JPH1076233A - Apparatus for detecting calyx direction of farm produce - Google Patents
Apparatus for detecting calyx direction of farm produceInfo
- Publication number
- JPH1076233A JPH1076233A JP23568296A JP23568296A JPH1076233A JP H1076233 A JPH1076233 A JP H1076233A JP 23568296 A JP23568296 A JP 23568296A JP 23568296 A JP23568296 A JP 23568296A JP H1076233 A JPH1076233 A JP H1076233A
- Authority
- JP
- Japan
- Prior art keywords
- image
- hue
- gaku
- egg
- brightness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Sorting Of Articles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ほぼ軸対象の形状
を持ち、この軸の一端側にガクを備えた、例えば茄子の
ような農産物をコンベアで搬送しながらその形状の計測
と品質(等,階級)の判定を行い、仕分けを行う自動選
果システムにおいて、この計測と品質判定に先立ち、コ
ンベアの搬送バケット上に、その軸方向が所定の方向を
向くように載せられている農産物のガクの向きが、前記
所定の方向の何れの側にあるかを検出する、農産物のガ
ク向き検出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the measurement and quality (e.g., etc.) of an agricultural product such as an eggplant, which has a substantially axially symmetrical shape and is provided with an end on one end of the shaft, for example, an eggplant. Prior to this measurement and quality determination, the automatic fruit sorting system that performs the determination of the classification of the agricultural products placed on the conveyor bucket of the conveyor so that the axial direction thereof is oriented in a predetermined direction. The present invention relates to an apparatus for detecting the direction of the agricultural product, which detects which side of the predetermined direction is in the predetermined direction.
【0002】なお以下各図において同一の符号は同一も
しくは相当部分を示す。[0002] In the drawings, the same reference numerals indicate the same or corresponding parts.
【0003】[0003]
【従来の技術】従来、茄子の自動選果システムにおいて
は、茄子を搬送するコンベアのバケット上にオペレータ
が茄子を、茄子の軸がほぼ一定の方向を向き、且つ茄子
のガクが左右一定の側にあるように(つまりガクの向き
を揃えて)載せるようにしていた。2. Description of the Related Art Conventionally, in an automatic eggplant sorting system, an operator places eggplants on a bucket of a conveyor for transporting the eggplants, the axes of the eggplants are oriented in a substantially constant direction, and the eggplant gadgets have a fixed left and right side. (That is, the direction of the gaku is aligned).
【0004】[0004]
【発明が解決しようする課題】しかしながら、上述のよ
うにオペレータが茄子をコンベアのバケット上に、その
ガクの向きを揃えて載せるという作業は、当然ながら手
間がかかるという問題がある。そこで本発明はこのよう
な問題を解消し、仕分け対象の農産物のガクの左右の方
向を揃えなくてもその自動選果ができるようにする、農
産物のガク向き検出装置を提供することを課題とする。However, as described above, the work of the operator placing eggplants on the conveyor bucket in the same direction as that of the conveyor is naturally time-consuming. Accordingly, the present invention has been made to solve the above-described problem, and to provide an apparatus for detecting the gaku direction of agricultural products, which enables automatic fruit sorting without aligning the left and right directions of the gaku of agricultural products to be sorted. I do.
【0005】[0005]
【課題を解決するための手段】前記の課題を解決するた
めに請求項1の農産物のガク向き検出装置は、ほぼ軸対
称の外形を持ち、この軸の一端側にガク(01a)を備
えた農産物(01)をモノクロまたはカラー撮像用のカ
メラ(1)で撮像し、この画像から当該の農産物のガク
の向きを検出するガク向き検出装置において、前記カメ
ラの撮像画像(F1)からその明度画像(F2)を作成
し、この明度画像からその微分画像(微分処理多値画像
F5)を作成し、当該の農産物の前記軸にほぼ直交する
方向への、この微分画像の投影配列データ(PD)を求
め、当該の農産物の前記軸方向の長さのほぼ中央の点
(X座標xm)の両側の夫々についての前記投影配列デ
ータの総和(左側投影配列総和PDL ,右側投影配列総
和PDR )を比較し、この総和の大きい側にガクがある
と判別する。According to a first aspect of the present invention, there is provided an apparatus for detecting the direction of an agricultural product, which has a substantially axially symmetric outer shape, and has an axial portion (01a) at one end of the shaft. An image of the agricultural product (01) is taken by a monochrome or color imaging camera (1), and a gak direction detection device for detecting the gak direction of the agricultural product from the image. (F2), a differential image (differentiated multi-valued image F5) is generated from the brightness image, and the projection array data (PD) of the differential image in a direction substantially orthogonal to the axis of the agricultural product. And the sum of the projection array data (left projection array sum PD L , right projection array sum PD R ) for each of both sides of a point (X coordinate xm) substantially at the center of the axial length of the agricultural product. Compare It is determined that the larger side of the sum is calyx.
【0006】また請求項2のガク向き検出装置は、請求
項1に記載のガク向き検出装置において、前記明度画像
を所定のしきい値で2値化し、このしきい値以上の明度
を持つ画素を除去する照かり除去2値化画像(F4)を
作成し、この照かり除去2値化画像と前記微分画像との
論理積で得られる画像(AND処理多値画像F7)から
前記投影配列データを求める。According to a second aspect of the present invention, in the first aspect, the brightness image is binarized with a predetermined threshold value, and pixels having a brightness value equal to or higher than the threshold value are obtained. From the image (AND-processed multi-valued image F7) obtained by the logical product of the binarized image with illuminated removal and the differential image. Ask for.
【0007】また請求項3のガク向き検出装置は、請求
項1又は2に記載のガク向き検出装置において、前記カ
メラをカラー撮像用のカメラとし、このカメラの撮像画
像から、さらにその色相の画像(F3)を作成し、この
色相画像を所定の色相の所定のしきい値で2値化し、こ
の所定の色相のこのしきい値以上の画素を除去する所定
色傷除去2値化画像(黄色傷除去2値化画像F6など)
を作成し、前記投影配列データを求める元の投影対象の
画像に対し、予めこの所定色傷除去2値化画像との論理
積の処理を施す。According to a third aspect of the present invention, in the first aspect, the camera is a color imaging camera, and an image of the hue is further obtained from an image captured by the camera. (F3) is created, this hue image is binarized with a predetermined threshold of a predetermined hue, and a predetermined color flaw removal binarized image (yellow yellow) for removing pixels of this predetermined hue above this threshold Flaw removal binarized image F6 etc.)
Is generated, and a logical AND operation with the predetermined color flaw removal binarized image is performed in advance on the image of the projection target from which the projection array data is obtained.
【0008】また請求項4のガク向き検出装置は、請求
項1ないし3のいずれかに記載のガク向き検出装置にお
いて、前記農産物を茄子とする。また請求項5のガク向
き検出装置は、請求項4に記載のガク向き検出装置にお
いて、前記色相画像を2値化する所定の色相を黄色とす
る。According to a fourth aspect of the present invention, there is provided the gaku direction detection device according to any one of the first to third aspects, wherein the produce is eggplant. According to a fifth aspect of the present invention, the predetermined direction for binarizing the hue image is set to yellow.
【0009】[0009]
【発明の実施の形態】図2は本発明の一実施例としての
自動選果システムのハードウエアの構成図である。同図
において01は選別対象の農産物(この例では茄子)、
6は農産物01をバケット6aを介し選別位置へ搬送す
るメインコンベア、7(71,72,73)は夫々農産
物01の形状計測等に基づく等級A,B,Cの判定結果
によって、メインコンベア6からその等級に該当する位
置に落下された農産物01を搬送排出する排出コンベア
である。FIG. 2 is a block diagram of the hardware of an automatic fruit sorting system as one embodiment of the present invention. In the figure, 01 is an agricultural product to be sorted (eggplant in this example),
Reference numeral 6 denotes a main conveyor for transporting the agricultural products 01 to the sorting position via the bucket 6a. Reference numerals 7 (71, 72, 73) denote the main conveyor 6 from the main conveyor 6 based on the determination results of the grades A, B, and C based on the shape measurement and the like of the agricultural products 01, respectively. This is a discharge conveyor that conveys and discharges the agricultural products 01 dropped to a position corresponding to the class.
【0010】なおこの例では農産物01の軸が図の紙面
にほぼ垂直となる(換言すれば農産物01の軸がメイン
コンベア6の搬送方向にもほぼ直交する)姿勢となるよ
うに、予めバケット6a上に載せられて搬送されて来る
ものとする。次に1はメインコンベア6によつて、この
自動選果システムの入口付近の所定の位置まで搬送され
て来た農産物01を撮像するカラー撮像用のTVカメ
ラ、2はTVカメラ1からその撮像した映像をラスタ走
査してなるRGBのビデオ信号を入力して画像処理し、
予め後述のように当該農産物01のガクの向きを検出し
たのち、この検出結果を用い当該農産物01の形状等を
計測してその等階級を判定する画像処理装置、3は画像
処理装置2の判定結果5に基づいて当該の農産物01の
排出制御を行う排出制御装置である。In this example, the bucket 6a is set in advance so that the axis of the agricultural product 01 is substantially perpendicular to the plane of the drawing (in other words, the axis of the agricultural product 01 is substantially orthogonal to the conveying direction of the main conveyor 6). It is assumed that it is carried on the upper part. Next, 1 is a color imaging TV camera for imaging the agricultural product 01 conveyed by the main conveyor 6 to a predetermined position near the entrance of the automatic fruit sorting system, and 2 is the imaging from the TV camera 1. An RGB video signal obtained by raster-scanning an image is input and image-processed,
As described later, an image processing apparatus that detects the direction of the gak of the agricultural product 01 in advance, measures the shape and the like of the agricultural product 01 using the detection result, and determines the class of the agricultural product 01, and 3 determines the image processing apparatus 2 An emission control device that performs emission control of the agricultural product 01 based on the result 5.
【0011】即ちメインコンベア6を介し農産物01が
矢印方向に運ばれ、そのバケット6aの前端がP点に達
すると、図外の位置検出手段を介して判定開始信号4が
画像処理装置2に入力される。これにより画像処理装置
2はTVカメラ1から、そのビデオ信号を取込み当該の
農産物01のガクの向き検出及び等級判定を行い、判定
結果5を出力する。排出制御装置3はこの判定結果5に
基づき当該の農産物01をメインコンベア6から該当す
る排出コンベア7(つまり71〜73の何れか)へ落と
した上、その排出コンベア7を介し図外の梱包位置など
へ搬送する。That is, when the agricultural product 01 is conveyed in the direction of the arrow via the main conveyor 6 and the front end of the bucket 6a reaches the point P, a judgment start signal 4 is inputted to the image processing device 2 via a position detecting means (not shown). Is done. Thus, the image processing apparatus 2 takes in the video signal from the TV camera 1 to detect the direction of the gaku of the agricultural product 01 and determine the grade, and outputs the determination result 5. The discharge control device 3 drops the agricultural product 01 from the main conveyor 6 to the corresponding discharge conveyor 7 (that is, any one of 71 to 73) based on the determination result 5, and then places the packing position (not shown) via the discharge conveyor 7. Transport to
【0012】図1は画像処理装置2による農産物01の
ガクの向きを検出する処理の説明図で、同図(A)はそ
の処理のフローを示す。図2を参照しつつ図1を説明す
ると、前記判定開始信号4に基づいて、画像処理装置2
はTVカメラ1からの当該の農産物01についてのRG
Bの色別のビデオ信号からなるカメラ画像F1の色差変
換によって、多値の明度画像F2と多値の色相画像F3
を作成する。FIG. 1 is an explanatory diagram of a process of detecting the direction of the gak of the agricultural product 01 by the image processing apparatus 2, and FIG. 1A shows a flow of the process. Referring to FIG. 1 with reference to FIG. 2, the image processing apparatus 2
Is the RG for the agricultural product 01 from the TV camera 1
The multi-value lightness image F2 and the multi-value hue image F3 are obtained by color difference conversion of the camera image F1 composed of video signals for each color B.
Create
【0013】次に明度画像F2に対し照かり(てかり:
光の反射によって明るく光って見えることを指す俗語)
部分を取り除く2値化処理、つまり所定のしきい値以上
の明度を持つ画素を“0”とし、それ以外の画素を
“1”とする処理を行って照かり除去2値化画像F4を
得ると共に、同じく明度画像F2に対し微分処理(この
例ではX軸,Y軸夫々の方向における隣接画素間の差分
を求める処理)を行い微分処理多値画像F5を作成す
る。Next, the brightness image F2 is illuminated (light:
A slang term that refers to the appearance of a bright glow due to the reflection of light.)
A binarization process of removing a portion, that is, a process of setting a pixel having brightness equal to or higher than a predetermined threshold value to “0” and setting other pixels to “1”, to obtain an illuminated binary image F4. At the same time, the brightness image F2 is similarly subjected to a differentiation process (in this example, a process of obtaining a difference between adjacent pixels in each of the X-axis and Y-axis directions) to create a differential-processed multivalued image F5.
【0014】また画像処理装置2は、色相画像F3に対
しては黄色傷を取り除く2値化処理、つまり黄色の色相
の所定のしきい値以上の濃度を持つ画素のみを“0”と
し、それ以外の画素を“1”とする処理を行って黄色傷
除去2値化画像F6を作成する。次に画像処理装置2
は、照かり除去2値化画像F4,微分処理多値画像F
5,黄色傷除去2値化画像F6の3つの画像の論理積か
らなるAND処理多値画像F7を作成する。The image processing apparatus 2 performs a binarization process for removing the yellow flaw from the hue image F3, that is, sets only pixels having a density of a yellow hue equal to or higher than a predetermined threshold value to “0”. A process for setting the other pixels to "1" is performed to create a yellow-stain removal binarized image F6. Next, the image processing device 2
Are the illuminated binary image F4 and the differentially processed multi-valued image F
5. An AND-processed multi-valued image F7 composed of the logical product of the three images of the binarized image F6 including the yellow scratches is created.
【0015】つまり、このAND処理多値画像F7は当
該の農産物01の光って見える部分と黄色く見える部分
を取り除いた、主としてその外形輪郭部分とガクの部分
とからなる多値の画像である。次にAND処理多値画像
F7から、そのY軸方向の投影配列データ(つまり同一
X座標上の各画素の画素値の総和を、X座標値の順に配
列したデータ)PDを求める。なおこの例では農産物
(茄子)01は、その軸が図1(B)に示すようにほぼ
X軸方向を向き、且つこの農産物(茄子)01の全体の
像が画像処理装置2の画面上の予め設定された計測処理
用のウィンドウ領域に程よく納まるように(つまり農産
物(茄子)01の軸方向の全長に比べて、ウィンドウ領
域の余白部分の長さが数分の一程度となるように)バケ
ット6a上に載せられているものとする。In other words, the AND-processed multi-valued image F7 is a multi-valued image mainly composed of the outer contour portion and the black portion of the agricultural product 01, except for the portion that looks shining and the portion that looks yellow. Next, from the AND-processed multivalued image F7, the projection array data PD in the Y-axis direction (that is, data in which the sum of the pixel values of each pixel on the same X coordinate is arranged in the order of the X coordinate value) PD is obtained. In this example, the axis of the agricultural product (eggplant) 01 is substantially in the X-axis direction as shown in FIG. 1B, and the entire image of the agricultural product (eggplant) 01 is displayed on the screen of the image processing apparatus 2. In order to fit the window area for measurement processing set in advance appropriately (that is, the length of the blank portion of the window area is about a fraction of the total length of the agricultural product (eggplant) 01 in the axial direction). It is assumed that it is placed on the bucket 6a.
【0016】次に前記投影配列データPDをもとに、前
記ウィンドウの始点のX座標xsからウィンドウの中点
のX座標xmまでの前記投影配列データPDの総和とし
ての左側投影配列総和PDL と、この中点のX座標xm
から前記ウィンドウの終点のX座標xeまでの前記投影
配列データPDの総和としての右側投影配列総和PD R
を求め、この配列総和PDL とPDR とを比較し、総和
の大きい側をガクの向きとする。Next, based on the projection array data PD,
From the X coordinate xs of the start point of the window to the middle point of the window
Of the projection array data PD up to the X coordinate xm
Left projection array sum PDLAnd the X coordinate xm of this midpoint
To the X coordinate xe of the end point of the window
Right projection array sum PD as sum of array data PD R
Is calculated, and this array sum PDLAnd PDRAnd the sum
The side with the larger is the direction of gaku.
【0017】この例では右側投影配列総和PDR が左側
投影配列総和PDL より大きく、農産物(茄子)01の
ガク01aが右側にあることが検出される。画像処理装
置2は、このガク01aの向きから前記のように農産物
(茄子)01の形状の測定(例えば軸方向の全長,首と
胴の太さの比,曲がり具合等の測定)を行って判定結果
5を出力し、これにより農産物01の仕分けが行われ
る。In this example, it is detected that the right-side projected array sum PD R is larger than the left-side projected array sum PD L , and that the gaku 01a of the agricultural product (eggplant) 01 is on the right side. The image processing apparatus 2 measures the shape of the agricultural product (eggplant) 01 (for example, measures the total length in the axial direction, the ratio between the thickness of the neck and the trunk, the degree of bending, and the like) from the direction of the gad 01a as described above. A determination result 5 is output, whereby the sorting of the agricultural products 01 is performed.
【0018】なお前記中点としてウィンドウの中点を用
いる代わりに、前記投影配列データPDを所定のしきい
値で2値化して農産物01の外形の軸方向の始点と終点
のX座標を求め、この始点と終点の中点としての現実の
農産物01の中点のX座標を用いてもよく、この場合
は、よりガク向きの検出精度が高まることはいうまでも
ない。Instead of using the middle point of the window as the middle point, the projection array data PD is binarized with a predetermined threshold value to obtain the X-coordinate of the axial start and end points of the outer shape of the produce 01. The X coordinate of the middle point of the actual agricultural product 01 as the middle point between the start point and the end point may be used. In this case, it goes without saying that the detection accuracy of the jerk direction is further improved.
【0019】[0019]
【発明の効果】本発明によれば、茄子のようなほぼ軸対
称の外形を持ち、この軸の一端側にガクを備えた農産物
の等階級の仕分けを行う自動選果システムにおいて、当
該の農産物の形状計測,等階級判定に先立って、当該の
農産物のカメラ画像から得られる明度画像を微分処理し
た微分画像、もしくはこの微分画像に対し、光って見え
る画素を取り除くために明度画像を所定の明度しきい値
で2値化した照かり除去2値化画像、又は(及び)所定
の色(この場合、黄色)傷の画素を取り除くためにカメ
ラ画像から得られる色相画像を所定の色相の所定のしき
い値で2値化した所定色傷除去2値化画像との論理積の
処理を施した画像(つまり当該の農産物の光って見える
部分及び所定の色傷の部分を取り除いた微分画像)、を
農産物の軸にほぼ直交する方向へ投影し、農産物の軸方
向の長さのほぼ中央の点(X座標xm)の両側の夫々に
ついての投影データの総和(PDL とPDR)を求め、
この総和の大きい側にガクがあると判別するようにした
ので、仕分け対象の農産物を搬送するコンベアのバケッ
トへ農産物を載せる際にガクの向きを揃えなくても、ガ
クの向きを精度よく検出して形状計測を安定に行うこと
ができ、農産物を取り扱う手間を減らすことができる。According to the present invention, there is provided an automatic fruit sorting system having an approximately axisymmetric outer shape such as an eggplant and having a gaku at one end of the shaft for performing equal-grade sorting of agricultural products. Prior to shape measurement and class determination, a differential image obtained by differentiating a brightness image obtained from a camera image of the agricultural product, or a brightness image of the differential image having a predetermined brightness in order to remove pixels that appear to shine. An illuminated binarized image binarized by a threshold value and / or a hue image obtained from a camera image to remove a pixel of a predetermined color (in this case, yellow) is converted into a predetermined hue of a predetermined hue. An image obtained by performing a logical AND process with a predetermined color flaw removal binarized image binarized by a threshold value (that is, a differential image obtained by removing a luminous part and a predetermined color flaw part of the agricultural product); Almost on the axis of produce Projected to direction orthogonal obtains both sides of the sum of projection data for each of the substantially central point of the axial length of the agricultural products (X coordinate xm) a (PD L and PD R),
Since it is determined that there is gaku on the side with the larger sum, it is possible to accurately detect the gaku orientation without having to align the gaku orientation when placing the agricultural products on the conveyor bucket that transports the agricultural products to be sorted. Shape measurement can be performed stably, and labor for handling agricultural products can be reduced.
【図1】本発明の実施例としてのガク向き検出処理の説
明図FIG. 1 is an explanatory diagram of a back direction detection process as an embodiment of the present invention.
【図2】本発明の一実施例としての自動選果システムの
ハードウエアの構成図FIG. 2 is a configuration diagram of hardware of an automatic fruit sorting system as one embodiment of the present invention.
01 農産物(茄子) 01a ガク 1 TVカメラ 2 画像処理装置 3 排出制御装置 4 判定開始信号 5 判定結果 6 メインコンベア 6a バケット 7(71〜73) 排出コンベア F1 RGBカメラ画像 F2 明度画像 F3 色相画像 F4 照かり除去2値化画像 F5 微分処理多値画像 F6 黄色傷除去2値化画像 F7 AND処理多値画像 PD 投影配列データ PDL 左側投影配列総和 PDR 右側投影配列総和 xs 計測処理用ウィンドウの始点のX座標 xm 計測処理用ウィンドウの中点のX座標 xe 計測処理用ウィンドウの終点のX座標01 agricultural products (eggplant) 01a gaku 1 TV camera 2 image processing device 3 discharge control device 4 judgment start signal 5 judgment result 6 main conveyor 6a bucket 7 (71-73) discharge conveyor F1 RGB camera image F2 brightness image F3 hue image F4 illumination Binary removal binarized image F5 Differential processing multi-valued image F6 Yellow scratch removal binarized image F7 AND processed multi-valued image PD projection array data PD L left projection array sum PD R right projection array sum xs Start point of measurement processing window X coordinate xm X coordinate of middle point of measurement processing window xe X coordinate of end point of measurement processing window
Claims (5)
にガクを備えた農産物をモノクロまたはカラー撮像用の
カメラで撮像し、この画像から当該の農産物のガクの向
きを検出するガク向き検出装置において、 前記カメラの撮像画像からその明度画像を作成し、 この明度画像からその微分画像を作成し、 当該の農産物の前記軸にほぼ直交する方向への、この微
分画像の 投影配列データを求め、 当該の農産物の前記軸方向の長さのほぼ中央の点の両側
の夫々についての前記投影配列データの総和を比較し、 この総和の大きい側にガクがあると判別することを特徴
とする農産物のガク向き検出装置。An image of an agricultural product having a substantially axially symmetric outer shape and having gaku at one end of this axis is taken by a monochrome or color imaging camera, and the gaku direction of the agricultural product is detected from the image. In the direction detection device, a brightness image is created from the captured image of the camera, a differential image is created from the brightness image, and projection array data of the differential image in a direction substantially orthogonal to the axis of the agricultural product is provided. Calculating the sum of the projection array data for each of the two sides of the point substantially at the center of the axial length of the agricultural product, and determining that there is a gaku on the side of the larger sum. Detection device for agricultural products.
て、 前記明度画像を所定のしきい値で2値化し、このしきい
値以上の明度を持つ画素を除去する照かり除去2値化画
像を作成し、 この照かり除去2値化画像と前記微分画像との論理積で
得られる画像から前記投影配列データを求めることを特
徴とする農産物のガク向き検出装置。2. The illumination direction detecting apparatus according to claim 1, wherein said brightness image is binarized with a predetermined threshold value, and pixels having brightness equal to or higher than said threshold value are removed. An apparatus for detecting a gaku direction of agricultural products, wherein an image is created, and the projection array data is obtained from an image obtained by a logical product of the binarized image with illuminated removal and the differential image.
において、 前記カメラをカラー撮像用のカメラとし、 このカメラの撮像画像から、さらにその色相の画像を作
成し、 この色相画像を所定の色相の所定のしきい値で2値化
し、この所定の色相のこのしきい値以上の画素を除去す
る所定色傷除去2値化画像を作成し、 前記投影配列データを求める元の投影対象の画像に対
し、予めこの所定色傷除去2値化画像との論理積の処理
を施すことを特徴とする農産物のガク向き検出装置。3. An apparatus according to claim 1, wherein the camera is a camera for color imaging, and an image of the hue is further created from an image taken by the camera, and the hue image is determined by a predetermined method. A predetermined threshold value of the hue of the image, and a predetermined color defect removal binarized image for removing pixels of the predetermined hue equal to or more than the threshold value is created. A gaku direction detection device for agricultural products, wherein the image of (a) is subjected to a logical product process with the predetermined color flaw removal binarized image in advance.
向き検出装置において、 前記農産物を茄子としたことを特徴とする農産物のガク
向き検出装置。4. The gaku direction detection device for agricultural products according to claim 1, wherein the agricultural product is an eggplant.
て、 前記色相画像を2値化する所定の色相を黄色としたこと
を特徴とする農産物のガク向き検出装置。5. The gaku direction detection device for agricultural products according to claim 4, wherein a predetermined hue for binarizing the hue image is yellow.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23568296A JPH1076233A (en) | 1996-09-06 | 1996-09-06 | Apparatus for detecting calyx direction of farm produce |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23568296A JPH1076233A (en) | 1996-09-06 | 1996-09-06 | Apparatus for detecting calyx direction of farm produce |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1076233A true JPH1076233A (en) | 1998-03-24 |
Family
ID=16989654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23568296A Pending JPH1076233A (en) | 1996-09-06 | 1996-09-06 | Apparatus for detecting calyx direction of farm produce |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1076233A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009100114A1 (en) * | 2008-02-04 | 2009-08-13 | Diamond Systems, Inc. | Vision system with software control for detecting dirt and other imperfections on egg surfaces |
WO2013036380A2 (en) * | 2011-09-09 | 2013-03-14 | Randazzo Joseph A | Method, system, and apparatus for automated destemming |
WO2022137822A1 (en) * | 2020-12-24 | 2022-06-30 | 株式会社サタケ | Identification method for object-to-be-sorted, sorting method, sorting device, and identification device |
-
1996
- 1996-09-06 JP JP23568296A patent/JPH1076233A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009100114A1 (en) * | 2008-02-04 | 2009-08-13 | Diamond Systems, Inc. | Vision system with software control for detecting dirt and other imperfections on egg surfaces |
US8330809B2 (en) | 2008-02-04 | 2012-12-11 | Fps Food Processing Systems, B.V. | Vision system with software control for detecting dirt and other imperfections on egg surfaces |
WO2013036380A2 (en) * | 2011-09-09 | 2013-03-14 | Randazzo Joseph A | Method, system, and apparatus for automated destemming |
WO2013036380A3 (en) * | 2011-09-09 | 2013-05-10 | Randazzo Joseph A | Method, system, and apparatus for automated destemming |
US8733240B2 (en) | 2011-09-09 | 2014-05-27 | Joseph A. Randazzo | System for automated destemming |
WO2022137822A1 (en) * | 2020-12-24 | 2022-06-30 | 株式会社サタケ | Identification method for object-to-be-sorted, sorting method, sorting device, and identification device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6152845B2 (en) | Optical granular material sorter | |
KR102103048B1 (en) | Optical granular substance sorter | |
JP2001145855A (en) | Method and apparatus for sorting particle | |
JP2018066717A (en) | Defect inspection device for board for boiled fish paste | |
CN115931898A (en) | Visual detection method and device for surface defects of ceramic substrate and storage medium | |
US6741275B2 (en) | Lumber grading system | |
JP3614980B2 (en) | Agricultural product appearance inspection method and apparatus | |
JPH1076233A (en) | Apparatus for detecting calyx direction of farm produce | |
KR101673056B1 (en) | sorting method for grains | |
JP3962525B2 (en) | Image generation device and sorting classification determination device used for sorting agricultural products | |
JP2642107B2 (en) | Automatic grading method and device for fruits and vegetables | |
JPH0658733A (en) | Inspecting method of nonuniform section of glass bottle | |
JPH10192793A (en) | Glass bottle sorter | |
CN114472203B (en) | Sorting method and device thereof | |
US12106468B2 (en) | Foreign material inspection system | |
JPH10160676A (en) | Rice grain inspection device | |
JP4699129B2 (en) | Agricultural product inspection equipment | |
KR102094314B1 (en) | Machine vision based crop selection apparatus | |
JPH06307828A (en) | Method and device for inspecting component parts | |
JPH0943162A (en) | External appearance inspection method | |
JP2024146180A (en) | Inspection system, inspection method, and inspection program | |
JPH0413953A (en) | Detect inspection preprocessor for electronic component molded form | |
JP2001250109A (en) | Method and device for inspection | |
JPH0431751A (en) | Defect detecting method by visual inspection | |
JP2020144727A (en) | Veneer determination system and veneer determination method |