造物の間に介装される、構造物と基礎との実質的に
鉛直方向の相対変位および/または二つの構造物の実質
的に鉛直方向の相対変位を拘束および解放するための免
震装置であって、 所定値以上の荷重によって切り離される切り離し部材を
介装した実質的に剛体の支持部材と、構造物と基礎との
相対変位および/または二つの構造物の相対変位に応じ
て自ら変位しつつ反力を生じる第一弾性部材とを備えて
おり、 前記支持部材と第一弾性部材とが、上方の前記構造物の
荷重を並列状で支持するように構成されてなる免震装
置。
1. A substantially vertical relative displacement between the structure and the foundation and / or the substance of the two structures, interposed between the structure and the foundation and / or between the two structures. A seismic isolation device for vertically restraining and releasing relative displacement in a vertical direction, comprising a substantially rigid support member provided with a separating member separated by a load of a predetermined value or more, and a structure and a foundation. A first elastic member that generates a reaction force while displacing itself in accordance with the relative displacement and / or the relative displacement of the two structures, wherein the supporting member and the first elastic member A seismic isolation device configured to support loads in parallel.
【請求項2】 前記支持部材と前記第一弾性部材とが一
対で免震要素を構成しており、複数個の該免震要素が構
造物と基礎との間および/または二つの構造物間に直列
状に介装されており、各免震要素の支持部材における切
り離し部材が、それぞれ異なる荷重によって切り離され
るように構成されてなる請求項1記載の免震装置。
2. The support member and the first elastic member form a pair as a seismic isolation element, and a plurality of the seismic isolation elements are provided between a structure and a foundation and / or between two structures. 2. The seismic isolation device according to claim 1, wherein the seismic isolation devices are arranged in series with each other, and the separation members of the support members of the respective seismic isolation elements are configured to be separated by different loads.
【請求項3】 前記支持部材と前記第一弾性部材とが一
対で免震要素を構成しており、該免震要素と直列状に、
第一弾性部材より高い弾性係数を有する第二弾性部材が
配設されてなる請求項1または2記載の免震装置。
3. The seismic isolation element includes a pair of the support member and the first elastic member, and in series with the seismic isolation element,
The seismic isolation device according to claim 1 or 2, further comprising a second elastic member having a higher elastic coefficient than the first elastic member.
【請求項4】 前記支持部材と前記第一弾性部材とが一
対で免震要素を構成しており、該免震要素と直列状に配
設される、第一弾性部材より高い弾性係数を有する第二
弾性部材が、複数個配設されてなる請求項1〜3のうち
のいずれか一の項に記載の免震装置。
4. A pair of the support member and the first elastic member constitute a seismic isolation element, and have a higher elastic modulus than the first elastic member and are arranged in series with the seismic isolation element. The seismic isolation device according to any one of claims 1 to 3, wherein a plurality of second elastic members are provided.
【請求項5】 前記支持部材と前記第一弾性部材とが一
対で免震要素を構成しており、該免震要素と直列状に滑
り支承が配設されてなる請求項1〜4のうちのいずれか
一の項に記載の免震装置。
5. The seismic isolation element comprising a pair of the support member and the first elastic member, wherein a sliding bearing is disposed in series with the seismic isolation element. The seismic isolation device according to any one of the above items.
【請求項6】 前記第一弾性部材がベローズから構成さ
れてなる請求項1〜5のうちのいずれか一の項に記載の
免震装置。
6. The seismic isolation device according to claim 1, wherein the first elastic member is formed of a bellows.
【請求項7】 前記ベローズ内を加圧するための作動流
体供給器が配設されてなる請求項6記載の免震装置。
7. The seismic isolation device according to claim 6, further comprising a working fluid supply device for pressurizing the inside of the bellows.
【請求項8】 前記作動流体供給器が作動流体の蓄圧タ
ンクを有しており、該蓄圧タンクがその容積を増減調節
しうるように構成されてなる請求項7記載の免震装置。
8. The seismic isolation device according to claim 7, wherein the working fluid supply device has a pressure accumulating tank for the working fluid, and the pressure accumulating tank is configured to be able to increase or decrease its volume.
【請求項9】 前記第二弾性部材が積層免震ゴムから形
成されてなる請求項3または4記載の免震装置。
9. The seismic isolation device according to claim 3, wherein the second elastic member is formed of a laminated seismic isolation rubber.
【請求項10】 前記支持部材が実質的に環状に配設さ
れており、前記第一弾性部材が、支持部材の内側に配設
されてなる請求項1〜9のうちのいずれか一の項に記載
の免震装置。
10. The support member according to claim 1, wherein the support member is disposed substantially in a ring shape, and the first elastic member is disposed inside the support member. Seismic isolation device described in.
JP23876696A 1996-09-10 1996-09-10 Seismic isolation device Expired - Fee Related JP3779000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23876696A JP3779000B2 (en) 1996-09-10 1996-09-10 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23876696A JP3779000B2 (en) 1996-09-10 1996-09-10 Seismic isolation device

Publications (2)

Publication Number Publication Date
JPH1082207A true JPH1082207A (en) 1998-03-31
JP3779000B2 JP3779000B2 (en) 2006-05-24

Family

ID=17034956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23876696A Expired - Fee Related JP3779000B2 (en) 1996-09-10 1996-09-10 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP3779000B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002776A1 (en) * 2013-03-04 2014-09-05 Jace Korea Insulation device for insulating upper and lower structures of nuclear power plant against e.g. earthquake, has lower insulation structure part whose height is adjusted by bringing or evacuating fluid into or from structure part
JP2014185699A (en) * 2013-03-23 2014-10-02 Advanced System Co Ltd Pneumatic spring and base isolation or braking mechanism appliance
JP2014196161A (en) * 2013-03-29 2014-10-16 日立Geニュークリア・エナジー株式会社 Aseismic-base-isolation lifting apparatus
JP2016138581A (en) * 2015-01-27 2016-08-04 株式会社大林組 Three-dimensional seismic isolator
JP2020087572A (en) * 2018-11-19 2020-06-04 愛三工業株式会社 Support structure and installation method therefor
KR20210141072A (en) * 2020-05-15 2021-11-23 공주대학교 산학협력단 Sectional height variable type girder comprising plate and projection
KR20210141073A (en) * 2020-05-15 2021-11-23 공주대학교 산학협력단 Sectional height variable type girders comprising fixed pin and wire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002776A1 (en) * 2013-03-04 2014-09-05 Jace Korea Insulation device for insulating upper and lower structures of nuclear power plant against e.g. earthquake, has lower insulation structure part whose height is adjusted by bringing or evacuating fluid into or from structure part
JP2014185699A (en) * 2013-03-23 2014-10-02 Advanced System Co Ltd Pneumatic spring and base isolation or braking mechanism appliance
JP2014196161A (en) * 2013-03-29 2014-10-16 日立Geニュークリア・エナジー株式会社 Aseismic-base-isolation lifting apparatus
JP2016138581A (en) * 2015-01-27 2016-08-04 株式会社大林組 Three-dimensional seismic isolator
JP2020087572A (en) * 2018-11-19 2020-06-04 愛三工業株式会社 Support structure and installation method therefor
KR20210141072A (en) * 2020-05-15 2021-11-23 공주대학교 산학협력단 Sectional height variable type girder comprising plate and projection
KR20210141073A (en) * 2020-05-15 2021-11-23 공주대학교 산학협력단 Sectional height variable type girders comprising fixed pin and wire

Also Published As

Publication number Publication date
JP3779000B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
US4593502A (en) Energy absorbers
US5761856A (en) Vibration isolation apparatus
US4599834A (en) Seismic isolator
AU620587B2 (en) Improvements in or relating to energy absorbers
EP0206183B1 (en) A vibration energy absorber device
US5669189A (en) Antiseismic connector of limited vibration for seismic isolation of an structure
JPS6117984B2 (en)
CN111236285B (en) Disconnect-type basis with subtract shock insulation function
JPH1082207A (en) Vibration isolating device
JP2002038418A (en) Function separation type bridge support device
CN110984392A (en) Nested multifunctional shock insulation rubber support
EP3614017A1 (en) Seismic isolation support device
KR100945647B1 (en) Seismic Isolation Device with Low Horizontal Hardness
JP3114624B2 (en) Seismic isolation device
WO1998038392A1 (en) Method and diminution device of the strength structures vibrations
JP7338121B2 (en) Brace and brace installation method
KR100409274B1 (en) Vibration isolating apparatus and vibration isolating system
JPH11293685A (en) Base isolation structure of construction
CN108396786B (en) Vibration isolation device
CN108824664B (en) Embedded composite shock insulation device, embedded composite shock insulation system and use method thereof
CN212317166U (en) Friction shock insulation support
CN219825608U (en) Three-dimensional tensile shock insulation support
JP2003147993A (en) Base isolator
Shustov New approach to seismic base isolation
JP2008292000A (en) Vibration isolation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Effective date: 20050809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees