JPH1081516A - Fluid silver oxide - Google Patents

Fluid silver oxide

Info

Publication number
JPH1081516A
JPH1081516A JP23604996A JP23604996A JPH1081516A JP H1081516 A JPH1081516 A JP H1081516A JP 23604996 A JP23604996 A JP 23604996A JP 23604996 A JP23604996 A JP 23604996A JP H1081516 A JPH1081516 A JP H1081516A
Authority
JP
Japan
Prior art keywords
silver oxide
particles
bulk density
less
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23604996A
Other languages
Japanese (ja)
Inventor
Hiromi Mochida
裕美 持田
Sumiyoshi Sato
純悦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP23604996A priority Critical patent/JPH1081516A/en
Publication of JPH1081516A publication Critical patent/JPH1081516A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a fluid silver oxide having a large specific area, a large density and an improved fluidity and quantitativity by aging fine particles of the silver oxide in an alkali liquid under pressure and further treating the surface of the fine particles of the silver oxide by a sililation reagent. SOLUTION: Particles of silver oxide having 5-20μm average particle diameter, 1.2-1.7g/cm<3> bulk density, <=20ppm chlorine and sulfur content and <=30ppm alkali content are obtained by aging and recrystallizing the fine particles of the silver oxide under 2-20kg/cm<2> pressure at 80-250 deg.C for 10-30hr in an alkali solution having pH>=10, performing solid-liquid separation of the resultant silver oxide, and washing and drying the separated solid part. The objective fluid silver oxide having 0.5-1.5g sililation reagent attached thereto based on 1000g silver oxide, <=25 deg. repose angle, 1.9-2.6g/cm<3> bulk density and 4ppm-1wt.% silicon content (in terms of SiO2 ) is obtained by immersing the particles of the silver oxide into a solution containing a sililation reagent of the formula Rn SiX(4-n) (R is an alkyl; X is a halogen, an alkoxy, acyloxy, amino, etc.) and drying the resultant particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は、流動性に優れると共に
比表面積および密度が大きく、好ましくはアルカリ含有
量等が少なく、従って電池用酸化銀として好適な酸化第
一銀(Ag2O:酸化銀と略称する場合がある)とその製造
方法に関する。
The present invention relates to a silver oxide ( Ag2O : silver oxide) which is excellent in fluidity, has a large specific surface area and a high density, preferably has a low alkali content and the like, and is therefore suitable as silver oxide for batteries. In some cases).

【0002】[0002]

【従来技術】酸化銀電池には正極活性物質として酸化第
一銀が用いられており、この電池用酸化銀は、電池の反
応効率を高めるために表面積ができるだけ大きいことが
必要であり、また電池容量を高めるためには微小空間に
多量の酸化銀粒子を充填できるように嵩密度の大きな粒
子が求められる。ところが、表面積を大きくするには粒
径を小さくしなければならないが、粒径が小さいと嵩密
度も小さくなり、表面積と嵩密度を同時に高めることが
難しい。
2. Description of the Related Art Silver oxide batteries use silver oxide as a positive electrode active material. The silver oxide for batteries needs to have a surface area as large as possible in order to increase the reaction efficiency of the batteries. In order to increase the capacity, particles having a large bulk density are required so that a minute space can be filled with a large amount of silver oxide particles. However, in order to increase the surface area, the particle size must be reduced. However, when the particle size is small, the bulk density also decreases, and it is difficult to increase the surface area and the bulk density simultaneously.

【0003】また、電池用酸化銀は電池の容器に詰め込
む際に、一定量の酸化銀が充填される必要があり、この
ため通常、顆粒状にすることにより流動性を高めたもの
が用いられている。流動性が乏しいと充填量が不均一に
なる。ところが、顆粒状の粒子は容器に充填した後のプ
レス加圧時に噛み込みを生じ易い問題がある。
[0003] In addition, a certain amount of silver oxide must be filled in a battery container when packing it in a battery container. For this reason, a silver oxide having a high fluidity by granulation is usually used. ing. Poor fluidity results in uneven filling. However, there is a problem that the granular particles are liable to be caught when pressurized after filling the container.

【0004】以上の粒子の物理的特性の他に、製造方法
に由来する不純物量ができるだけ少ないことが求められ
る。すなわち、従来の電池用酸化銀は、主に、硝酸銀水
溶液に水酸化ナトリウム水溶液または水酸化カリウム水
溶液を加えて酸化銀を沈殿させるアルカリ沈殿法によっ
て製造されている。このため、酸化銀粉末のアルカリ含
有量が高い問題がある。また、アルカリ沈殿した酸化銀
の一次粒子を成長させるために塩素イオンないし硫酸イ
オンを触媒として溶液中に溶存させており、これらが酸
化銀に残留する問題がある。酸化銀中の塩素やアルカリ
の残留濃度が高いと機器の腐食を招き、また硫酸イオン
は分解して酸素を発生し、電池の性能や寿命を損なう。
[0004] In addition to the above physical properties of the particles, it is required that the amount of impurities derived from the production method be as small as possible. That is, the conventional silver oxide for a battery is mainly manufactured by an alkali precipitation method in which an aqueous solution of sodium hydroxide or potassium hydroxide is added to an aqueous solution of silver nitrate to precipitate silver oxide. For this reason, there is a problem that the alkali content of the silver oxide powder is high. Further, in order to grow primary particles of alkali-precipitated silver oxide, chlorine ions or sulfate ions are dissolved in the solution as a catalyst, and there is a problem that these remain in silver oxide. If the residual concentration of chlorine or alkali in silver oxide is high, corrosion of equipment is caused, and sulfate ions are decomposed to generate oxygen, thereby impairing the performance and life of the battery.

【0005】[0005]

【発明の解決課題】本発明は、従来の上記課題を解決し
たものであって、流動性に優れ、従って顆粒状にする必
要がなく、しかも表面積と嵩密度が共に高く、さらに好
ましくは、アルカリ含有量および塩素、硫黄の含有量が
少ない電池用として最適な酸化銀を提供するものであ
る。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and is excellent in fluidity and therefore does not need to be granulated, and has a high surface area and a high bulk density. The object of the present invention is to provide silver oxide which is optimal for batteries having a low content of chlorine and sulfur.

【0006】[0006]

【課題の解決手段】すなわち、本発明によれば以下の流
動性酸化銀が提供される。 (1) 一次粒子の平均粒径5〜20μm、嵩密度1.9
〜2.6g/cm3であり、安息角が25°以下である流動性
酸化銀。 (2) アルカリ含有量が30ppm以下、塩素含有量およ
び硫黄含有量が各々20ppm以下であり、シリル化剤の
表面処理によるケイ素を二酸化ケイ素換算で40ppm〜
1%含有する上記(1)に記載の流動性酸化銀。 (3) 電池用として用いられる上記(1)または(2)に記
載の流動性酸化銀。
According to the present invention, the following fluid silver oxide is provided. (1) Average primary particle size 5-20 μm, bulk density 1.9
Fluid silver oxide having a repose angle of up to 2.6 g / cm 3 and an angle of repose of 25 ° or less. (2) The alkali content is 30 ppm or less, the chlorine content and the sulfur content are each 20 ppm or less, and the silicon by the surface treatment of the silylating agent is reduced to 40 ppm or less in terms of silicon dioxide.
The fluid silver oxide according to the above (1), containing 1%. (3) The liquid silver oxide as described in (1) or (2) above, which is used for a battery.

【0007】さらに本発明によれば、上記流動性酸化銀
を製造する以下の製造方法が提供される。 (4)酸化銀の微粒子をアルカリ液中で加圧養生して再
結晶させることにより一次粒子の平均粒径を5〜20μ
m、嵩密度を1.2〜1.7g/cm3とした後に、シリル化剤
で表面処理することにより安息角を25°以下、嵩密度
を1.9〜2.6g/cm3にすることを特徴とする流動性酸
化銀の製造方法。 (5)酸化銀の微粒子をpH10以上、圧力2〜20kg
/cm2、加熱温度80〜250℃で、アルカリ溶液中で加
圧養生して再結晶させることにより、塩素含有量および
硫黄含有量を各々20ppm以下、アルカリ含有量30ppm
以下、一次粒子の平均粒径5〜20μmおよび嵩密度1.
2〜1.7g/cm3の酸化銀粒子とした後に、乾燥した上記
酸化銀粒子をシリル化剤の溶液に接触させて表面処理す
ることにより安息角を25°以下、嵩密度を1.9〜2.
6g/cm3にする上記(4)に記載の製造方法。
Further, according to the present invention, there is provided the following production method for producing the above-mentioned liquid silver oxide. (4) The average particle size of the primary particles is 5 to 20 μm by curing the silver oxide fine particles under pressure in an alkaline solution and recrystallizing them.
m, the bulk density is adjusted to 1.2 to 1.7 g / cm 3, and then the surface is treated with a silylating agent to reduce the angle of repose to 25 ° or less and the bulk density to 1.9 to 2.6 g / cm 3 . A method for producing a liquid silver oxide, comprising: (5) Fine particles of silver oxide having a pH of 10 or more and a pressure of 2 to 20 kg
/ cm 2 , at a heating temperature of 80 to 250 ° C., by curing under pressure in an alkaline solution and recrystallizing, thereby reducing the chlorine content and the sulfur content to 20 ppm or less and the alkali content to 30 ppm, respectively.
Hereinafter, the average particle size of the primary particles is 5 to 20 μm and the bulk density is 1.
After forming silver oxide particles of 2 to 1.7 g / cm 3 , the dried silver oxide particles are brought into contact with a solution of a silylating agent and subjected to a surface treatment to reduce the angle of repose to 25 ° or less and the bulk density to 1.9. ~ 2.
The production method according to the above (4), wherein the amount is 6 g / cm 3 .

【0008】[0008]

【発明の実施形態】以下に本発明を実施例と共に詳細に
説明する。(I) 流動性酸化銀 本発明の酸化銀は、一次粒子の平均粒径5〜20μmで
あって、嵩密度1.9〜2.6g/cm3であり、安息角が2
5°以下である。平均粒径が5μm未満であると嵩密度
が小さくなるので好ましくない。平均粒径が20μmを
越えると比表面積が小さくなるので適当ではない。好ま
しくは比表面積(BET値)0.2〜2m2/gである。一方、嵩
密度が1.9g/cm3より大きければ良好な電池寿命の延長
効果が得られ、嵩密度が2.0g/cm3程度以上であれば電
池寿命の改善効果が高い。シリル化剤を用いた表面処理
によれば概ね2.6g/cm3程度までの嵩密度が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. (I) Fluid Silver Oxide The silver oxide of the present invention has an average primary particle size of 5 to 20 μm, a bulk density of 1.9 to 2.6 g / cm 3 and an angle of repose of 2
5 ° or less. If the average particle size is less than 5 μm, the bulk density becomes small, which is not preferable. If the average particle diameter exceeds 20 μm, the specific surface area becomes small, so that it is not appropriate. The specific surface area (BET value) is preferably 0.2 to 2 m 2 / g. On the other hand, when the bulk density is larger than 1.9 g / cm 3 , a good effect of extending the battery life is obtained, and when the bulk density is about 2.0 g / cm 3 or more, the effect of improving the battery life is high. According to the surface treatment using the silylating agent, a bulk density of about 2.6 g / cm 3 can be obtained.

【0009】さらに、本発明の酸化銀は安息角が25°
以下である。再結晶処理前の酸化銀は安息角が45°以
上であるが、再結晶処理することにより安息角が45°
程度まで低下する。これをシリル化剤を用いて表面処理
することにより、さらに安息角を25°以下にする。従
来の電池用酸化銀粒子の流動性は安息角が45°程度で
あり、本発明の酸化銀粒子は従来の酸化銀粒子に比べて
2倍程度の流動性を有する。このため、取り扱い性が良
く、容器に詰め込む際に充填量のバラツキが少なく充填
量も多く、かつ定量性が向上する。また電池の性能が良
く個々の電池の寿命も均一になる。
Further, the silver oxide of the present invention has a repose angle of 25 °.
It is as follows. Silver oxide before the recrystallization treatment has an angle of repose of 45 ° or more.
To a degree. By subjecting this to a surface treatment using a silylating agent, the angle of repose is further reduced to 25 ° or less. The fluidity of the conventional silver oxide particles for batteries has a repose angle of about 45 °, and the silver oxide particles of the present invention have about twice the fluidity of the conventional silver oxide particles. For this reason, the handleability is good, the variation in the filling amount when filling the container is small, the filling amount is large, and the quantitativeness is improved. Also, the performance of the battery is good and the life of each battery is uniform.

【0010】また、本発明の流動性酸化銀は、好ましく
はアルカリ含有量が30ppm以下、塩素含有量および硫
黄含有量が各々20ppm以下である。従来のアルカリ沈
殿法によって製造した酸化銀は、大部分のアルカリ含有
量が概ね50ppm以上であり、また塩素や硫黄の濃度が
高いが、本発明の流動性酸化銀は、流動化処理の前に、
アルカリ液下での再結晶処理を行うことにより、アルカ
リ含有量を30ppm以下、好ましくは20ppm以下、塩素
および硫黄の含有量を各々20ppm以下に制限すること
ができる。この結果、本発明の酸化銀によればアルカリ
や塩素、硫黄などによる障害の少ない電池が得られる。
The fluid silver oxide of the present invention preferably has an alkali content of 30 ppm or less, and a chlorine content and a sulfur content of 20 ppm or less, respectively. The silver oxide produced by the conventional alkali precipitation method has a majority alkali content of about 50 ppm or more and a high concentration of chlorine and sulfur. ,
By performing the recrystallization treatment in an alkaline solution, the alkali content can be limited to 30 ppm or less, preferably 20 ppm or less, and the contents of chlorine and sulfur can each be limited to 20 ppm or less. As a result, according to the silver oxide of the present invention, it is possible to obtain a battery which is less affected by alkali, chlorine, sulfur and the like.

【0011】(II)流動性酸化銀の製造方法 (A)再結晶化工程 本発明の流動性酸化銀は、酸化銀の微粒子をアルカリ液
中で加圧養生して再結晶させることにより一次粒子の平
均粒径を5〜20μm 、嵩密度を1.2〜1.7g/cm3
した後に、シリル化剤で表面処理することによって得ら
れる。
(II) Method for Producing Fluid Silver Oxide (A) Recrystallization Step The fluid silver oxide of the present invention is obtained by curing silver oxide fine particles under pressure in an alkaline solution and recrystallizing the primary particles. Is obtained by treating the surface with a silylating agent after setting the average particle size to 5 to 20 μm and the bulk density to 1.2 to 1.7 g / cm 3 .

【0012】原料の酸化銀は過酸化銀でもよい。本発明
の製造方法において、原料の酸化銀の微粒子とは過酸化
銀の微粒子を含む。原料の酸化銀微粒子を加圧下のアル
カリ液中で加熱することにより、酸化銀粒子の表面が溶
解して再結晶(結晶成長)する。この再結晶は粒子内部
から進行するので、表面に付着するアルカリ残留分が外
部に放出され、アルカリ残量が30ppm以下、好ましく
は20ppm以下に減少する。
The raw material silver oxide may be silver peroxide. In the production method of the present invention, the fine particles of silver oxide as the raw material include fine particles of silver peroxide. By heating the silver oxide fine particles as a raw material in an alkaline solution under pressure, the surfaces of the silver oxide particles are dissolved and recrystallized (crystal growth). Since the recrystallization proceeds from the inside of the particles, the alkali residue adhering to the surface is released to the outside, and the remaining alkali amount is reduced to 30 ppm or less, preferably 20 ppm or less.

【0013】アルカリの種類は限定されない。水酸化ナ
トリウム、水酸化カリウムおよびその他のアルカリ塩を
用いることができる。また、実施例に示すように、水酸
化カルシウムを用いても良い。従って、本発明において
アルカリとはアルカリ土類を含む。アルカリの濃度が高
いほど酸化銀が液中に溶け出して再結晶し易くなり処理
時間が短くて済む。概ね、pH10以上、好ましくはp
H11以上が適当である。
The type of alkali is not limited. Sodium hydroxide, potassium hydroxide and other alkali salts can be used. Further, as shown in Examples, calcium hydroxide may be used. Therefore, in the present invention, the alkali includes alkaline earth. The higher the alkali concentration, the more easily silver oxide dissolves in the solution and recrystallizes, thereby shortening the processing time. Generally, pH 10 or higher, preferably p
H11 or more is suitable.

【0014】反応は密閉容器を用いたオートクレーブに
より攪拌して行うと良い。容器内の圧力は2〜20kg/c
m2が適当である。空気加圧を行っても良い。容器の内部
圧力が2kg/cm2未満であると酸化銀の溶解度が低く、再
結晶しない。一方、内部圧力が20kg/cm2より高くても
再結晶速度はあまり変わらず、むしろ装置設計が難し
く、コスト高にもなるので実用的ではない。
The reaction is preferably carried out with stirring in an autoclave using a closed vessel. The pressure in the container is 2-20kg / c
m 2 is appropriate. Air pressurization may be performed. When the internal pressure of the container is less than 2 kg / cm 2 , the solubility of silver oxide is low and the silver oxide does not recrystallize. On the other hand, even if the internal pressure is higher than 20 kg / cm 2, the recrystallization speed does not change so much, and it is not practical because the device design is difficult and the cost is increased.

【0015】加熱温度は80〜250℃が好ましい。8
0℃よりも低いと結晶成長が遅いので好ましくない。加
熱温度が高いほど結晶成長の時間が短くて済み、密度の
大きな結晶が得られるが、250℃を越えても結晶成長
の程度は大差なく実用的ではない。反応時間は上記圧
力、温度の条件下で約10〜30時間が適当である。
[0015] The heating temperature is preferably from 80 to 250 ° C. 8
If the temperature is lower than 0 ° C., the crystal growth is unfavorably slow. The higher the heating temperature, the shorter the crystal growth time and the higher the density of the crystal. However, even if the temperature exceeds 250 ° C., the degree of crystal growth is not so different and is not practical. The reaction time is suitably about 10 to 30 hours under the above pressure and temperature conditions.

【0016】反応後、室温に冷却して固液分離後、回収
した沈殿物を純水で洗浄する。洗浄後、乾燥する。この
再結晶処理により、一次粒子の平均粒径5〜20μm 、
嵩密度1.2〜1.7g/cm3であって、アルカリ含有量3
0ppm以下の低アルカリ高密度の酸化銀粒子が得られ
る。また、この酸化銀は従来のような塩素イオンや硫黄
イオンを利用して粒子を成長させたものではないので、
塩素や硫黄を殆ど含まず、これらの濃度は何れも20pp
m以下である。
After the reaction, the mixture is cooled to room temperature and solid-liquid separated, and the collected precipitate is washed with pure water. After washing, dry. By this recrystallization treatment, the average particle size of the primary particles is 5 to 20 μm,
Bulk density 1.2-1.7 g / cm 3 and alkali content 3
Silver oxide particles having a low alkali density of 0 ppm or less can be obtained. In addition, since this silver oxide is not the one that grew grains using chlorine ions or sulfur ions as in the past,
Contains almost no chlorine or sulfur and their concentration is 20pp
m or less.

【0017】(B)流動化工程 上記再結晶処理によって得た酸化銀粒子をシリル化剤に
よって表面処理することにより流動性を高める。表面処
理の方法は酸化銀粒子をシリル化剤の溶液に接触させれ
ば良い。具体的には、シリル化剤をベンゼン等の溶媒に
溶解し、この溶液に上記酸化銀粒子を浸した後に該酸化
銀粒子を濾過回収して乾燥する。あるいは、酸化銀粒子
を流動状態に保ち、これにシリル化剤溶液を噴霧した後
に乾燥させる。シリル化剤はベンゼン等の溶媒に溶かし
て使用するのが好ましい。これにより酸化銀粒子の表面
にシリル化剤が均一に付着する。また、余分なシリル化
剤を乾燥時に付着しないように回収時に濾過すると良
い。
(B) Fluidization Step The surface properties of the silver oxide particles obtained by the recrystallization treatment are increased by a silylating agent to enhance the fluidity. The surface treatment may be performed by bringing the silver oxide particles into contact with a solution of a silylating agent. Specifically, the silylating agent is dissolved in a solvent such as benzene, the silver oxide particles are immersed in this solution, and then the silver oxide particles are collected by filtration and dried. Alternatively, the silver oxide particles are kept in a fluidized state, sprayed with a silylating agent solution, and then dried. The silylating agent is preferably used by dissolving it in a solvent such as benzene. As a result, the silylating agent uniformly adheres to the surface of the silver oxide particles. In addition, it is preferable to filter at the time of recovery so that the excess silylating agent does not adhere during drying.

【0018】シリル化剤としては、一般式Rn SiX
(4-n) (Rはアルキル基、Xはハロゲン、アルコキシ、
アシロキシ、アミノ基など)で表される化合物が用いら
れる。一般に広く用いられるものとしては、トリメチル
シリル基を有するものやアルコキシシランが挙げられ
る。例えば、トリメチルクロロシラン、トリエチルクロ
ロシラン、トリメチルブロモシラン、ジメチルアミノト
リメチルシラン、ジエチルアミノトリメチルシラン、ヘ
キサメチルジシラザン、およびこれらのアルコール誘導
体、スルフォン酸誘導体、アセトアミド類などが用いら
れる。
The silylating agent is represented by the general formula R n SiX
(4-n) (R is an alkyl group, X is halogen, alkoxy,
Compounds represented by acyloxy, amino groups, etc.) are used. Generally, those widely used include those having a trimethylsilyl group and alkoxysilanes. For example, trimethylchlorosilane, triethylchlorosilane, trimethylbromosilane, dimethylaminotrimethylsilane, diethylaminotrimethylsilane, hexamethyldisilazane, and alcohol derivatives, sulfonic acid derivatives, and acetamides thereof are used.

【0019】シリル化剤で表面処理すると酸化銀粒子の
表面が疎水化され、酸化銀粒子相互の粘着性が低下して
流動性が向上し、粒子全体がサラサラの状態になる。シ
リル化剤の使用量に応じて流動性も高くなるが、シリル
化剤の使用量は酸化銀1000gに対して0.5〜1.5
g程度であれば良い。これにより、安息角が25°以下
で嵩密度が1.9〜2.5程度の流動性酸化銀が得られ
る。すなわち、流動性が増すため粉体内のボイド(隙
間)が埋まり、嵩密度が著増する。一方、上記再結晶化
工程で得られた酸化銀の塩素含有量および硫黄含有量各
々20ppm以下、アルカリ含有量30ppm以下、および一
次粒子の平均粒径5〜20μm等の物性値はシリル化剤
による表面処理工程を経ても変動しないため、これらの
物性値を保持したまま流動性と高密度が顕著に改善され
た流動性酸化銀が得られる。
When the surface treatment is carried out with a silylating agent, the surfaces of the silver oxide particles are rendered hydrophobic, the adhesion between the silver oxide particles is reduced, the fluidity is improved, and the whole particles are in a smooth state. Although the fluidity increases with the amount of the silylating agent used, the amount of the silylating agent used is 0.5 to 1.5 per 1000 g of silver oxide.
g is sufficient. Thereby, a fluid silver oxide having a repose angle of 25 ° or less and a bulk density of about 1.9 to 2.5 can be obtained. That is, since the fluidity increases, voids (gap) in the powder are filled, and the bulk density increases remarkably. On the other hand, the chlorine content and the sulfur content of the silver oxide obtained in the recrystallization step are each 20 ppm or less, the alkali content is 30 ppm or less, and the physical properties such as the average particle diameter of primary particles of 5 to 20 μm depend on the silylating agent. Since it does not fluctuate even after the surface treatment step, a flowable silver oxide having significantly improved fluidity and high density can be obtained while maintaining these physical properties.

【0020】[0020]

【実施例および比較例】実施例1〜6 酸化第一銀粉末( 純度4N以上)1000gを、水酸化
ナトリウム水溶液(濃度100g/l)5リットルと共にオートク
レーブの密閉容器に仕込み、90℃に加熱し、攪拌しな
がら空気加圧下15kg/cm2で10時間反応させた。反応
後、室温に放置して冷却し、沈殿物を瀘別回収した後に
純水5リットルで洗浄を5回繰り返して乾燥した。得られた
酸化第一銀粒子の平均粒径、比表面積および嵩密度を測
定した。この結果を残留アルカリ量と共に表1に示した
(実施例1)。アルカリの種類と濃度、加熱温度、反応
時間および圧力を表1に示すように変えた他は実施例1
と同様にして再結晶酸化銀を製造した。この結果を表1
に纏めて示した(実施例2〜6)。
EXAMPLES AND COMPARATIVE EXAMPLES Examples 1 to 6 1000 g of silver oxide powder (purity: 4N or more) was charged into a closed autoclave vessel together with 5 liters of an aqueous sodium hydroxide solution (concentration: 100 g / l), and heated to 90 ° C. The reaction was carried out at 15 kg / cm 2 for 10 hours under air pressure while stirring. After the reaction, the reaction solution was left standing at room temperature for cooling, and the precipitate was collected by filtration, washed with 5 l of pure water five times, and dried. The average particle diameter, specific surface area, and bulk density of the obtained silver oxide particles were measured. The results are shown in Table 1 together with the amount of residual alkali (Example 1). Example 1 except that the kind and concentration of the alkali, the heating temperature, the reaction time and the pressure were changed as shown in Table 1.
A recrystallized silver oxide was produced in the same manner as described above. Table 1 shows the results.
(Examples 2 to 6).

【0021】上記再結晶酸化銀について、表1に示すシ
リル化剤を用い、シリル化剤を溶解したベンゼン溶液に
酸化銀粒子を投入し、所定時間浸漬した後に、酸化銀を
濾過回収し、乾燥して、安息角及び嵩密度を測定した。
この結果を処理条件と共に表1に示した。また表面処理
前の値を対比して示した。
With respect to the recrystallized silver oxide, silver oxide particles are put into a benzene solution in which the silylating agent is dissolved using the silylating agent shown in Table 1, and immersed for a predetermined time. Then, the angle of repose and the bulk density were measured.
The results are shown in Table 1 together with the processing conditions. The values before surface treatment are shown in comparison.

【0022】比較例1、2 比較試料として、本発明の再結晶化処理を行わない従来
の電池用酸化銀について、そのアルカリ含有量等および
流動性を表1に併せて示した。
Comparative Examples 1 and 2 Table 1 also shows the alkali content and the fluidity of a conventional silver oxide for a battery not subjected to the recrystallization treatment of the present invention as a comparative sample.

【0023】表1に示すように、本実施例の酸化銀粒子
は従来の電池用酸化銀に比べて優れた流動性を有する。
さらに、平均粒径に対して表面積および嵩密度が高い。
またアルカリ含有量と共にSiの含有量も増加するが電
池性能には悪影響を及ぼさない。塩素および硫黄の含有
量は何れも20ppm以下であって、従来品より大幅に低
く、電池用酸化銀として最適な性状を有する。
As shown in Table 1, the silver oxide particles of this embodiment have better fluidity than the conventional silver oxide for batteries.
Further, the surface area and the bulk density are higher than the average particle size.
Also, the Si content increases with the alkali content, but does not adversely affect battery performance. The content of both chlorine and sulfur is 20 ppm or less, which is much lower than conventional products, and has the most suitable properties as silver oxide for batteries.

【0024】[0024]

【発明の効果】本発明の酸化銀粒子は流動性が高く、従
って電池容器に充填する際の定量性に優れる。また従来
品よりも表面積が大きく嵩密度が2倍以上高いので高性
能の電池を得ることができる。さらに、アルカリ含有量
が従来の1/2以下であり、塩素および硫黄の含有量も
大幅に少ない。従って、従来品より電圧が高く寿命の長
い電池が得られる。
As described above, the silver oxide particles of the present invention have high fluidity and are therefore excellent in quantitativeness when filling in a battery container. Further, since the surface area is larger and the bulk density is twice or more higher than that of the conventional product, a high-performance battery can be obtained. Furthermore, the alkali content is 1/2 or less of that of the conventional art, and the contents of chlorine and sulfur are significantly low. Therefore, a battery having a higher voltage and a longer life than a conventional product can be obtained.

【0025】[0025]

【表1】 [Table 1]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一次粒子の平均粒径5〜20μm、嵩密
度1.9〜2.6g/cm3であり、安息角が25°以下であ
る流動性酸化銀。
A fluid silver oxide having an average primary particle size of 5 to 20 μm, a bulk density of 1.9 to 2.6 g / cm 3 and an angle of repose of 25 ° or less.
【請求項2】 アルカリ含有量が30ppm以下、塩素含
有量および硫黄含有量が各々20ppm以下であり、シリ
ル化剤の表面処理によるケイ素を二酸化ケイ素換算で4
0ppm〜1%含有する請求項1に記載の流動性酸化銀。
2. An alkali content of not more than 30 ppm, a chlorine content and a sulfur content of not more than 20 ppm, respectively.
The fluid silver oxide according to claim 1, which contains 0 ppm to 1%.
【請求項3】 電池用として用いられる請求項1または
2に記載の流動性酸化銀。
3. The flowable silver oxide according to claim 1, which is used for a battery.
【請求項4】 酸化銀の微粒子をアルカリ液中で加圧養
生して再結晶させることにより一次粒子の平均粒径を5
〜20μm、嵩密度を1.2〜1.7g/cm3とした後に、シ
リル化剤で表面処理することにより安息角を25°以
下、嵩密度を1.9〜2.6g/cm3にすることを特徴とす
る流動性酸化銀の製造方法。
4. An average primary particle size of 5% by refining silver oxide fine particles under pressure in an alkaline solution and recrystallizing them.
After having a bulk density of 1.2 to 1.7 g / cm 3 and a surface treatment with a silylating agent, the angle of repose is 25 ° or less and the bulk density is 1.9 to 2.6 g / cm 3 . A method for producing a flowable silver oxide.
【請求項5】 酸化銀の微粒子をpH10以上、圧力2
〜20kg/cm2、加熱温度80〜250℃で、アルカリ溶
液中で加圧養生して再結晶させることにより、塩素含有
量および硫黄含有量を各々20ppm以下、アルカリ含有
量30ppm以下、一次粒子の平均粒径5〜20μmおよび
嵩密度1.2〜1.7g/cm3の酸化銀粒子とした後に、乾
燥した上記酸化銀粒子をシリル化剤の溶液に接触させて
表面処理することにより安息角を25°以下、嵩密度を
1.9〜2.6g/cm3にする請求項4に記載の製造方法。
5. The method according to claim 5, wherein the fine particles of silver oxide have a pH of 10 or more,
2020 kg / cm 2 , at a heating temperature of 80 to 250 ° C., by curing under pressure in an alkaline solution and recrystallizing, thereby reducing the chlorine content and the sulfur content to 20 ppm or less, the alkali content to 30 ppm or less, and the primary particles, respectively. After forming silver oxide particles having an average particle size of 5 to 20 μm and a bulk density of 1.2 to 1.7 g / cm 3 , the dried silver oxide particles are brought into contact with a solution of a silylating agent to perform a surface treatment, thereby obtaining a repose angle. The method according to claim 4, wherein the temperature is 25 ° or less and the bulk density is 1.9 to 2.6 g / cm 3 .
JP23604996A 1996-09-06 1996-09-06 Fluid silver oxide Withdrawn JPH1081516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23604996A JPH1081516A (en) 1996-09-06 1996-09-06 Fluid silver oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23604996A JPH1081516A (en) 1996-09-06 1996-09-06 Fluid silver oxide

Publications (1)

Publication Number Publication Date
JPH1081516A true JPH1081516A (en) 1998-03-31

Family

ID=16995000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23604996A Withdrawn JPH1081516A (en) 1996-09-06 1996-09-06 Fluid silver oxide

Country Status (1)

Country Link
JP (1) JPH1081516A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172017A (en) * 1999-12-16 2001-06-26 Dowa Mining Co Ltd Silver oxide powder for battery, method for producing the powder and battery produced by using the powder
JP5978508B1 (en) * 2015-09-16 2016-08-24 東亞合成株式会社 Surface coating method of inorganic fine particles
CN114671455A (en) * 2022-03-03 2022-06-28 先导薄膜材料(广东)有限公司 Method for industrially producing silver oxide for battery
CN115252884A (en) * 2022-07-11 2022-11-01 湖北工业大学 Powder composition and application thereof in preparation of pet wound powder dressing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172017A (en) * 1999-12-16 2001-06-26 Dowa Mining Co Ltd Silver oxide powder for battery, method for producing the powder and battery produced by using the powder
JP5978508B1 (en) * 2015-09-16 2016-08-24 東亞合成株式会社 Surface coating method of inorganic fine particles
CN114671455A (en) * 2022-03-03 2022-06-28 先导薄膜材料(广东)有限公司 Method for industrially producing silver oxide for battery
CN114671455B (en) * 2022-03-03 2023-10-17 先导薄膜材料(广东)有限公司 Method for industrially producing silver oxide for battery
CN115252884A (en) * 2022-07-11 2022-11-01 湖北工业大学 Powder composition and application thereof in preparation of pet wound powder dressing

Similar Documents

Publication Publication Date Title
WO2019119339A1 (en) Copper oxychloride particulate matter and preparation method therefor
JPS6365723B2 (en)
JP2002255534A (en) Precipitated silica having hyper-order structure
US2541733A (en) Production of alkali metal carbonate perhydrates
JPH1081516A (en) Fluid silver oxide
US4943419A (en) Process for recovering alkali metal titanium fluoride salts from titanium pickle acid baths
JP2000034118A (en) Production of high-purity amorphous silicic acid
JP2694163B2 (en) Method for producing high-purity silica
US3348907A (en) Process for preparing a highly porous sodium perborate
EP2938431A1 (en) Preparation of silica-alumina composition
HU214324B (en) Process for producing cristalline 7-beta-amino-3-(5-carboxy-methyl-4-methyl-1,3-thiazol-2-yl-thio-methyl/-ceph-3-eme-4-carboxylic acid (tacs)
JPH0360773B2 (en)
JPH05339B2 (en)
JPH0121093B2 (en)
US3808309A (en) Purification of silica by preferential extraction
JPH0692247B2 (en) Method for producing magnesium silicofluoride
US2974011A (en) Process of purifying beryllium compounds
JPS6354641B2 (en)
JPS59116122A (en) Manufacture of boric acid
US2711361A (en) Process for the recovery of uranium
CN103420935A (en) Method of processing sodium saccharin crystallized mother liquid
JP2004526805A (en) Method for producing amorphous cilastatin sodium
JPS6265940A (en) Method for desiliconizing aqueous acid iron chloride
JPH06102541B2 (en) Method for producing heavy anhydrous sodium carbonate
JPH05320090A (en) Production of anhydrous sodium acetate improved in quality

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202