JPH1079034A - Method for measuring blood vessel - Google Patents

Method for measuring blood vessel

Info

Publication number
JPH1079034A
JPH1079034A JP8232930A JP23293096A JPH1079034A JP H1079034 A JPH1079034 A JP H1079034A JP 8232930 A JP8232930 A JP 8232930A JP 23293096 A JP23293096 A JP 23293096A JP H1079034 A JPH1079034 A JP H1079034A
Authority
JP
Japan
Prior art keywords
blood vessel
scanning line
line
scanning
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8232930A
Other languages
Japanese (ja)
Inventor
Atsushi Sato
敦 佐藤
Tadashi Nakanishi
正 仲西
Katsuyoshi Tanabe
勝義 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8232930A priority Critical patent/JPH1079034A/en
Publication of JPH1079034A publication Critical patent/JPH1079034A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the through put of medical examination by calculating a vertical scanning line vertical to a straight line passing through the two central points of a blood vessel, and calculating the two edges of the blood vessel in the same way as a scanning line for the vertical scanning line. SOLUTION: The pixel value of each pixel on one scanning line set so as to be crossing a blood vessel at the position of the blood vessel measured in a living body picture stored as electronic data is calculated, and the edges of the blood vessel are calculated. A middle point between the both end points at which the edges and the scanning line are crossing each other is defined as the center point of the blood vessel. Then, more than each two scanning auxiliary lines are drawn before and behind the scanning line in parallel, the central points of the blood vessel corresponding to the scanning line and each scanning auxiliary line are calculated for the scanning line and more than four scanning auxiliary lines, and a straight line passing through the center point of the blood vessel corresponding to the scanning line which is vertical to an approximating straight line approximating a point column constituted of those calculated more than five central points of the blood vessel by a straight line is newly defined as a scanning line. Then, the both end points at which the new scanning line for the scanning line is crossing the blood vessel are calculated, and a distance between the both end points is defined as the width of the blood vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、画像処理を用いて
眼底画像等の生体画像の血管幅を計測する血管計測方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blood vessel measuring method for measuring a blood vessel width of a biological image such as a fundus image using image processing.

【0002】[0002]

【従来の技術】医療情報の一つである眼底画像では無侵
襲(非侵襲)で動脈血管と静脈血管を観察できるため、
目の病気のみならず循環器系の重要疾患の兆候を診られ
るために成人病の早期発見法の一つとして有望視されて
いる。眼底検査で兆候を診ることができる重要疾患の指
標として眼底の動脈と静脈の血管径の比があり、臨床で
その計測がなされている。
2. Description of the Related Art A fundus image, which is one of medical information, allows non-invasive (non-invasive) observation of arterial blood vessels and venous blood vessels.
It is promising as one of the early detection methods for adult diseases because it can be used to diagnose not only eye diseases but also signs of important diseases of the circulatory system. An index of an important disease that can be diagnosed by a fundus examination is a ratio of a diameter of a blood vessel between an artery and a vein of the fundus, and is measured clinically.

【0003】治療ないし健康診断等でこの動静脈比を計
測し、動脈硬化の進行度合いを把握することが重要であ
る。このような行為を医師が行なうにあたり、これまで
は、撮影画像のポラロイド写真等の出力に対し、ノギス
などの計測工具を用いて直接人手で行なっていた。
[0003] It is important to measure this arteriovenous ratio during treatment or health examination, etc., to grasp the degree of progression of arteriosclerosis. In the past, when a doctor performed such an action, the output of a polaroid photograph or the like of a captured image was directly performed manually using a measuring tool such as a caliper.

【0004】[0004]

【発明が解決しようとする課題】本発明者は、前記従来
の技術を検討した結果、以下の問題点を見いだした。
SUMMARY OF THE INVENTION The present inventor has found the following problems as a result of studying the above conventional technology.

【0005】近年、眼底検査項目が健康診断や人間ドッ
クなどへ取り入れられるようになり、受診者の増大に伴
い大量データが発生することが予測される。これに対
し、診断は少数の眼科医が行なうため、時間、体力、精
神的な負担が増大しているという問題があった。
[0005] In recent years, fundus examination items have been incorporated into medical examinations and health checkups, and it is expected that a large amount of data will be generated as the number of examinees increases. On the other hand, since diagnosis is performed by a small number of ophthalmologists, there is a problem that time, physical strength, and mental burden are increased.

【0006】眼底画像から動脈硬化の兆候を診るため動
脈と静脈の血管径の比を求める場合、どこで診るか(注
視位置の選択)とそこから具体的に動脈血管及び静脈血
管の径を計り、その径の比を計算するという2つの作業
が考えられる。前者は医師が経験に基づき判断するが、
人は画像を見て大局的にどの位置がよいかを計算機で画
像処理をする場合よりも早く、かつ、正確に決められ
る。ところが、後者は、長さを計る、或は、2つの値の
比を計算するという人手によった場合少なからぬ時間を
必要とする。
When determining the ratio of the arterial to venous blood vessel diameters in order to examine the signs of arteriosclerosis from the fundus image, where to be examined (selection of the gaze position), the diameters of the arterial and venous blood vessels are specifically measured therefrom. Two operations of calculating the diameter ratio can be considered. The former is determined by the doctor based on experience,
A person looks at an image and can determine which position is better overall, faster and more accurately than when performing image processing with a computer. However, the latter requires a considerable amount of time when manually measuring the length or calculating the ratio of two values.

【0007】すなわち、医師が眼底画像から動静脈血管
径比を求める場合には、後者の支援が不可欠であり、か
つ、前者の作業結果、計測すべき血管位置をより容易に
指定して後者の画像処理とインターフェースを行なう必
要がある。
That is, when the doctor determines the arteriovenous blood vessel diameter ratio from the fundus image, the latter support is indispensable, and the former work result, the blood vessel position to be measured is more easily specified, and the latter is specified. It is necessary to perform image processing and interface.

【0008】従来より行なわれている通り、注視位置を
医師が選びその領域での動静脈血管径比を簡便な方法で
計測する方法は、本願の発明によるノウハウの開示以前
には知られておらず、医師がポラロイド写真にノギスを
あてて読みとるなどにより個別に計算していた。このよ
うな方法は遠隔画像伝送診断などでのディスプレイ(C
RT)上で行なうには精度の点で十分ではなく、かつ、
時間がかかるという問題点があった。
As conventionally performed, a method of selecting a gaze position by a doctor and measuring the arteriovenous blood vessel diameter ratio in the region by a simple method has been known before the disclosure of the know-how according to the present invention. Instead, doctors used a caliper on a Polaroid photo and read it. Such a method can be used for a display (C
RT) is not sufficient in terms of accuracy and
There was a problem that it took time.

【0009】本発明の目的は、健康診断受診対象者を増
やすことが可能な技術を提供することにある。
[0009] An object of the present invention is to provide a technique capable of increasing the number of subjects to be subjected to a medical examination.

【0010】本発明の他の目的は、検診業務の効率を向
上することが可能な技術を提供することにある。
[0010] Another object of the present invention is to provide a technique capable of improving the efficiency of medical examination work.

【0011】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
にする。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0012】[0012]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を簡単に説明すれば以下
のとおりである。
The following is a brief description of an outline of a typical invention among the inventions disclosed in the present application.

【0013】(1)画像処理を用いて眼底画像等の生体
画像より血管幅を計測する血管計測方法において、前記
生体画像より測定したい血管の位置を選択する過程と、
該選択点を通り血管と交わるように1本の走査線を設定
する過程と、該走査線上の各画素の画素値を求める過程
と、各画素値から前記走査線上の血管の2つのエッジを
求める過程と、該2つのエッジの中点を血管の中心点と
して求める過程と、前記走査線の近傍に該走査線に平行
な走査補助線を設定する過程と、該走査補助線について
前記走査線と同様に血管の中心点として求める過程と、
前記走査線と前記走査補助線から求めた2つの血管の中
心点を通る直線に対して垂直な垂直走査線を求める過程
と、該垂直走査線について前記走査線と同様に血管の2
つのエッジを求める過程とを具備するものである。
(1) In a blood vessel measuring method for measuring a blood vessel width from a biological image such as a fundus image using image processing, a step of selecting a position of a blood vessel to be measured from the biological image;
Setting one scan line so as to cross the blood vessel through the selected point, obtaining the pixel value of each pixel on the scan line, and obtaining two edges of the blood vessel on the scan line from each pixel value A step of determining the midpoint of the two edges as the center point of the blood vessel, a step of setting a scanning auxiliary line parallel to the scanning line near the scanning line, and Similarly, the process of obtaining the center point of the blood vessel,
Obtaining a vertical scanning line perpendicular to a straight line passing through the center point of the two blood vessels obtained from the scanning line and the scanning auxiliary line;
And a process of obtaining one edge.

【0014】(2)前記走査線の前後に2本以上づつ平
行に走査補助線を引く過程と、該走査線と4本以上の走
査補助線を、それぞれ、前記手段(1)の走査線とみな
し、前記手段(1)の血管計測方法を実施し、前記走査
線と4本以上の走査補助線それぞれに対応する血管の中
心点を求める過程と、求められた5点以上の血管の中心
点による点列を直線で近似した近似直線を求める過程
と、該近似直線と垂直で走査線に対応する血管の中心点
を通る直線を新たに走査線とする過程と、新たな走査線
に対して、前記手段(1)の血管計測方法を実施し、新
たな走査線と血管の交わる両端の点を求める過程と、該
両端の点間の距離を血管幅とする過程とを具備するもの
である。
(2) The process of drawing two or more scanning auxiliary lines in parallel before and after the scanning line, and defining the scanning line and four or more scanning auxiliary lines as the scanning lines of the means (1), respectively. Assuming that the blood vessel measuring method of the means (1) is performed to obtain the center point of the blood vessel corresponding to each of the scanning line and the four or more scanning auxiliary lines, and the obtained center point of the five or more blood vessels. A process of obtaining an approximate straight line obtained by approximating a point sequence by a straight line, a process of newly forming a straight line passing through the center point of the blood vessel corresponding to the scan line and perpendicular to the approximate straight line, and a process of obtaining a new scan line. And a step of executing the blood vessel measuring method of the means (1) to obtain a point at both ends where a new scanning line and a blood vessel intersect, and a step of setting a distance between the points at both ends to a blood vessel width. .

【0015】すなわち、本発明の眼底画像等の生体画像
の血管測定法は、電子データとして蓄積された生体画像
中の計測したい血管の位置において、血管と交わるよう
に1本の走査線を設定し、該走査線上における各画素の
画素値を求め、各画素値から血管のエッジを求める。求
めた血管のエッジと走査線とが交わる両端の点間の中点
を血管の中心点とし、前記走査線の前後に2本以上づつ
平行に走査補助線を引く。前記走査線と4本以上の走査
補助線に対して前述の走査線と4本以上の走査補助線
が、それぞれ、対応する血管の中心点を求める。求めら
れた5点以上の血管の中心点による点列を直線で近似し
た近似直線を求め、該近似直線と垂直で走査線に対応す
る血管の中心点を通る直線を新たに走査線とし、新たな
走査線に対して、新たな走査線と血管の交わる両端の点
を求める。該両端の点間の距離を血管幅とするものであ
る。
That is, according to the blood vessel measuring method for a living body image such as a fundus image according to the present invention, one scanning line is set so as to intersect a blood vessel at a position of a blood vessel to be measured in a living body image stored as electronic data. , The pixel value of each pixel on the scanning line is determined, and the edge of the blood vessel is determined from each pixel value. A middle point between both ends where the obtained edge of the blood vessel intersects the scanning line is set as the center point of the blood vessel, and two or more scanning auxiliary lines are drawn in parallel before and after the scanning line. With respect to the scanning line and the four or more scanning auxiliary lines, the scanning line and the four or more scanning auxiliary lines respectively determine the center point of the corresponding blood vessel. An approximate straight line obtained by approximating a point sequence based on the obtained five or more blood vessel center points with a straight line is obtained, and a straight line perpendicular to the approximate straight line and passing through the center point of the blood vessel corresponding to the scan line is newly set as a scan line. For each scan line, the points at both ends where the new scan line and the blood vessel intersect are obtained. The distance between the two points is defined as the blood vessel width.

【0016】その際の計測の支援を行ない、健康診断画
像を効率良く扱うことにより、より多数の被験者を対象
とできるようにし、その結果、健康診断受診対象者を増
やすことができる。
By performing the measurement support at that time and efficiently handling the health examination images, it is possible to target a larger number of subjects, and as a result, the number of subjects to be subjected to the health examination can be increased.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】なお、実施形態を説明するための全図にお
いて、同一機能を有するものは同一符号を付け、その繰
り返しの説明は省略する。
In all the drawings for describing the embodiments, parts having the same functions are given the same reference numerals, and their repeated explanation is omitted.

【0019】本発明の生体画像の血管測定方法の一実施
形態を以下に説明する。
An embodiment of the blood vessel measuring method for a biological image according to the present invention will be described below.

【0020】図1は眼底画像を示す模式図であり、1は
視神経乳頭、2は黄斑部、3は網膜中心動脈、4は網膜
中心静脈である。
FIG. 1 is a schematic diagram showing a fundus image, wherein 1 is an optic disc, 2 is a macula, 3 is a central retinal artery, and 4 is a central retinal vein.

【0021】眼底画像の構成要素は、図1に示すよう
に、視神経乳頭1、黄斑部2、網膜、網膜中心動脈3及
び網膜中心静脈4である。黄斑部2は眼底画像のほぼ中
心にあり、その中心は視覚感度が最も良い。網膜中心動
脈3及び網膜中心静脈4は視神経乳頭1から出入りし、
この視神経乳頭1を基点として上下左右に普通4対の網
膜中心動脈3及び網膜中心静脈4が分岐している。
As shown in FIG. 1, the components of the fundus image are an optic disc 1, a macula 2, a retina, a central retinal artery 3, and a central retinal vein 4. The macula 2 is substantially at the center of the fundus image, and the center has the best visual sensitivity. Central retinal artery 3 and central retinal vein 4 enter and exit from optic disc 1,
Four pairs of normal retinal central arteries 3 and central retinal veins 4 are branched in the vertical and horizontal directions with the optic disc 1 as a base point.

【0022】動脈硬化などの疾患があった場合、血管径
の変化などとして現れる。動脈血管内に狭窄が生じた場
合、その血管径が細くなるため、ペアになって走行して
いる網膜中心動脈3と網膜中心静脈4の血管径を計測す
ると、その比が次第に1:1と異なってくる。そこで、
通常、第2分節(乳頭から2回目の血管分岐点)〜第3
分節の間で動静脈血管径比(R動脈/R静脈)を求める
ことが行なわれている。動静脈血管径比を説明するため
の模式図を図2に示す。
When there is a disease such as arteriosclerosis, it appears as a change in blood vessel diameter. When a stenosis occurs in an arterial blood vessel, the diameter of the blood vessel becomes small. When the diameters of the blood vessels of the central retinal artery 3 and the central retinal vein 4 running in pairs are measured, the ratio gradually becomes 1: 1. Come. Therefore,
Usually, the second segment (second blood vessel bifurcation from the nipple) to the third segment
An arteriovenous blood vessel diameter ratio (R artery / R vein) is determined between segments. FIG. 2 is a schematic diagram for explaining the arteriovenous blood vessel diameter ratio.

【0023】このような場合、どこでその動静脈血管径
比を計るか(注視領域)の決定は医師に依らざるを得な
いが、一旦その位置が決まりさえすれば、画像処理で動
静脈血管径比を求めることができる。
In such a case, the determination of where the arteriovenous blood vessel diameter ratio is to be measured (attention area) must depend on the doctor, but once the position is determined, the arteriovenous blood vessel diameter is determined by image processing. The ratio can be determined.

【0024】図3に示すような方法を実施形態として考
える。すなわち、医師による医師指定をCRTに表示し
た眼底画像上でマウスを使い簡単な操作で計算機にその
位置を指示し、その位置から画像処理で血管抽出をし、
動静脈血管径比を求める。
A method as shown in FIG. 3 is considered as an embodiment. That is, the position of the doctor is specified by a simple operation using a mouse on the fundus image displayed on the CRT by the doctor, and the blood vessel is extracted by image processing from the position.
Determine the arteriovenous vessel diameter ratio.

【0025】本実施形態では、ディスプレイ(CRT
等)に表示された眼底画像上の計測したい血管を横切る
ように直線を考え、計算機の入力インターフェースの一
つであるマウスを使ってその位置をクリック操作により
医師が入力する(図4)。こうして入力された画像上の
位置情報から計算機上のソフトウエアで以下のように血
管径を計測し、動静脈血管径比を得る。
In this embodiment, a display (CRT)
Etc.), a straight line is traversed across the blood vessel to be measured on the fundus image displayed on the fundus image, and the doctor inputs the position by clicking the position using a mouse which is one of the input interfaces of the computer (FIG. 4). From the position information on the image thus input, the blood vessel diameter is measured by software on a computer as follows, and the arteriovenous blood vessel diameter ratio is obtained.

【0026】まず、医師が指示した血管を横切る直線に
沿って画素値の変化を調べると、血管の輪郭付近ではそ
の他の部分に比べて画素値が急激に変化するため、輪郭
位置が画素値の変化の勾配の極値として求まる。そこ
で、血管輪郭に相当する2箇所の中心座標を血管のほぼ
中心と考えることができる。
First, when a change in pixel value is examined along a straight line that crosses the blood vessel specified by the doctor, the pixel value changes more rapidly near the contour of the blood vessel than in other portions. It is obtained as the extreme value of the gradient of the change. Therefore, the center coordinates of two places corresponding to the blood vessel contour can be considered to be substantially the center of the blood vessel.

【0027】直線と血管の交わる両端点の決め方は、勾
配を用いたエッジ検出や、加重マトリックスを用いたエ
ッジ検出用オペレータや、ラプラシアンがゼロクロッシ
ングとなる場所を用いる方法など、各種エッジ検出手法
を用いることが可能である。
The method of determining both end points where a straight line and a blood vessel intersect is determined by various edge detection methods such as an edge detection using a gradient, an edge detection operator using a weight matrix, and a method using a place where Laplacian becomes zero crossing. It can be used.

【0028】同様な手順で、医師の指示した直線の前後
に平行に複数の直線についてのその直線上の血管の中心
点を求める。
In a similar procedure, the center point of a blood vessel on a plurality of straight lines in parallel with the straight line designated by the doctor is determined.

【0029】この中心点の点列(図5)を最小自乗近似
等の直線近似した近似直線を医師の指示位置付近の血管
走行方向と推定し、これと垂直な直線を、医師の指示し
た直線から求めた血管の中心点を通るように引き、この
直線と血管の交わる区間の長さを、血管幅とする(図
6)。
An approximate straight line obtained by linearly approximating the point sequence of the center point (FIG. 5) by a method such as least squares approximation is estimated as a blood vessel running direction near a position designated by a doctor, and a straight line perpendicular to this is defined as a straight line designated by the doctor. Is drawn so as to pass through the center point of the blood vessel, and the length of the section where this straight line intersects the blood vessel is defined as the blood vessel width (FIG. 6).

【0030】この血管幅を医師の指示した直線から求め
た血管の中心点を通る直線に平行に複数発生してそれぞ
れから血管幅を求め、その平均値を取る等の統計的手法
を施し、血管の計測幅とすれば良い。
A plurality of the blood vessel widths are generated in parallel with a straight line passing through the center point of the blood vessel obtained from the straight line specified by the doctor, and the blood vessel width is obtained from each of them. Should be the measurement width.

【0031】ここで、血管の走行方向の決定、ないし、
血管幅の平均化の際の平行直線群については、血管の直
線性が高い位置では、線間の間隔が長く、数が多い方が
良いが、血管が曲がっているなど、曲線性が高い位置で
は、線間の間隔が短く、数が少ない方が正確な血管幅が
求まる。
Here, the direction of travel of the blood vessel is determined, or
Regarding the parallel straight line group at the time of averaging the blood vessel width, in the position where the linearity of the blood vessel is high, the interval between the lines is long and it is better that the number is large, but the position where the curve is high such as the blood vessel is bent In, the shorter the distance between lines and the smaller the number, the more accurate the blood vessel width is obtained.

【0032】前記実施形態の血管計測方法の処理フロー
は以下のようになる。
The processing flow of the blood vessel measuring method of the above embodiment is as follows.

【0033】(1)計測対象箇所付近の指示処理 図7に示すように、まず、動脈について太さを測定する
血管の位置をマウスをクリックして指定する(S1)。
次に、静脈について太さを測定する血管の位置をマウス
をクリックして指定する(S2)。
(1) Instructing process near the measurement target location As shown in FIG. 7, first, the position of the blood vessel for measuring the thickness of the artery is designated by clicking the mouse (S1).
Next, the position of the blood vessel for measuring the thickness of the vein is designated by clicking the mouse (S2).

【0034】(2)測定対象の血管の走行方向の推定処
理 図8に示すように、人手で指示した端点を結ぶ直線上の
画素値を求め(S3)、その画素値の勾配を求め(S
4)、勾配の絶対値が極大となる点を求める(S5)。
次に、極大点のうち最大の2点を血管と人手で指示した
端点を結ぶ直線が交わる点とし(S6)、2点の極大点
の中間点を血管の中心点とする(S7)。次に、人手で
指示した端点を結ぶ直線に平行に前後それぞれ複数の線
を引き(S8)、それぞれの線で血管抽出を行い血管の
中心点を求め(S9)、得られた血管の中心点群に対す
る近似直線を求め血管の方向とする(S10)。
(2) Estimating Process of Traveling Direction of Blood Vessel to be Measured As shown in FIG. 8, a pixel value on a straight line connecting end points specified manually is obtained (S3), and a gradient of the pixel value is obtained (S3).
4) A point at which the absolute value of the gradient becomes maximum is obtained (S5).
Next, the maximum two points among the maximum points are set as points where a straight line connecting the blood vessel and the end point designated manually is intersected (S6), and an intermediate point between the two maximum points is set as the center point of the blood vessel (S7). Next, a plurality of lines are respectively drawn before and after in parallel with a straight line connecting the end points designated manually (S8), a blood vessel is extracted from each line to obtain a center point of the blood vessel (S9), and a center point of the obtained blood vessel is obtained. An approximate straight line for the group is determined and set as the direction of the blood vessel (S10).

【0035】(3)動静脈血管径比の計算処理 図9に示すように、前記推定した血管走行方向に垂直な
方向の直線を求め(S11)、得られた直線上の画素値
を求め(S12)、その画素値の勾配を求め(S1
3)、勾配の絶対値が極大となる点を求める(S1
4)。次に、極大点のうち最大の2点を血管と人手で指
示した端点を結ぶ直線が交わる点とし(S15)、2点
の極大点の間の距離を血管の断面直径とする(S1
6)。次に、推定した血管走行方向に複数の位置で血管
の断面直径を求め、その平均値として血管の推定径とす
る(S17)。そして、動脈と静脈について得た血管の
推定径の比を求め動静脈血管径比とする(S18)。
(3) Calculation of Arteriovenous Blood Vessel Diameter Ratio As shown in FIG. 9, a straight line perpendicular to the estimated blood vessel running direction is obtained (S11), and pixel values on the obtained straight line are obtained (S11). S12), the gradient of the pixel value is obtained (S1).
3) Find the point where the absolute value of the gradient becomes maximum (S1)
4). Next, the maximum two points among the maximum points are defined as points where a straight line connecting the blood vessel and the end point designated manually is intersected (S15), and the distance between the two maximum points is defined as the cross-sectional diameter of the blood vessel (S1).
6). Next, the cross-sectional diameter of the blood vessel is obtained at a plurality of positions in the estimated blood vessel running direction, and the average value is used as the estimated diameter of the blood vessel (S17). Then, the ratio between the estimated diameters of the blood vessels obtained for the artery and the vein is determined as the arteriovenous blood vessel diameter ratio (S18).

【0036】以上の説明からわかるように、本実施形態
によれば、電子データとして蓄積された生体画像中の計
測したい血管の位置において、血管と交わるように1本
の走査線を設定し、該走査線上における各画素の画素値
を求め、各画素値から血管のエッジを求め、求めた血管
のエッジと走査線とが交わる両端の点間の中点を血管の
中心点とし、前記走査線の前後に2本以上づつ平行に走
査補助線を引き、前記走査線と4本以上の走査補助線に
対して前述の走査線と4本以上の走査補助線が、それぞ
れ、対応する血管の中心点を求め、求められた5点以上
の血管の中心点による点列を直線で近似した近似直線を
求め、該近似直線と垂直で走査線に対応する血管の中心
点を通る直線を新たに走査線とし、新たな走査線に対し
て、新たな走査線と血管の交わる両端の点を求め、該両
端の点間の距離を血管幅とすることにより、眼底検査に
おいて、動静脈血管径比を計測し、動脈硬化の進行度合
いを把握するので、撮影画像のポラロイド写真等の出力
に対し、ノギスなどの計測工具を用いて直接人手で行な
うこなく、計算機を用いてその計測の支援を行ない、健
康診断画像を効率良く扱うことができる。これにより、
健康診断受信対象者を増やすことができ、かつ、検診業
務の効率化が図れる。その波及効果として検診の普及に
貢献できる。
As can be understood from the above description, according to the present embodiment, one scan line is set at the position of a blood vessel to be measured in a biological image stored as electronic data so as to intersect with the blood vessel. The pixel value of each pixel on the scanning line is obtained, the edge of the blood vessel is obtained from each pixel value, the midpoint between both ends where the obtained blood vessel edge intersects the scanning line is set as the center point of the blood vessel, Two or more scanning auxiliary lines are drawn before and after each other in parallel, and the above-mentioned scanning line and four or more scanning auxiliary lines correspond to the center point of the corresponding blood vessel with respect to the scanning line and four or more scanning auxiliary lines, respectively. Is obtained, an approximate straight line obtained by approximating a point sequence based on the obtained center points of five or more blood vessels with a straight line is obtained, and a straight line perpendicular to the approximate line and passing through the center point of the blood vessel corresponding to the scan line is newly added to the scan line. And a new scanning line for the new scanning line By finding the points at both ends where the blood vessels intersect and using the distance between the two points as the blood vessel width, the fundus examination measures the arteriovenous blood vessel diameter ratio and grasps the degree of progression of arteriosclerosis. The output of a polaroid photograph or the like can be supported by a computer without using a measuring tool such as a vernier caliper directly by hand, and a medical examination image can be handled efficiently. This allows
The number of health check recipients can be increased, and the efficiency of the screening work can be increased. As a ripple effect, it can contribute to the spread of medical examinations.

【0037】眼底は無侵襲(非侵襲)で人間の血管を観
察できる唯一の部位であり、その画像を診断することに
より、眼底疾患のみならず、高血圧、糖尿病を始めとす
る循環器系等の重大な疾患を見出すことができる。従っ
て眼底画像の比較投影をコンピュータによって支援し
て、医師による診断業務の効率化を図ることができれ
ば、その意義は大きい。
The fundus is the only site where human blood vessels can be observed in a non-invasive (non-invasive) manner. By diagnosing the image, not only the fundus disease but also the circulatory system such as hypertension and diabetes can be observed. Serious illness can be found. Therefore, if the computer can assist the comparative projection of the fundus image and improve the efficiency of the diagnosis work by the doctor, the significance is significant.

【0038】以上、本発明者によってなされた発明を、
前記実施形態に基づき具体的に説明したが、本発明は、
前記実施形態に限定されるものではなく、その要旨を逸
脱しない範囲において種々変更可能であることは勿論で
ある。
As described above, the invention made by the present inventor is:
Although specifically described based on the embodiment, the present invention
It is needless to say that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the scope of the invention.

【0039】[0039]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、以
下のとおりである。
The effects obtained by typical aspects of the invention disclosed in the present application will be briefly described as follows.

【0040】(1)医師による健康診断受診対象者を増
やすことができる。
(1) It is possible to increase the number of persons who undergo medical examinations by doctors.

【0041】(2)医師による検診業務の効率を向上す
ることができる。
(2) It is possible to improve the efficiency of medical examination work by doctors.

【0042】(3)眼底検査等により成人病の早期発見
ができる。
(3) An adult disease can be detected early by a fundus examination or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の血管計測方法を説明する
ための眼底画像を示す模式図である。
FIG. 1 is a schematic diagram showing a fundus image for explaining a blood vessel measurement method according to an embodiment of the present invention.

【図2】本実施形態において計測を行なう動静脈血管径
比を説明するための模式図である。
FIG. 2 is a schematic diagram for explaining an arteriovenous blood vessel diameter ratio to be measured in the present embodiment.

【図3】本実施形態の血管計測方法における計算機によ
る画像処理で指示した血管の走行方向を推定し、その血
管の直径を求め、その比として動静脈血管径比を得る一
実施形態を示す図である。
FIG. 3 is a diagram showing an embodiment in which a traveling direction of a blood vessel designated by image processing by a computer in the blood vessel measurement method of the present embodiment is estimated, a diameter of the blood vessel is obtained, and an arteriovenous blood vessel diameter ratio is obtained as a ratio thereof. It is.

【図4】本実施形態の医師が計測を希望する血管を指示
する際に動脈(或は静脈)の位置をマウスで与える方法
の例を示す図である。
FIG. 4 is a diagram showing an example of a method of giving the position of an artery (or vein) with a mouse when the doctor of the present embodiment indicates a blood vessel desired to be measured.

【図5】本実施形態の医師が指示した血管の走行方向を
画像処理によって推定する方法の例を示す図である。
FIG. 5 is a diagram illustrating an example of a method of estimating a traveling direction of a blood vessel designated by a doctor according to the present embodiment by image processing.

【図6】本実施形態の計算機が画像処理によって推定し
た血管の走行方向に垂直な方向として血管の直径を求め
る場合の例を示す図である。
FIG. 6 is a diagram illustrating an example of a case where a computer according to the present embodiment obtains a diameter of a blood vessel as a direction perpendicular to a traveling direction of the blood vessel estimated by image processing.

【図7】本実施形態の血管計測方法における計測対象箇
所付近の指示処理のフローチャートである。
FIG. 7 is a flowchart of an instruction process near a measurement target portion in the blood vessel measurement method according to the embodiment.

【図8】本実施形態の血管計測方法における測定対象の
血管の走行方向の推定処理のフローチャートである。
FIG. 8 is a flowchart of a process of estimating a traveling direction of a blood vessel to be measured in the blood vessel measuring method according to the embodiment.

【図9】本実施形態の血管計測方法における動静脈血管
径比の計算処理のフローチャートである。
FIG. 9 is a flowchart of a calculation process of an arteriovenous blood vessel diameter ratio in the blood vessel measuring method according to the embodiment.

【符号の説明】[Explanation of symbols]

1…視神経乳頭、2…黄斑部、3…網膜中心動脈、4…
網膜中心静脈。
DESCRIPTION OF SYMBOLS 1 ... Optic disc, 2 ... Macular area, 3 ... Central retinal artery, 4 ...
Central retinal vein.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 画像処理を用いて眼底画像等の生体画像
より血管幅を計測する血管計測方法において、前記生体
画像より測定したい血管の位置を選択する過程と、該選
択点を通り血管と交わるように1本の走査線を設定する
過程と、該走査線上の各画素の画素値を求める過程と、
各画素値から前記走査線上の血管の2つのエッジを求め
る過程と、該2つのエッジの中点を血管の中心点として
求める過程と、前記走査線の近傍に該走査線に平行な走
査補助線を設定する過程と、該走査補助線について前記
走査線と同様に血管の中心点として求める過程と、前記
走査線と前記走査補助線から求めた2つの血管の中心点
を通る直線に対して垂直な垂直走査線を求める過程と、
該垂直走査線について前記走査線と同様に血管の2つの
エッジを求める過程とを具備することを特徴とする血管
計測方法。
In a blood vessel measuring method for measuring a blood vessel width from a biological image such as a fundus image using image processing, a step of selecting a position of a blood vessel to be measured from the biological image and intersecting the blood vessel through the selected point. Setting one scanning line as described above, obtaining a pixel value of each pixel on the scanning line,
A step of obtaining two edges of the blood vessel on the scanning line from each pixel value, a step of obtaining a midpoint of the two edges as a center point of the blood vessel, and a scanning auxiliary line near the scanning line and parallel to the scanning line Setting the scanning auxiliary line as the center point of the blood vessel in the same manner as the scanning line, and perpendicular to a straight line passing through the scanning line and the central point of the two blood vessels obtained from the scanning auxiliary line. Finding a vertical scanning line,
Obtaining two edges of a blood vessel with respect to the vertical scanning line in the same manner as the scanning line.
【請求項2】 前記走査線の前後に2本以上づつ平行に
走査補助線を引く過程と、該走査線と4本以上の走査補
助線を、それぞれ、請求項1記載の走査線とみなし、請
求項1記載の血管計測方法を実施し、前記走査線と4本
以上の走査補助線それぞれに対応する血管の中心点を求
める過程と、求められた5点以上の血管の中心点による
点列を直線で近似した近似直線を求める過程と、該近似
直線と垂直で走査線に対応する血管の中心点を通る直線
を新たに走査線とする過程と、新たな走査線に対して、
請求項1記載の血管計測方法を実施し、新たな走査線と
血管の交わる両端の点を求める過程と、該両端の点間の
距離を血管幅とする過程とを具備することを特徴する血
管計測方法。
2. A process of drawing two or more scanning auxiliary lines in parallel before and after the scanning line, and the scanning line and four or more scanning auxiliary lines are regarded as the scanning line according to claim 1, respectively. 2. A step of executing the blood vessel measuring method according to claim 1 to obtain a center point of a blood vessel corresponding to each of the scanning line and the four or more scanning auxiliary lines, and a point sequence based on the obtained center points of the five or more blood vessels. A process of obtaining an approximate straight line that approximates a straight line, a process of making a new scan line a straight line perpendicular to the approximate straight line and passing through the center point of the blood vessel corresponding to the scan line,
2. A blood vessel, comprising: a step of performing the blood vessel measurement method according to claim 1 to obtain a point at both ends where a new scanning line intersects a blood vessel; and a step of setting a distance between the two points to a blood vessel width. Measurement method.
JP8232930A 1996-09-03 1996-09-03 Method for measuring blood vessel Pending JPH1079034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8232930A JPH1079034A (en) 1996-09-03 1996-09-03 Method for measuring blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8232930A JPH1079034A (en) 1996-09-03 1996-09-03 Method for measuring blood vessel

Publications (1)

Publication Number Publication Date
JPH1079034A true JPH1079034A (en) 1998-03-24

Family

ID=16947082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8232930A Pending JPH1079034A (en) 1996-09-03 1996-09-03 Method for measuring blood vessel

Country Status (1)

Country Link
JP (1) JPH1079034A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030235A1 (en) * 1999-10-22 2001-05-03 Bml, Inc. A device for detecting arteriosclerosis, and method of use thereof
WO2004004556A1 (en) * 2002-07-03 2004-01-15 Bml, Inc. Pulse wave transmission detection system
JP2006099538A (en) * 2004-09-30 2006-04-13 Hitachi Ltd Geometric model creation method, computer program implementing same, and geometric model creation system
JP2006325714A (en) * 2005-05-24 2006-12-07 Bisho Junkan Kenkyusho Kk Medical diagnosis support system using capillary blood flow of fingertip
WO2014181725A1 (en) * 2013-05-07 2014-11-13 シャープ株式会社 Image measurement device
JP2018011726A (en) * 2016-07-20 2018-01-25 大日本印刷株式会社 Fundus image processing device
CN109447956A (en) * 2018-10-12 2019-03-08 青岛浦利医疗技术有限公司 A kind of blood vessel relative width calculation method and system
JP2020185375A (en) * 2019-04-04 2020-11-19 オプトス ピーエルシー Determining level of hypertension from retinal vasculature image
CN112022083A (en) * 2020-07-31 2020-12-04 上海理工大学 Fovea centralis positioning method and system based on bidirectional scanning

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030235A1 (en) * 1999-10-22 2001-05-03 Bml, Inc. A device for detecting arteriosclerosis, and method of use thereof
WO2004004556A1 (en) * 2002-07-03 2004-01-15 Bml, Inc. Pulse wave transmission detection system
JP2006099538A (en) * 2004-09-30 2006-04-13 Hitachi Ltd Geometric model creation method, computer program implementing same, and geometric model creation system
JP4615951B2 (en) * 2004-09-30 2011-01-19 株式会社日立製作所 Shape model creation method and structure optimization system
KR101159855B1 (en) 2004-09-30 2012-07-02 가부시키가이샤 히타치세이사쿠쇼 Geometric model forming method, and computer program and geometric model forming system therefor
JP2006325714A (en) * 2005-05-24 2006-12-07 Bisho Junkan Kenkyusho Kk Medical diagnosis support system using capillary blood flow of fingertip
WO2014181725A1 (en) * 2013-05-07 2014-11-13 シャープ株式会社 Image measurement device
JPWO2014181725A1 (en) * 2013-05-07 2017-02-23 シャープ株式会社 Image measuring device
JP2018011726A (en) * 2016-07-20 2018-01-25 大日本印刷株式会社 Fundus image processing device
CN109447956A (en) * 2018-10-12 2019-03-08 青岛浦利医疗技术有限公司 A kind of blood vessel relative width calculation method and system
CN109447956B (en) * 2018-10-12 2022-09-27 翟启超 Method and system for calculating relative width of blood vessel
JP2020185375A (en) * 2019-04-04 2020-11-19 オプトス ピーエルシー Determining level of hypertension from retinal vasculature image
CN112022083A (en) * 2020-07-31 2020-12-04 上海理工大学 Fovea centralis positioning method and system based on bidirectional scanning

Similar Documents

Publication Publication Date Title
Hubbard et al. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study
CN111134651B (en) Method, device and system for calculating fractional flow reserve based on intracavity images and computer storage medium
US9451878B2 (en) Medical image processing apparatus for examining an eye to determine the stage of glaucoma
JP6426612B2 (en) System and method for numerically evaluating vasculature
US20130188141A1 (en) Image processing apparatus, image processing method, and program
JP4589114B2 (en) Display image data information
JP3081043B2 (en) Diagnosis method of cerebral infarction
US20160066795A1 (en) Stenosis therapy planning
CN112674736B (en) Monitoring display method and system for automatically evaluating vascular deformation
JP2006500099A5 (en)
JPH1079034A (en) Method for measuring blood vessel
JP3955313B1 (en) Ischemic heart disease diagnostic apparatus and program
JPH10243924A (en) Measurement of arterio/venous diameter ratio of eye-ground
JPH09192106A (en) Image overlapping method
Varma et al. Positional changes in the vasculature of the optic disk in glaucoma
Gognieva et al. Noninvasive assessment of the fractional flow reserve with the CT FFRc 1D method: Final results of a pilot study
JPH09330405A (en) Image processing method
JP2004283583A (en) Operation method of image forming medical inspection system
Chiang et al. Plus disease in retinopathy of prematurity: development of composite images by quantification of expert opinion
JPS6253174B2 (en)
CN114305321A (en) Method and system for measuring thickness of retinal vessel wall
US9026191B2 (en) Method and device for automatic determination of a flow of a bodily fluid within vessels of an organism
JPH1071125A (en) Method for measuring artery/vein diameter ration of eyebottom
Benavent et al. Semi-automated evaluation tool for retinal vasculopathy
WO2008035425A1 (en) Eyeground image analysis and program

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323