JPH1078547A - Keplerian variable power finder - Google Patents

Keplerian variable power finder

Info

Publication number
JPH1078547A
JPH1078547A JP8252306A JP25230696A JPH1078547A JP H1078547 A JPH1078547 A JP H1078547A JP 8252306 A JP8252306 A JP 8252306A JP 25230696 A JP25230696 A JP 25230696A JP H1078547 A JPH1078547 A JP H1078547A
Authority
JP
Japan
Prior art keywords
lens
lens group
magnification
group
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8252306A
Other languages
Japanese (ja)
Inventor
Akiko Furuta
明子 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8252306A priority Critical patent/JPH1078547A/en
Priority to US08/922,233 priority patent/US5956178A/en
Priority to KR1019970045498A priority patent/KR19980024268A/en
Publication of JPH1078547A publication Critical patent/JPH1078547A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+

Abstract

PROBLEM TO BE SOLVED: To provide a keplerian variable power finder having twice and more zooming ratio, simple constitution and well conpensated aberrations by fixing a first lens group of an objective lens system, moving a second and a third lenses to the object side while expanding the air gap between them and changing the focal distance. SOLUTION: An objective lens system has a positve refractive power as a whole and is composed of a first to a fourth lens groups in order from the object side. The first lens group, the second lens group, the third lens group and the fourth lens group are composed of a negative lens L1 , a positive lens L2 , a negative lens L2 , a positive lens L4 , respectively. A mirror as a first reflection surface H1 is arranged in the air gap between the negative lens L3 of the third lens group and the positive lens L4 of the fourth lens group By fixing the first lens group, moving the second lens group together with the third lens group to the object side while expanding the air gap between them, power variation from a low power end to the high power end is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スチルカメラやビ
デオカメラやTVカメラ等に用いるファインダー光学系
に関し、特にケプラー式変倍ファインダーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a finder optical system used for a still camera, a video camera, a TV camera or the like, and more particularly to a Keplerian type variable magnification finder.

【0002】[0002]

【従来の技術】正屈折力の対物レンズと正屈折力の接眼
レンズによって構成されたケプラー式ファインダーは、
対物レンズの焦点近傍に視野枠やレチクルを配置するこ
とによって、視野と、視野の区切りと、各種の表示が明
瞭に観察できるため、特に高級なレンズシャツターカメ
ラのファインダーとして採用されている。また、このケ
プラー式ファインダーは、その入射瞳がファインダーの
内部もしくはファインダーの物体側にあるため、ファイ
ンダーの倍率を連続的に変化させるいわゆるズームファ
インダーとして構成したり、ファインダーの広角化を図
ったりした場合でも、対物レンズ径が巨大化しないとい
う利点もあり、特にズームファインダーとして構成した
ものが広く用いられている。特に、対物レンズの構成と
して、物体側から順に、負の屈折力を有する第1レンズ
群、正の屈折力を有する第2レンズ群、負の屈折力を有
する第3レンズ群を有するケプラー式光学系を用いたフ
ァインダーには、特開平3−233420や特開平6−
242377等が知られている。
2. Description of the Related Art A Kepler-type finder constituted by an objective lens having a positive refractive power and an eyepiece having a positive refractive power is provided by:
By arranging a field frame or a reticle near the focal point of the objective lens, the field of view, the division of the field of view, and various displays can be clearly observed. In addition, this Kepler type finder has an entrance pupil inside the finder or on the object side of the finder, so if it is configured as a so-called zoom finder that continuously changes the magnification of the finder, or if the finder is widened However, there is also an advantage that the diameter of the objective lens does not increase, and in particular, a zoom finder is widely used. In particular, as the configuration of the objective lens, in order from the object side, a Kepler-type optic having a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power Japanese Patent Application Laid-Open No. 3-233420 and Japanese Patent Application Laid-Open
242377 are known.

【0003】[0003]

【発明が解決しようとする課題】近年、レンズシャッタ
ーカメラのズーム比は大きくなる傾向にあり、それに併
せて、ファインダーのズーム比も大きくなってきた。そ
こで、ズーム比が大きく、かつ小型のファインダーが、
要求されている。ところが、特開平3−233420等
の提案は、各群が1枚で構成され、小型でありながら諸
収差が良好に補正されているものの、それらのズーム比
は、たかだか2倍程度であって、充分大きなズーム比を
有しているとは言い難い。また、2倍以上のズーム比を
もつ特開平6−242377においては、各群が1枚で
構成されているものはなく、特に前記第2レンズ群が、
複数枚のレンズで構成されており、コストアップは避け
られなかった。本発明は、上記問題点に鑑みてなされた
ものであって、2倍以上のズーム比を有し、かつ、簡素
な構成でありながら、諸収差が良好に補正されたローコ
ストのケプラー式変倍ファインダーを提供することを課
題としている。
In recent years, the zoom ratio of a lens shutter camera has tended to increase, and accordingly, the zoom ratio of a finder has also increased. Therefore, a small viewfinder with a large zoom ratio
Has been requested. However, in the proposal of JP-A-3-233420 and the like, although each group is composed of one sheet and various aberrations are satisfactorily corrected while being small, their zoom ratio is at most about two times. It is hard to say that it has a sufficiently large zoom ratio. Further, in JP-A-6-242377 having a zoom ratio of 2 or more, there is no one in which each group is constituted by one lens.
It is composed of a plurality of lenses, which inevitably increases the cost. The present invention has been made in view of the above problems, and has a zoom ratio of 2 times or more, and is a low-cost Kepler-type variable magnification in which various aberrations are favorably corrected while having a simple configuration. The task is to provide a finder.

【0004】[0004]

【課題を解決するための手段】それゆえ、本発明は、物
体側から順に、負の単レンズL1を含む第1レンズ群
と、正の単レンズL2を含む第2レンズ群と、負の単レ
ンズL3を含む第3レンズ群とを有し、全体で正の屈折
力を有する対物レンズ系と、全体で正の屈折力を有し、
前記対物レンズ系による像を観察するための接眼レンズ
系とを有するケプラー式変倍ファインダーにおいて、低
倍率端から高倍率端への変倍に際して、前記第1レンズ
群は固定し、前記第2レンズ群と第3レンズ群との間の
空気間隔を拡大しつつ、第2レンズ群と第3レンズ群と
を共に物体側に移動させることによって、上記課題を解
決したものである。このように本発明によるファインダ
ーでは、対物レンズ系の第1レンズ群は固定し、第2レ
ンズ群と第3レンズ群との間の空気間隔を拡大しつつ、
第2レンズ群と第3レンズ群とを共に物体側に移動させ
ることで、焦点距離を変化させるズーム対物部を形成し
ている。
SUMMARY OF to the invention therefore, in order from the object side, a first lens group including a negative single lens L 1, a second lens group including a positive single lens L 2, a negative and a third lens group including a single lens L 3 of having an objective lens system having a positive refractive power as a whole, a positive refractive power as a whole,
In a Keplerian type variable magnification finder having an eyepiece system for observing an image by the objective lens system, the first lens group is fixed and the second lens is fixed when changing magnification from a low magnification end to a high magnification end. The object has been achieved by moving both the second lens unit and the third lens unit toward the object side while increasing the air gap between the group and the third lens unit. As described above, in the finder according to the present invention, the first lens group of the objective lens system is fixed, and the air gap between the second lens group and the third lens group is increased.
By moving both the second lens unit and the third lens unit toward the object side, a zoom objective unit that changes the focal length is formed.

【0005】ズーム比2倍以上のファインダーの場合、
変倍群に複数枚のレンズを使用して、良好な収差を得る
ことが一般的である。しかし、複数枚構成は、構造が複
雑になり、大型化するため、好ましくない。また、ズー
ム比が2倍未満であれば、主変倍群を単レンズで構成し
た場合でも、良好な球面収差とコマ収差を得られる。そ
こで、2倍以上の大きなズーム比を有する負正負のケプ
ラー式ファインダーにおいて、各群が単レンズで構成さ
れながら、良好な諸収差を得るために、第2レンズ群と
第3レンズ群との空気間隔D23が、低倍率端から高倍率
端への変倍に際して、増大する構成とした。というの
は、高倍率端における第2レンズ群と第3レンズ群の合
成倍率β23は、低倍率端から高倍率端への変倍に際し
て、空気間隔D23が減少する場合には、約1倍程度であ
るのに対して、空気間隔D23が増加する場合は、合成倍
率β23は2倍以上を確保できるのである。つまり、第2
レンズ群以降の倍率が大きいので、第1レンズ群のパワ
ーを大きくすることが可能で、小型化に適しており、所
要のズーム比を得るのに、第2レンズ群の移動量を少な
くすることができる。
In the case of a finder having a zoom ratio of 2 or more,
It is common to use a plurality of lenses in the zooming group to obtain good aberration. However, a multiple-sheet configuration is not preferable because the structure becomes complicated and the size becomes large. If the zoom ratio is less than 2, excellent spherical aberration and coma can be obtained even when the main zooming unit is formed of a single lens. Therefore, in a negative / positive / negative Kepler type finder having a zoom ratio of 2 times or more, while each group is constituted by a single lens, the air between the second lens group and the third lens group is obtained in order to obtain good aberrations. distance D 23 is, upon zooming from low magnification end to high magnification end, and configured to increase. That is, the combined magnification β 23 of the second lens unit and the third lens unit at the high magnification end is about 1 when the air gap D 23 is reduced upon zooming from the low magnification end to the high magnification end. whereas it is approximately doubled if the air space D 23 is increased, the resultant magnification beta 23 is able ensure more than twice. That is, the second
Since the magnification after the lens group is large, the power of the first lens group can be increased, which is suitable for miniaturization, and the moving amount of the second lens group is reduced to obtain a required zoom ratio. Can be.

【0006】例えば、第3レンズ群が、中間倍率までは
物体側ヘ移動し、中間倍率以降高倍率端まではアイポイ
ント側ヘ移動するように形成すると、中間倍率までは第
3レンズ群の倍率が増加するが、それ以降は第3レンズ
群の倍率は小さくなってしまう。つまり、大きなズーム
比を必要とするところに減倍作用が働いてしまうのであ
る。このとき、所要のズーム比を確保するためには、第
2レンズ群の移動量を大きくする必要があり、大型化し
てしまう。移動量を小さくするために、第2レンズ群の
パワーを大きくすると、諸収差の変動が大きくなってし
まい好ましくない。
For example, if the third lens group is formed so as to move to the object side up to the intermediate magnification, and to move to the eye point side from the intermediate magnification to the high magnification end, the magnification of the third lens group is increased up to the intermediate magnification. Increases, but thereafter the magnification of the third lens group decreases. In other words, the reduction effect works where a large zoom ratio is required. At this time, in order to secure a required zoom ratio, it is necessary to increase the amount of movement of the second lens group, which results in an increase in size. If the power of the second lens group is increased in order to reduce the movement amount, fluctuations of various aberrations increase, which is not preferable.

【0007】したがって本発明においては、第3レンズ
群の倍率が常に増加するために、 D12W:第1レンズ群と第2レンズ群との低倍率端での
頂点間隔 D23W:第2レンズ群と第3レンズ群との低倍率端での
頂点間隔 D12T:第1レンズ群と第2レンズ群との高倍率端での
頂点間隔 D23T:第2レンズ群と第3レンズ群との高倍率端での
頂点間隔 としたとき、 1.5<(D12W+D23W)/(D12T+D23T)<3.0 (1) なる条件式を満たすことが好ましい。
Therefore, in the present invention, since the magnification of the third lens group always increases, D 12W : the apex distance between the first lens group and the second lens group at the low magnification end D 23W : the second lens group A vertex distance between the first lens group and the third lens group at a low magnification end D 12T : a vertex distance between the first lens group and the second lens group at a high magnification end D 23T : a height between the second lens group and the third lens group It is preferable that the following conditional expression is satisfied: 1.5 <( D12W + D23W ) / ( D12T + D23T ) <3.0 (1)

【0008】条件式(1)の下限を越えると、高倍率端
における第3レンズ群の倍率が中間倍率での倍率よりも
小さくなるため、上述のように第2レンズ群の移動量を
大きくせざるをえず、全長が長くなり小型化に反する。
逆に、条件式(1)の上限を越えると、低倍率端におい
て、主光線の第1レンズ群を通過する位置が光軸よりも
離れるため、第1レンズ群の径が増大し、大型化が避け
られない。
If the lower limit of conditional expression (1) is exceeded, the magnification of the third lens unit at the high magnification end becomes smaller than the magnification at the intermediate magnification, so that the amount of movement of the second lens unit is increased as described above. Inevitably, the overall length is longer, which is against miniaturization.
Conversely, if the upper limit of conditional expression (1) is exceeded, the position of the principal ray passing through the first lens unit at the low magnification end is further away from the optical axis, so that the diameter of the first lens unit increases and the size of the lens increases. Is inevitable.

【0009】また本発明においては、第2レンズ群と第
3レンズ群との空気間隔D23が、高倍率端において増加
するために、 f2:第2レンズ群の焦点距離 f3:第3レンズ群の焦点距離 としたとき、 2.3<|f3/f2|<3 (2) なる条件式を満たすことが好ましい。条件式(2)の上
限を越えると、空気間隔D23が高倍率端で減少する方向
へ移動するため、第2レンズ群と第3レンズ群との合成
倍率β23が高倍率端で小さくなる。しかも、主変倍群で
ある第2レンズ群のパワーが大きくなるため、諸収差変
動が大きくなり、良好な収差を得るのが困難になる。逆
に、条件式(2)の下限を越えると、主変倍群である第
2レンズ群のパワーが小さくなるため、第2レンズ群の
移動量を大きくせざるを得ず、小型化に反する。
[0009] In the present invention, in order the air gap D 23 between the second lens group and the third lens group, to increase at high magnification end, f 2: the focal point of the second lens group distances f 3: 3 Assuming that the focal length of the lens unit is: 2.3 <| f 3 / f 2 | <3 (2) It is preferable to satisfy the following conditional expression. Above the upper limit of condition (2), to move in the direction of the air gap D 23 is reduced at high magnification end, small synthetic magnification beta 23 between the second lens group and the third lens group at high magnification end . In addition, since the power of the second lens unit, which is the main zooming unit, is increased, fluctuations of various aberrations are increased, and it becomes difficult to obtain good aberrations. On the other hand, when the lower limit of conditional expression (2) is exceeded, the power of the second lens unit, which is the main zooming unit, becomes small, so that the amount of movement of the second lens unit must be increased, which is contrary to miniaturization. .

【0010】またこの際、第2レンズ群を単レンズL2
で構成し、かつ高倍率端における球面収差と低倍率端に
おけるコマ収差を良好に補正するために、第2レンズ群
の正の単レンズL2の少なくともいずれかのレンズ面を
非球面に形成することが好ましい。
At this time, the second lens group is replaced by a single lens L 2
In constructed, and in order to satisfactorily correct the coma aberration in the spherical aberration and the low magnification end in the high magnification end, to form a positive least one of the lens surfaces of the single lens L 2 of the second lens group aspherical Is preferred.

【0011】また本発明においては、対物レンズ系が、
第3レンズ群のアイポイント側に正の屈折力を有する第
4レンズ群を有することが好ましい。この構成により、
第3レンズ群と第4レンズ群は合成して、第1レンズ群
と第2レンズ群によって形成されるズーム対物部の焦点
距離を変化させるいわゆるリアコンバーターとしての機
能と、ズーム対物部で補正しきれない収差、特に歪曲収
差を補正する機能と、ファインダーの入射光束を適切な
アイポイント位置に導くためのフィールドレンズとして
の機能を併せもつこととなる。
Further, in the present invention, the objective lens system includes:
It is preferable that a fourth lens group having a positive refractive power be provided on the eye point side of the third lens group. With this configuration,
The third lens group and the fourth lens group are combined to function as a so-called rear converter for changing the focal length of the zoom objective section formed by the first lens group and the second lens group, and to perform correction by the zoom objective section. It has both the function of correcting the aberrations that cannot be corrected, particularly the distortion, and the function of a field lens for guiding the incident light beam of the finder to an appropriate eye point position.

【0012】この際、第4レンズ群を含めた系全休の小
型化を達成するために、 β234T:第2レンズ群、第3レンズ群及び第4レンズ群
の高倍率端での合成倍率 としたとき、 −2.2<β234T<−1.2 (3) なる条件式を満たすことが好ましい。条件式(3)の上
限を越えると、低倍率端において、大きな画角を得るた
めには、第1レンズ群の焦点距離を小さくせざるを得
ず、高倍率端における球面収差を補正することが困難と
なる。逆に条件式(3)の下限を越えると、高倍率端で
の倍率が小さいため、大きなファインダー倍率を得るた
めには、第1レンズ群の焦点距離を大きくせざるを得
ず、全長が大きくなってしまう。
At this time, in order to achieve a reduction in the size of the entire system including the fourth lens unit, β 234T : the composite magnification of the second, third and fourth lens units at the high magnification end; Then, it is preferable to satisfy the following conditional expression: -2.2 <β 234T <−1.2 (3) If the upper limit of conditional expression (3) is exceeded, in order to obtain a large angle of view at the low magnification end, the focal length of the first lens unit must be reduced, and spherical aberration at the high magnification end must be corrected. Becomes difficult. On the other hand, if the lower limit of conditional expression (3) is exceeded, the magnification at the high magnification end is small. Therefore, in order to obtain a large finder magnification, the focal length of the first lens unit must be increased, and the overall length becomes large. turn into.

【0013】このような本発明の構成で、実際にファイ
ンダーとして構成するためには、当然にファインダー像
を正立化しなければならない。正立化の方法としては、
リレーレンズを用いるものと反射手段を用いるものが知
られている。このうちリレーレンズを用いる方法は、フ
ァインダー全体の小型化と収差補正との両立が困難であ
って、一般に光学系の構成枚数の増加が避けられない。
従ってファインダーの小型化を目指す本発明の場合、反
射手段を用いたものが望ましい。
In order to actually form a finder with such a configuration of the present invention, the finder image must be naturally erected. As a method of erecting,
A device using a relay lens and a device using a reflection unit are known. Among them, the method using a relay lens makes it difficult to achieve both the miniaturization of the entire viewfinder and the correction of aberrations, and inevitably increases the number of components of the optical system.
Therefore, in the case of the present invention aiming at miniaturization of the finder, it is desirable to use a reflecting means.

【0014】したがって本発明においては、対物レンズ
系が、第3レンズ群のアイポイント側に正の屈折力を有
する第4レンズ群を有し、第3レンズ群と第4レンズ群
との空気間隔に反射手段を有し、また接眼レンズ系が、
対物レンズ系からの光線を反射する反射手段と、物体側
レンズ面が非球面である正レンズを少なくとも1つ有す
ることが好ましい。まず対物レンズ系内に配置する反射
手段については、第3レンズ群と第4レンズ群に前記の
ようにリヤコンバータとしての機能を持たせるには、第
3レンズ群と第4レンズ群を広い空気間隔を隔てて、第
3レンズ群と第4レンズ群の合成倍率がl倍以上である
ことが望ましいため、反射手段が無理なく配置できる。
しかも対物レンズ系において反射することによって、全
長を短くすることができる。また次の3つの反射面は、
対物レンズ系による像よりもアイポイント側に、すなわ
ち接眼レンズ系内に配置する。物体レンズ系による像か
ら接眼レンズ系正レンズL5まで3回の反射面ですむと
いうことは、像から接眼レンズ系正レンズL5までの光
路長が短いということになり、接眼レンズ系正レンズL
5の屈折力が大きくできるため、ルーペ倍率が大きくで
きる。そのため、コストが比較的低く、明るくしかも倍
率の高い小型のファインダーを得ることができる。更
に、接眼レンズ系において、対称なコマ収差を得るため
には、接眼レンズ系正レンズL5に非球面が1面存在す
ることが望ましい。
Therefore, in the present invention, the objective lens system has a fourth lens group having a positive refractive power on the eye point side of the third lens group, and an air gap between the third lens group and the fourth lens group. Has reflecting means, and the eyepiece system,
It is preferable to have at least one reflecting means for reflecting a light beam from the objective lens system and at least one positive lens having an aspherical object-side lens surface. First, as for the reflecting means disposed in the objective lens system, the third lens group and the fourth lens group must have a wide air space in order for the third lens group and the fourth lens group to have the function as the rear converter as described above. Since the combined magnification of the third lens group and the fourth lens group is desirably 1 or more at an interval, the reflection means can be arranged without difficulty.
Moreover, the total length can be shortened by reflection at the objective lens system. The following three reflective surfaces are
It is arranged on the eye point side of the image by the objective lens system, that is, in the eyepiece lens system. That from the image by the object lens system requires only the reflecting surface of the eyepiece system positive lens L 5 to 3 times, will be referred to as a short optical path length from the image to the eyepiece system positive lens L 5, eyepiece system positive lens L
Since the refractive power of 5 can be increased, the loupe magnification can be increased. Therefore, it is possible to obtain a small finder that is relatively inexpensive, bright, and has a high magnification. Furthermore, the eyepiece system, in order to obtain a symmetrical coma aberration, it is desirable that the aspherical surface is present one face to the eyepiece system positive lens L 5.

【0015】[0015]

【発明の実施の形態】以下に、本発明による実施の形態
について説明する。図1、図5、図9、図13は、それ
ぞれ本発明の第1〜第4実施例の最低倍率状態、中間倍
率状態、及び最高倍率状態のレンズ構成を示す展開図で
ある。各実施例のケプラー式変倍ファインダーとも、対
物レンズ系は全体として正の屈折力を有し、物体側より
順に第1〜第4レンズ群からなる。第1レンズ群は負の
屈折力を有するレンズL1で構成され、第2レンズ群は
正の屈折力を有するレンズL2で構成され、第3レンズ
群は負の屈折力を有するレンズL3で構成され、第4レ
ンズ群は正の屈折力を有するレンズL4で構成されてい
る。第3レンズ群の負レンズL3と第4レンズ群の正レ
ンズL4の空気間隔には、第1の反射面H1としてミラー
が配置されている。対物レンズ系の像面付近には、視野
枠の表示等に使用するガラスの平行平板Aが配置されて
いる。
Embodiments of the present invention will be described below. FIGS. 1, 5, 9, and 13 are developed views showing the lens configuration of the first to fourth embodiments of the present invention in the minimum magnification state, the intermediate magnification state, and the maximum magnification state, respectively. In each of the Keplerian variable magnification finder of each embodiment, the objective lens system has a positive refractive power as a whole, and includes first to fourth lens groups in order from the object side. The first lens group is composed of a lens L 1 having a negative refractive power, the second lens group is composed of a lens L 2 having a positive refractive power, a third lens group lens L 3 having a negative refractive power in the configuration, the fourth lens unit includes a lens L 4 having a positive refractive power. A negative lens L 3 of the third lens group in the air gap of the positive lens L 4 in the fourth lens group, the first mirror as a reflecting surface H 1 is arranged. In the vicinity of the image plane of the objective lens system, a parallel plate A of glass used for displaying a field frame or the like is arranged.

【0016】対物レンズ系による像よりもアイポイント
EP側には、第2、第3及び第4の反射面H2、H3及び
4が配置されており、このうち第2の反射面H2はミラ
ーによって構成されており、第3と第4の反射面H3
4はプリズムPによって構成されている。このプリズ
ムPのアイポイントEP側には、物体側レンズ面が非球
面である接眼レンズL5が配置されている。各正レンズ
2、L4、L5とプリズムPは、アクリル樹脂で構成さ
れ、各負レンズL1、L3はポリカーボネイト樹脂で構成
されている。各実施例のファインダーとも、第1レンズ
群は固定し、第2レンズ群と第3レンズ群との間の空気
間隔を拡大しつつ、第2レンズ群と第3レンズ群とを共
に物体側に移動させることによって、低倍率端から高倍
率端への変倍を行っている。
On the eye point EP side of the image formed by the objective lens system, second, third and fourth reflecting surfaces H 2 , H 3 and H 4 are arranged. Of these, the second reflecting surface H 2 is constituted by a mirror, and the third and fourth reflecting surfaces H 3 and H 4 are constituted by a prism P. This is the eye point EP side of the prism P, the eyepiece lens L 5 is arranged object-side lens surface is an aspherical surface. Each of the positive lenses L 2 , L 4 , L 5 and the prism P is made of an acrylic resin, and each of the negative lenses L 1 , L 3 is made of a polycarbonate resin. In the viewfinder of each embodiment, the first lens group is fixed, and the air gap between the second lens group and the third lens group is increased, and both the second lens group and the third lens group are on the object side. By moving, the magnification is changed from the low magnification end to the high magnification end.

【0017】以下の表1〜表4に、それぞれ第1〜第4
実施例の諸元を示す。各表の[全体諸元]中、mは倍
率、Xは視度、2ωは画角、EPはアイレリーフ(最終
レンズ面からアイポイントEPまでの距離)、2H′は
瞳径を表す。また[レンズ諸元]中、第1カラムNoは
物体側からの各レンズ面の番号、第2カラムrは各レン
ズ面の曲率半径、第3カラムdは各レンズ面の間隔、第
4カラムνは各レンズのアッベ数、第5カラムnは各レ
ンズのd線(λ=587.6nm)に対する屈折率、第
6カラムは各レンズの番号を表している。
Tables 1 to 4 show the first to fourth data, respectively.
The specifications of the embodiment will be described. In [Overall Specifications] of each table, m is a magnification, X is a diopter, 2ω is an angle of view, EP is an eye relief (distance from the last lens surface to the eye point EP), and 2H ′ is a pupil diameter. In [Lens Specifications], the first column No is the number of each lens surface from the object side, the second column r is the radius of curvature of each lens surface, the third column d is the distance between each lens surface, and the fourth column ν Is the Abbe number of each lens, the fifth column n is the refractive index of each lens with respect to d-line (λ = 587.6 nm), and the sixth column is the number of each lens.

【0018】第1カラム中*印は非球面を表し、非球面
レンズ面については、rは頂点曲率半径を表す。非球面
の形状は、以下の式によって表される形状である。 但し、y:光軸からの高さ X:接平面から非球面までの光軸方向の距離 r:頂点曲率半径 κ:円錐係数 Cn:n次非球面係数 である。円錐係数κと、非球面係数Cnを[非球面デー
タ]に示す。[非球面データ]中、表示していない非球
面係数Cnはすべて0である。また以下の表5に、各実
施例について、前記各条件式(1)〜(3)に関連する
諸値を示す。
In the first column, an asterisk (*) indicates an aspherical surface, and for an aspherical lens surface, r indicates a vertex radius of curvature. The shape of the aspherical surface is a shape represented by the following equation. Here, y: height from the optical axis X: distance in the optical axis direction from the tangent plane to the aspheric surface r: vertex radius of curvature κ: conical coefficient C n : n-th order aspherical coefficient The conic coefficient κ and the aspheric coefficient C n are shown in [Aspheric data]. During [Aspherical Data], aspherical coefficients C n not indicated are all zero. Table 5 below shows various values associated with the conditional expressions (1) to (3) for each example.

【0019】[0019]

【表1】 [全体諸元] m=0.450〜1.125 X=-1.OOD 2ω=56.5°〜20.8° EP=15.0 2H′=4.0 [レンズ諸元] No r d ν n 1 -15.5788 1.0000 30.24 1.585180 L1 2* 15.1272 (D1) 3* 8.9329 2.6000 57.57 1.491080 L2 4* -7.6236 (D2) 5 48.4787 1.0000 30.24 1.585180 L3 6 9.8203 (D3) 7* 11.8661 2.7000 57.57 1.491080 L4 8 -28.8226 3.6941 9 ∞ 1.0000 58.80 1.522160 A 10 ∞ 8.3900 11 ∞ 15.2400 33.59 1.571100 P 12 ∞ 1.0000 13* 20.3196 3.0000 57.57 1.491080 L5 14 -20.3618 15.0000 15 アイポイント [非球面データ] No=2 κ=-2.8735 C2=0 C4=-1.48300×10-46=2.73550×10-58=-1.55920×10-610=2.86620×10-8 No=3 κ=-2.6547 C2=0 C4=-4.05220×10-46=-5.37000×10-58=-1.28690×10-710=-6.12470×10-812=-0.12190×10-714=-0.81511×10-916=0.51698×10-11 No=4 κ=0.6589 C2=0 C4=-1.33460×10-46=-6.42370×10-58=3.72580×10-610=-3.99010×10-7 No=7 κ=-2.5000 C2=0 No=13 κ=-3.3287 C2=0 [可変間隔] 倍率 0.450 0.636 1.125 D1 11.98431 7.88953 2.38530 D2 0.91953 1.50549 5.28746 D3 14.36497 17.87379 19.59605[Table 1] [Overall specifications] m = 0.450-1.125 X = -1.OOD 2ω = 56.5 ° -20.8 ° EP = 15.0 2H ′ = 4.0 [Lens specifications] Nord ν n 1 -15.5788 1.0000 30.24 1.585180 L 1 2 * 15.1272 (D 1 ) 3 * 8.9329 2.6000 57.57 1.491080 L 2 4 * -7.6236 (D 2) 5 48.4787 1.0000 30.24 1.585180 L 3 6 9.8203 (D 3) 7 * 11.8661 2.7000 57.57 1.491080 L 4 8 -28.8226 3.6941 9 ∞ 1.0000 58.80 1.522160 A 10 8.3 8.3900 11 ∞ 15.2400 33.59 1.571100 P 12 ∞ 1.0000 13 * 20.3196 3.0000 57.57 1.491080 L 5 14 -20.3618 15.0000 15 Eyepoint [Aspherical data] No = 2 κ = -2.8735 C 2 = 0 C 4 = -1.48300 × 10 -4 C 6 = 2.73550 × 10 -5 C 8 = -1.55920 × 10 -6 C 10 = 2.86620 × 10 -8 No = 3 κ = -2.6547 C 2 = 0 C 4 = -4.05220 × 10 -4 C 6 = -5.37000 × 10 -5 C 8 = -1.28690 × 10 -7 C 10 = -6.12470 × 10 -8 C 12 = -0.12190 × 10 -7 C 14 = -0.81511 × 10 -9 C 16 = 0.51698 × 10 -11 No = 4 κ = 0.6589 C 2 = 0 4 = -1.33460 × 10 -4 C 6 = -6.42370 × 10 -5 C 8 = 3.72580 × 10 -6 C 10 = -3.99010 × 10 -7 No = 7 κ = -2.5000 C 2 = 0 No = 13 κ = -3.3287 C 2 = 0 [variable interval ratio 0.450 0.636 1.125 D 1 11.98431 7.88953 2.38530 D 2 0.91953 1.50549 5.28746 D 3 14.36497 17.87379 19.59605

【0020】[0020]

【表2】 [全体諸元] m=0.455〜1.137 X=-1.00D 2ω=55.1°〜21.0° EP=15.0 2H′=4.0 [レンズ諸元] No r d ν n 1 -26.9599 1.0000 30.24 1.585180 L1 2* 11.2349 (D1) 3* 7.9065 2.9000 57.57 1.491080 L2 4 -11.1076 (D2) 5 14.4166 1.0000 30.24 1.585180 L3 6 6.9057 (D3) 7* 13.8863 3.0000 57.57 1.491080 L4 8 -29.2272 3.8399 9 ∞ 1.0000 58.80 1.522160 A 10 ∞ 8.3900 11 ∞ 15.2400 33.59 1.571100 P 12 ∞ 1.0000 13* 20.3196 3.0000 57.57 1.491080 L5 14 -20.3618 15.0000 15 アイポイント [非球面データ] No=2 κ=-0.2397 C2=0 C4=-3.15870×10-66=-1.16350×10-58=1.71080×10-610=-5.18390×10-8 No=3 κ=-1.2752 C2=0 C4=-6.08760×10-56=1.61720×10-68=-5.08850×10-710=6.49250×10-912=0.20560×10-914=0.75033×10-1016=-0.12207×10-10 No=7 κ=-2.5000 C2=0 No=13 κ=-3.3287 C2=0 [可変間隔] 倍率 0.455 0.719 1.137 D1 15.68203 9.63273 4.68338 D2 0.40601 1.30287 4.69696 D3 16.47599 21.62843 23.18369[Table 2] [Overall specifications] m = 0.455-1.137 X = -1.00D 2ω = 55.1 ° -21.0 ° EP = 15.0 2H ′ = 4.0 [Lens specifications] Nord ν n 1 -26.9599 1.0000 30.24 1.585180 L 1 2 * 11.2349 (D 1 ) 3 * 7.9065 2.9000 57.57 1.491080 L 2 4 -11.1076 (D 2 ) 5 14.4166 1.0000 30.24 1.585 180 L 3 6 6.9057 (D 3 ) 7 * 13.8863 3.0000 57.57 1.491080 L 4 8 -29.2272 3.8399 9 ∞ 1.0000 58.80 1.522160 A10 ∞ 8.3900 11 ∞ 15.2400 33.59 1.571100 P12 ∞ 1.0000 13 * 20.3196 3.0000 57.57 1.491080 L 5 14 -20.3618 15.0000 15 Eyepoint [Aspherical surface data] No = 2 κ = -0.2397 C 2 = 0 C 4 = -3.15870 × 10 -6 C 6 = -1.16350 × 10 -5 C 8 = 1.71080 × 10 -6 C 10 = -5.18390 × 10 -8 No = 3 κ = -1.2752 C 2 = 0 C 4 = -6.08760 × 10 -5 C 6 = 1.61720 × 10 -6 C 8 = -5.08850 × 10 -7 C 10 = 6.49 250 × 10 -9 C 12 = 0.20560 × 10 -9 C 14 = 0.75033 × 10 -10 C 16 = -0.12207 × 10 -10 No = 7 κ = -2.5000 C 2 = 0 o = 13 κ = -3.3287 C 2 = 0 [ Variable Interval ratio 0.455 0.719 1.137 D 1 15.68203 9.63273 4.68338 D 2 0.40601 1.30287 4.69696 D 3 16.47599 21.62843 23.18369

【0021】[0021]

【表3】 [全体諸元] m=0.450〜1.350 X=-1.00D 2ω=57.6°〜17.5° EP=15.0 2H′=4.0 [レンズ諸元] r d ν n 1 -16.3344 1.0000 30.24 1.585180 L1 2* 15.2434 (D1) 3* 8.9953 3.4000 57.57 1.491080 L2 4* -8.3508 (D2) 5 678.5465 1.0000 30.24 1.585180 L3 6* 13.5492 (D3) 7* 11.6282 3.3000 57.57 1.491080 L4 8 -48.7385 1.4069 9 ∞ 1.0000 58.80 1.522160 A 10 ∞ 8.3900 11 ∞ 15.2400 33.59 1.571100 P 12 ∞ 1.0000 13* 20.3196 3.0000 57.57 1.491080 L5 14 -20.3618 15.0000 15 アイポイント [非球面データ] No=2 κ=0.4865 C2=0 C4=-6.29090×10-6 6=5.44060×10-78=1.26030×10-710=-6.40290×10-9 No=3 κ=-2.0127 C2=0 C4=-7.64130×10-56=-2.52810×10-58=3.59710×10-710=1.06520×10-812=-0.34876×10-814=-0.27628×10-916=0.10165×10-10 No=4 κ=-3.0000 C2=0 C4=-7.42100×10-46=-1.11410×10-58=9.50190×10-710=-9.08130×10-8 No=6 κ=9.5522 C2=0 C4=-3.43740×10-46=-1.21120×10-58=1.29170×10-610=-1.23400×10-7 No=7 κ=-2.5000 C2=0 No=13 κ=-3.3287 C2=0 [可変間隔] 倍率 0.450 0.779 1.350 D1 15.02375 8.07125 2.54996 D2 1.03605 1.66367 5.92033 D3 15.98090 22.30579 23.57041[Table 3] [Overall specifications] m = 0.450-1.350 X = -1.00D 2ω = 57.6 ° -17.5 ° EP = 15.0 2H ′ = 4.0 [Lens specifications] rdν n 1 -16.3344 1.0000 30.24 1.585180 L1 2 * 15.2434 (D1) 3 * 8.9953 3.4000 57.57 1.491080 LTwo 4 * -8.3508 (DTwo) 5 678.5465 1.0000 30.24 1.585180 LThree 6 * 13.5492 (DThree) 7 * 11.6282 3.3000 57.57 1.491080 LFour 8 -48.7385 1.4069 9 ∞ 1.0000 58.80 1.522160 A 10 ∞ 8.3900 11 ∞ 15.2400 33.59 1.571100 P12 ∞ 1.0000 13 * 20.3196 3.0000 57.57 1.491080 LFive 14 -20.3618 15.0000 15 Eye point [Aspherical surface data] No = 2 κ = 0.4865 CTwo= 0 CFour= -6.29090 × 10-6  C6= 5.44060 x 10-7 C8= 1.26030 × 10-7 CTen= -6.40290 × 10-9 No = 3 κ = -2.0127 CTwo= 0 CFour= -7.64130 × 10-Five C6= -2.52810 x 10-Five C8= 3.59710 × 10-7 CTen= 1.06520 × 10-8 C12= -0.34876 × 10-8 C14= -0.27628 × 10-9 C16= 0.10165 x 10-Ten No = 4 κ = -3.0000 CTwo= 0 CFour= -7.42100 × 10-Four C6= -1.11410 × 10-Five C8= 9.50190 × 10-7 CTen= -9.08130 × 10-8 No = 6 κ = 9.5522 CTwo= 0CFour= -3.443740 x 10-Four C6= -1.21120 × 10-Five C8= 1.29170 × 10-6 CTen= -1.23400 x 10-7 No = 7 κ = -2.5000 CTwo= 0 No = 13 κ = -3.3287 CTwo= 0 [Variable interval] Magnification 0.450 0.779 1.350 D1 15.02375 8.07125 2.54996 DTwo 1.03605 1.66367 5.92033 DThree 15.98090 22.30579 23.57041

【0022】[0022]

【表4】 [全体諸元] m=0.355〜0.888 X=-1.00D 2ω=66.4°〜26.7° EP=15.0 2H′=4.0 [レンズ諸元] r d ν n 1 40.9199 1.0000 30.24 1.585180 L1 2* 6.7935 (D1) 3* 8.4089 2.9000 57.57 1.491080 L2 4* -11.4801 (D2) 5 15.1064 1.0000 30.24 1.585180 L3 6* 7.5339 (D3) 7* 13.8519 3.0000 57.57 1.491080 L4 8 -23.8545 4.8232 9 ∞ 1.0000 58.80 1.522160 A 10 ∞ 8.3900 11 ∞ 15.2400 33.59 1.571100 P 12 ∞ 1.0000 13* 20.3196 3.0000 57.57 1.491080 L5 14 -20.3618 15.0000 15 アイポイント [非球面データ] No=2 κ=0.6376 C2=0 C4=-3.00350×10-66=1.16010×10-58=-7.39010×10-710=1.45850×10-8 No=3 κ=-0.9362 C2=0 C4=3.01460×10-56=-1.81910×10-58=-1.39020×10-710=4.84820×10-812=-0.65461×10-814=-0.87973×10-916=0.88788×10-10 No=4 κ=0.3652 C2=0 C4=-1.06030×10-46=-2.39470×10-58=1.41230×10-710=-1.09140×10-7 No=6 κ=2.0080 C2=0 No=7 κ=-2.5000 C2=0 No=13 κ=-3.3287 C2=0 [可変間隔] 倍率 0.355 0.562 0.888 D1 18.32615 11.90344 6.44245 D2 1.00086 1.03713 3.67788 D3 11.07766 17.46409 20.28434[Table 4] [Overall specifications] m = 0.355-0.888 X = -1.00D 2ω = 66.4 ° -26.7 ° EP = 15.0 2H ′ = 4.0 [Lens specifications] rd v n 1 40.9199 1.0000 30.24 1.585180 L 1 2 * 6.7935 (D 1) 3 * 8.4089 2.9000 57.57 1.491080 L 2 4 * -11.4801 (D 2) 5 15.1064 1.0000 30.24 1.585180 L 3 6 * 7.5339 (D 3) 7 * 13.8519 3.0000 57.57 1.491080 L 4 8 -23.8545 4.8232 9 ∞ 1.0000 58.80 1.522160 A10 8.3 8.3900 11 ∞ 15.2400 33.59 1.571100 P12 ∞ 1.0000 13 * 20.3196 3.0000 57.57 1.491080 L 5 14 -20.3618 15.0000 15 Eyepoint [Aspherical surface data] No = 2 κ = 0.6376 C 2 = 0 C 4 =- 3.00350 × 10 -6 C 6 = 1.16010 × 10 -5 C 8 = -7.39010 × 10 -7 C 10 = 1.45850 × 10 -8 No = 3 κ = -0.9362 C 2 = 0 C 4 = 3.01460 × 10 -5 C 6 = -1.81910 × 10 −5 C 8 = −1.39020 × 10 −7 C 10 = 4.84820 × 10 −8 C 12 = −0.65461 × 10 −8 C 14 = −0.87973 × 10 −9 C 16 = 0.88788 × 10 − 10 No = 4 κ = 0.3652 C 2 = 0 C 4 -1.06030 × 10 -4 C 6 = -2.39470 × 10 -5 C 8 = 1.41230 × 10 -7 C 10 = -1.09140 × 10 -7 No = 6 κ = 2.0080 C 2 = 0 No = 7 κ = -2.5000 C 2 = 0 No = 13 κ = -3.3287 C 2 = 0 [ variable interval ratio 0.355 0.562 0.888 D 1 18.32615 11.90344 6.44245 D 2 1.00086 1.03713 3.67788 D 3 11.07766 17.46409 20.28434

【0023】[0023]

【表5】 実施例番号 1 2 3 4 (1)(D12w+D23W)/(D12T+D23T) 1.682 1.715 1.896 1.910 D12W 11.984 15.682 15.024 18.326 D23W 0.920 0.406 1.036 1.001 D12T 2.385 4.683 2.550 6.442 D23T 5.287 4.697 5.920 3.678 (2)|f3/f2| 2.406 2.406 2.508 2.601 f2 8.833 9.903 9.427 10.382 f3 -21.248 -23.822 -23.639 -27.000 (3)β234T -1.833 -1.788 -2.140 -1.332[Table 5] Example No. 1 2 3 4 (1) (D 12w + D 23W ) / (D 12T + D 23T ) 1.682 1.715 1.896 1.910 D 12W 11.984 15.682 15.024 18.326 D 23W 0.920 0.406 1.036 1.001 D 12T 2.385 4.683 2.550 6.442 D 23T 5.287 4.697 5.920 3.678 (2) | f 3 / f 2 | 2.406 2.406 2.508 2.601 f 2 8.833 9.903 9.427 10.382 f 3 -21.248 -23.822 -23.639 -27.000 (3) β 234T -1.833 -1.788 -2.140 -1.332

【0024】図2、図3及び図4に第1実施例の最低倍
率状態、中間倍率状態、及び最高倍率状態における球面
収差、非点収差、歪曲収差、横収差、及び倍率色収差を
示す。同様に図6〜8、図10〜12、及び図14〜1
6に、それぞれ第2、第3及び第4実施例の諸収差図を
示す。各収差図において、Hは入射高、ωは半画角を示
す。また非点収差図において、実線はサジタル像面を表
し、点線はメリジオナル像面を表す。各収差図より明ら
かなように、各実施例とも所要のレンズ構成をとり、各
条件式を満たすことによって、優れた結像性能を有する
ことが分かる。
FIGS. 2, 3 and 4 show the spherical aberration, astigmatism, distortion, lateral aberration, and lateral chromatic aberration of the first embodiment in the minimum magnification state, the intermediate magnification state, and the maximum magnification state, respectively. 6 to 8, 10 to 12, and 14 to 1
FIG. 6 shows various aberration diagrams of the second, third, and fourth examples, respectively. In each aberration diagram, H indicates an incident height, and ω indicates a half angle of view. In the astigmatism diagram, a solid line indicates a sagittal image plane, and a dotted line indicates a meridional image plane. As is clear from the aberration diagrams, it is understood that each of the examples has a required lens configuration and satisfies the respective conditional expressions, thereby having excellent imaging performance.

【0025】[0025]

【発明の効果】以上のように本発明によれば、大きな変
倍比を有しながら、収差の良好な、小型の負正負構成の
ケプラー式ファインダーを得ることかできる。
As described above, according to the present invention, it is possible to obtain a compact Kepler-type finder having a large zoom ratio, good aberration, and a small negative / positive / negative configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例の構成を示す展開図FIG. 1 is a developed view showing a configuration of a first embodiment.

【図2】第1実施例の最低倍率状態における収差図FIG. 2 is an aberration diagram of the first embodiment in a minimum magnification state.

【図3】第1実施例の中間倍率状態における収差図FIG. 3 is an aberration diagram of the first embodiment in an intermediate magnification state.

【図4】第1実施例の最高倍率状態における収差図FIG. 4 is an aberration diagram of the first embodiment in a maximum magnification state.

【図5】第2実施例の構成を示す反射面を省略した展開
FIG. 5 is a development view showing the configuration of the second embodiment, in which the reflection surface is omitted.

【図6】第2実施例の最低倍率状態における収差図FIG. 6 is an aberration diagram in the lowest magnification state of the second embodiment.

【図7】第2実施例の中間倍率状態における収差図FIG. 7 is an aberration diagram of the second embodiment in an intermediate magnification state.

【図8】第2実施例の最高倍率状態における収差図FIG. 8 is an aberration diagram of the second embodiment in a maximum magnification state.

【図9】第3実施例の構成を示す反射面を省略した展開
FIG. 9 is a developed view showing the configuration of the third embodiment, in which the reflecting surface is omitted.

【図10】第3実施例の最低倍率状態における収差図FIG. 10 is an aberration diagram of the third embodiment in the lowest magnification state.

【図11】第3実施例の中間倍率状態における収差図FIG. 11 is an aberration diagram of the third embodiment in an intermediate magnification state.

【図12】第3実施例の最高倍率状態における収差図FIG. 12 is an aberration diagram of the third embodiment in a maximum magnification state.

【図13】第4実施例の構成を示す反射面を省略した展
開図
FIG. 13 is a development view showing the configuration of the fourth embodiment, in which the reflection surface is omitted.

【図14】第4実施例の最低倍率状態における収差図FIG. 14 is an aberration diagram of the fourth embodiment in the lowest magnification state.

【図15】第4実施例の中間倍率状態における収差図FIG. 15 is an aberration diagram of the fourth embodiment in an intermediate magnification state.

【図16】第4実施例の最高倍率状態における収差図FIG. 16 is an aberration diagram of the fourth embodiment in a maximum magnification state.

【符号の説明】[Explanation of symbols]

1…第1レンズ群中負レンズ L2…第2レンズ群
中正レンズ L3…第3レンズ群中負レンズ L4…第4レンズ群
中正レンズ L5…接眼レンズ A…ガラス平行平板 H1〜H4…反射面 P…プリズム EP…アイポイント
L 1 … the negative lens in the first lens group L 2 … the positive lens in the second lens group L 3 … the negative lens in the third lens group L 4 … the positive lens in the fourth lens group L 5 … the eyepiece A… the glass parallel plate H 1 ~ H 4 ... Reflection surface P ... Prism EP ... Eye point

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】物体側から順に、負の単レンズL1を含む
第1レンズ群と、正の単レンズL2を含む第2レンズ群
と、負の単レンズL3を含む第3レンズ群とを有し、全
体で正の屈折力を有する対物レンズ系と、 全体で正の屈折力を有し、前記対物レンズ系による像を
観察するための接眼レンズ系とを有するケプラー式変倍
ファインダーにおいて、 低倍率端から高倍率端への変倍に際して、前記第1レン
ズ群は固定し、前記第2レンズ群と第3レンズ群との間
の空気間隔を拡大しつつ、第2レンズ群と第3レンズ群
とを共に物体側に移動させることを特徴とするケプラー
式変倍ファインダー。
In order from 1. A object side, a third lens group including a first lens group including a negative single lens L 1, a second lens group including a positive single lens L 2, a negative single lens L 3 And an eyepiece system for observing an image formed by the objective lens system having a positive refractive power as a whole and an eyepiece system for observing an image formed by the objective lens system. In the above, at the time of zooming from a low magnification end to a high magnification end, the first lens group is fixed, and the air gap between the second lens group and the third lens group is enlarged, while the second lens group is A Kepler-type zoom finder, wherein both the third lens group and the third lens group are moved to the object side.
【請求項2】以下の条件式を満たすことを特徴とする、
請求項1記載のケプラー式変倍ファインダー。 1.5<(D12W+D23W)/(D12T+D23T)<3.0 (1) 但し、D12W:前記第1レンズ群と第2レンズ群との低
倍率端での頂点間隔 D23W:前記第2レンズ群と第3レンズ群との低倍率端
での頂点間隔 D12T:前記第1レンズ群と第2レンズ群との高倍率端
での頂点間隔 D23T:前記第2レンズ群と第3レンズ群との高倍率端
での頂点間隔 である。
2. The method according to claim 1, wherein the following conditional expression is satisfied:
The Keplerian variable magnification finder according to claim 1. 1.5 <(D 12W + D 23W ) / (D 12T + D 23T) <3.0 (1) where, D 12W: said first lens group vertex distance D 23W at low magnification end of the second lens group : A vertex distance between the second lens group and the third lens group at a low magnification end D 12T : a vertex distance between the first lens group and the second lens group at a high magnification end D 23T : the second lens group A vertex distance between the lens and the third lens unit at the high magnification end.
【請求項3】第2レンズ群の前記正の単レンズL2の少
なくともいずれかのレンズ面は非球面に形成され、且つ
以下の条件式を満たすことを特徴とする、請求項1又は
2記載のケプラー式変倍ファインダー。 2.3<|f3/f2|<3 (2) 但し、f2:前記第2レンズ群の焦点距離 f3:前記第3レンズ群の焦点距離 である。
Wherein said positive at least one of the lens surfaces of the single lens L 2 of the second lens group is formed aspherical, characterized in that and the following conditional expression is satisfied, according to claim 1 or 2, wherein Kepler type zoom finder. 2.3 <| f 3 / f 2 | <3 (2) where f 2 is a focal length of the second lens group, and f 3 is a focal length of the third lens group.
【請求項4】前記対物レンズ系は、前記第3レンズ群の
アイポイント側に正の屈折力を有する第4レンズ群を有
し、且つ以下の条件式を満たすことを特徴とする、請求
項1、2又は3記載のケプラー式変倍ファインダー。 −2.2<β234T<−1.2 (3) 但し、β234T:前記第2レンズ群、第3レンズ群及び第
4レンズ群の高倍率端での合成倍率である。
4. The objective lens system has a fourth lens group having a positive refractive power on the eye point side of the third lens group, and satisfies the following conditional expression. 4. The Keplerian variable magnification finder according to 1, 2, or 3. −2.2 <β 234T <−1.2 (3) where β 234T is a composite magnification at the high magnification end of the second, third, and fourth lens groups.
【請求項5】前記対物レンズ系は、前記第3レンズ群の
アイポイント側に正の屈折力を有する第4レンズ群を有
し、前記第3レンズ群と第4レンズ群との空気間隔に反
射手段を有し、 前記接眼レンズ系は、前記対物レンズ系からの光線を反
射する反射手段と、物体側レンズ面が非球面である正レ
ンズを少なくとも1つ有することを特徴とする、請求項
1、2、3又は4記載のケプラー式変倍ファインダー。
5. The objective lens system further comprises a fourth lens group having a positive refractive power on the eye point side of the third lens group, wherein an air gap between the third lens group and the fourth lens group is provided. The ocular lens system includes a reflecting unit configured to reflect a light beam from the objective lens system and at least one positive lens having an aspherical object-side lens surface. 5. The Kepler-type variable magnification finder according to 1, 2, 3, or 4.
JP8252306A 1996-09-02 1996-09-02 Keplerian variable power finder Pending JPH1078547A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8252306A JPH1078547A (en) 1996-09-02 1996-09-02 Keplerian variable power finder
US08/922,233 US5956178A (en) 1996-09-02 1997-09-02 Keplerian variable magnification viewfinder
KR1019970045498A KR19980024268A (en) 1996-09-02 1997-09-02 Kepler conversion magnification finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8252306A JPH1078547A (en) 1996-09-02 1996-09-02 Keplerian variable power finder

Publications (1)

Publication Number Publication Date
JPH1078547A true JPH1078547A (en) 1998-03-24

Family

ID=17235424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8252306A Pending JPH1078547A (en) 1996-09-02 1996-09-02 Keplerian variable power finder

Country Status (1)

Country Link
JP (1) JPH1078547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189173A (en) * 2000-08-08 2002-07-05 Olympus Optical Co Ltd Optical device
JP2017102013A (en) * 2015-12-01 2017-06-08 キヤノン株式会社 Scanning type microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189173A (en) * 2000-08-08 2002-07-05 Olympus Optical Co Ltd Optical device
JP2017102013A (en) * 2015-12-01 2017-06-08 キヤノン株式会社 Scanning type microscope

Similar Documents

Publication Publication Date Title
US6822808B2 (en) Zoom lens and optical apparatus having the same
US5541773A (en) Two-unit zoom lens system
US5617254A (en) Compact zoom lens
JPH07270684A (en) Rear focus zoom lens and image pickup system
US20040051958A1 (en) Wide-angle zoom lens system
US6487024B2 (en) Zoom lens system and photographic device equipped therewith
JP3032126B2 (en) Large aperture zoom lens
JPH0876192A (en) Real image type variable power finder optical system
JP3301815B2 (en) Zoom lens
JP3506796B2 (en) Real image type zoom finder
JP3330660B2 (en) Zoom finder
JPH07318798A (en) Photographic lens
JPH1048702A (en) Kepler type variable power finder
US5956178A (en) Keplerian variable magnification viewfinder
JPH0651201A (en) Real-image variable-power viewfinder
JP3766257B2 (en) Viewfinder optical system
JPH07159865A (en) Real image type variable power finder optical system
JPH08286110A (en) Zoom lens of high power
JPH1078547A (en) Keplerian variable power finder
US6922290B2 (en) Zoom lens system
US5900988A (en) Viewfinder having a high magnification ratio
JPH10142523A (en) Real image type variable power finder
JPH10104515A (en) Keplerian variable power finder
JPH0836140A (en) Ocular wide in visual field
JPH06242377A (en) Keplerian variable power finder