JPH1075673A - トランスジェニック・サトイモ科植物の製造方法および除草剤耐性サトイモ科植物 - Google Patents

トランスジェニック・サトイモ科植物の製造方法および除草剤耐性サトイモ科植物

Info

Publication number
JPH1075673A
JPH1075673A JP8232892A JP23289296A JPH1075673A JP H1075673 A JPH1075673 A JP H1075673A JP 8232892 A JP8232892 A JP 8232892A JP 23289296 A JP23289296 A JP 23289296A JP H1075673 A JPH1075673 A JP H1075673A
Authority
JP
Japan
Prior art keywords
plant
gene
bialaphos
protocorm
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8232892A
Other languages
English (en)
Inventor
Yukihiro Masayama
征洋 正山
Hiromichi Morikawa
弘道 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd filed Critical Meiji Seika Kaisha Ltd
Priority to JP8232892A priority Critical patent/JPH1075673A/ja
Publication of JPH1075673A publication Critical patent/JPH1075673A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

(57)【要約】 【目的】 サトイモ科植物において、耐性マーカー遺伝
子および有用遺伝子が染色体に組み込まれた形質転換細
胞のみよりなる形質転換サトイモ科植物の製造方法およ
び除草剤耐性サトイモ科植物を提供する。 【構成】 サトイモ科植物のカルスにパーティクルガン
を用いて耐性マーカー遺伝子および有用遺伝子を導入
し、プロトコーム様多芽体を経由して、形質転換細胞の
みよりなるサトイモ科植物を製造する方法、および除草
剤耐性サトイモ科植物に関する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、有用遺伝子が染色
体に組み込まれた形質転換細胞のみよりなるサトイモ科
植物の製造方法および除草剤耐性サトイモ科植物に関す
る。
【0002】
【従来の技術】広く植物への外来遺伝子導入法として
は、アグロバクテリウムを用いる方法とエレクトロポレ
ーンョンによる方法とが知られている。また、近年、ト
ウモロコシや小麦などの単子葉植物の形質転換にパーテ
ィクルガン法が利用され始めている。
【0003】この方法は、金やタングステンなどの金属
微粒子の表面にDNAをコーティングし、この粒子を音
速以上の高速度に加速して植物細胞に打ち込み、形質転
換するものである。このパーテイクルガンを用いて単子
葉類のラン科植物等への形質転換体の作出例(特開平7
−255300号)は見られるが、カラスビシャクおよ
びそれが属するサトイモ科植物での成功例はこれまで報
告されていない。
【0004】
【発明が解決しようとする課題】サトイモ科植物に属す
るカラスビシャクの塊茎は、生薬の半夏の原料として重
要である。近年、輸入される塊茎の品質が低下してお
り、大量増殖法による種苗の増産あるいは遺伝的な手法
による積極的な品種改良が望まれている。大量増殖法
(クローン増殖法)に関しては、本発明者らにより既に
報告( Y.Shoyama etal.,Planta Medica (1983) 49,14-
16 、Y.Shoyama et al.,Biotechnology in Agriculture
and Forestry,Vol 19 High-Tech and Micropropagati
on III(ed byY.P.S.Bajaj) pp.464-480)があるが、カラ
スビシャクを始めとしたサトイモ科植物において、外来
遺伝子を導入し優れた特性を付与することはこれまで不
可能であった。それは、サトイモ科植物は単子葉植物で
あるためアグロバクテリウムによる感染を受けないこ
と、あるいはプロトプラストからの植物体再生技術が確
立されていないためエレクトロポレーンョン法を用いる
ことが困難であること等の理由からであった。
【0005】
【課題を解決するための手段】本発明者らは、形質転換
細胞のみよりなるサトイモ科植物を製造するために、そ
のカルスにパーテイクルガンを用いて遺伝子導入し、プ
ロトコーム様多芽体を経由して、目的とするトランスジ
ェニックなサトイモ科植物を製造することに成功し、本
発明を完成するにいたった。
【0006】サトイモ科植物、特にカラスビシャクは、
カルスからプロトコーム様多芽体を経由して再分化植物
を形成することが知られているが、この場合、カルス表
面の単一細胞から多数のプロトコーム様多芽体を形成す
ると考えられている( Y.Shoyama et al., Biotechnolo
gy in Agriculture and Forestry,Vol 19 High-Techan
d Micropropagation III(ed by Y.P.S.Bajaj) pp.464-4
80)。そこで、本発明者らは、サトイモ科植物であるカ
ラスビシャクのカルスに遺伝子導入をはかり、カルス表
面の単一細胞から形質転換されたプロトコーム様多芽体
を取得し、更に、この多芽体を再分化培地で培養するこ
とにより最終的に形質転換細胞のみからなるトランスジ
ェニック・サトイモ科植物を得ることに成功した。
【0007】
【発明の実施の形態】以下に、本発明の方法について具
体的に説明する。サトイモ科植物、特にカラスビシャク
のプロトコーム様多芽体は、葉切片、塊茎切片、葉切片
由来のカルス等から誘導されるプロトコーム様の不定芽
のことで、ラン科植物、例えばデンドロビューム、カト
レア、シンビジューム等のプロトコーム様球体に極めて
類似したものである。本プロトコーム様多芽体は、切断
して増殖培地で培養することにより、切断した多芽体表
面の単細胞から多数の2次多芽体を形成し、再分化培地
にて再分化植物を形成する。
【0008】パーテイクルガンによる遺伝子導入方法は
通常の方法によるが、プロトコーム様多芽体はカルス表
面の細胞から形成されるため、DNAをコーティングし
た金粒子あるいはタングステン粒子はカルス表面の細胞
に到達しなくてはならない。このため、パーテイクルガ
ンの発射圧力と発射速度を精密に調節する必要がある。
有用遺伝子、例えば耐病性、耐寒性、害虫耐性、花色、
形態等に係わる遺伝子を導入する場合は、これら有用遺
伝子とプロモーター、ターミネーターを連結して植物内
で発現可能なカセットとする。このカセットと同じく植
物内で発現可能な選抜マーカー遺伝子のカセットを同一
のベクター上に保持させるか、あるいは別々のベクター
上に保持させ混合して導入する。
【0009】サトイモ科植物、特にカラスビシャクでマ
ーカー遺伝子や有用遺伝子を発現させるためには、プロ
モーターとしては、例えばカリフラワーモザイクウイル
ス35Sプロモーターが使用可能であり、ターミネーター
としては、ノパリンシンターゼが使用できる。レポータ
ー遺伝子として大腸菌由来のβ−グルクロニダーゼ(G
US)遺伝子を選び、これをカリフラワーモザイクウイ
ルス35Sプロモーター、およびノパリンシンターゼター
ミネーター制御下に置いたプラスミドDNA pBI221
(図1)等を発現ベクターとして用いることができる。
【0010】サトイモ科植物は単子葉植物であるので、
形質転換細胞の選抜に用いる選抜マーカー遺伝子とし
て、例えば、イネ、トウモロコシ等の単子葉類でその有
用性が認められているビアラホス耐性(bar)遺伝子
が考えられる。ビアラホス耐性遺伝子は、除草剤である
ビアラホスを無毒化する酵素フォスフィノスリシンアセ
チルトランスフェラーゼをコードしている。本酵素遺伝
子をマーカー遺伝子として選択し、先の例と同様に、こ
の耐性遺伝子をカリフラワーモザイクウイルス35Sプロ
モーター、およびノパリンシンターゼターミネーター制
御下に置いたプラスミドDNApARK22(図2)を構築し
(T.Sawasaki,et al., Transgenic Research,3,279-286
(1994))発現ベクターとして用いる。
【0011】DNAをコーティングした金粒子を発射し
たカルスは、第1段階として、高濃度の選抜薬剤を含む
プロトコーム様多芽体形成培地で培養し選抜する。第2
段階として、低濃度の選抜薬剤を添加した選抜用再分化
培地で培養し形質転換植物を選抜する。以上の2段階選
抜で形質転換体のみが効率よく選抜される。選抜薬剤の
種類および濃度は、導入した耐性マーカー遺伝子の種類
および植物の種類により異なるが、例えばカラスビシャ
クにbar遺伝子を導入した場合は、選抜薬剤であるビ
アラホスを第1段階では2mg/l程度、第2段階では
1mg/ml程度添加するのが好ましい。
【0012】本発明の実施例においては生薬の半夏の原
料植物であるカラスビシャクのカルスを用いた場合につ
いて述べるが、本発明はカラスビシャクに限らず、プロ
トコーム様多芽体を形成することができるサトイモ科植
物に関するものである。以下実施例をあげて本発明を更
に詳細に説明する。
【0013】
【実施例1】カルスのビアラホス耐性度の検討 選抜マーカー遺伝子としてbar遺伝子を用いることと
し、カラスビシャクのカルスからプロトコーム様多芽体
が形成する過程におけるビアラホス選抜濃度の検討を行
った。カルスは前述のY.Shoyamaらの方法(Biotechnolo
gy in Agriculture and Forestry,Vol 19 High-Tech a
nd Micropropagation III(ed by Y.P.S.Bajaj) pp.464-
480)に従って調製し、2, 4−ジクロロフェノキシ酢
酸(2, 4−D)を5mg/l加えたムラシゲ・スクー
グ培地(MS培地)を、プロトコーム様多芽体形成培地
として用いた。この培地に、更に、それぞれ0、0.5 、
1.0 、1.5 、2.0 、3.0 mg/lの濃度となるようにビ
アラホスを添加し、カラスビシャクのカルスを置床し
た。25℃、16時間日長下で培養を行い、1カ月後に観察
した。その結果、ビアラホスの濃度が2mg/lにおい
て、全カルスがプロトコーム様多芽体を形成することな
く枯死した(表1)。したがって、プロトコーム様多芽
体形成培地における遺伝子導入後のカルスに対する選抜
は、ビアラホスを2mg/1添加した培地を用いること
とした。
【0014】 表1 カルスのビアラホス耐性度の検討 ────────────────────── ビアラホス濃度(mg/l) 生育状況 ────────────────────── 0 ++ 0.5 ++ 1.0 ++ 1.5 + 2.0 − 3.0 − ────────────────────── − は枯死を表す。
【0015】
【実施例2】プロトコーム様多芽体のビアラホス耐性度
の検討 選抜マーカー遺伝子としてbar遺伝子を用いることと
し、プロトコーム様多芽体から再分化植物が形成する過
程において、好ましいビアラホスの添加濃度の検討を行
った。プロトコーム様多芽体から植物体を再分化させる
ときに用いる基本培地として、ナフタレン酢酸(NA
A)を1mg/l加えたMS培地を用いた。この培地
に、更に、それぞれ0、0.5 、1.0 、1.5 、2.0 、3.0
、5.0 mg/lの濃度となるようにビアラホスを添加
し、実施例1で得られたカラスビシャクのプロトコーム
様多芽体を置床した。25℃、16時間日長下で培養を行
い、1カ月後に観察した。その結果、ビアラホスを1m
g/1添加した実験区ではプロトコーム様多芽体は再分
化する事無く全て枯死した(表2)。したがって、再分
化培地における選抜は、ビアラホスを1mg/1添加し
た培地を用いることとした。
【0016】 表2 プロトコーム様多芽体のビアラホス耐性度の検討 ─────────────────────── ビアラホス濃度(mg/l) 生育状況 ─────────────────────── 0 ++ 0.5 + 1.0 − 1.5 − 2.0 − 3.0 − 5.0 − ─────────────────────── − は枯死を表す。
【0017】
【実施例3】パーティクルガンによる遺伝子導入条件の
検討 表皮細胞への効率的な導入を行うために、発射圧力の検
討を行った。プラスミドDNAとしてpBI221(図1)を
用い、プラスミド上にコードされるβ−グルクロニダー
ゼ(GUS)遺伝子をレポーターとして、4−ブロモ−
3−クロロ−インドリル−β−D−グルクロン酸を基質
とした組織染色を森川らの方法(植物細胞工学、4、43
〜48(1992))により検討した。
【0018】遺伝子導入には、窒素圧式のレーボック商
工株式会社モデル 190のパーティクルガンを用いた。ま
た、金粒子は平均直径 1.1ミクロン(株式会社徳力本店
製)を用い、金粒子とDNAの処理方法は森川らの方法
に準じた。すなわち、カラスビシャクのカルスをプロト
コーム様多芽体形成培地の中央、直径3cm以内に置床
し、プラスミドDNA20μgを5mgの金粒子にエタノ
ール沈殿法によりコーティングし、1弾あたり金粒子
0.2mg、DNA 0.8μgの条件下で発射した。25℃、1
6時間光照射下で24時間培養後、基質液にカルスを移し
発色を観察した(表3)。
【0019】 表3 パーティクルガンによる遺伝子導入条件の検討 ────────────────────────── 試料間距離 発射速度(m/秒) ───────────────── (cm) 320 340 360 ────────────────────────── 8 ++ + ++ 10 + − +++ 12 − − − ────────────────────────── +,− は遺伝子の発現量を表す。
【0020】表3の結果より、発射速度 360m/秒、試
料間距離10cmの条件下で、最も発色スポットが多く認
められたことから、本条件をカルスへの遺伝子導入の発
射条件に設定した。
【0021】
【実施例4】カルスの前培養条件の検討 遺伝子発現効率に影響を及ぼすファクターとしてカルス
の前培養期間を検討した。即ち、カルスを遺伝子導入条
件に設定してから遺伝子導入までの前培養期間を設定す
る目的で、2、4−Dを5mg/l加えたMS培地を分
注したシャーレにカラスビシャクのカルスを直径3cm
に広げ置床し、25℃、16時間光照射下で1、3、7日間
培養を行った後、実施例3と同様に遺伝子を導入した。
導入カルスを実施例3と同様に染色して発色スポット数
を測定した(表4)。
【0022】
【0023】表4の結果より、3日間の前培養において
多くの発色が見られたので、カルスの前培養期間を3日
間とした。
【0024】
【実施例5】ビアラホス耐性カラスビシャクの選抜と導
入遺伝子の確認 2、4−Dを5mg/l加えたMS培地を分注したシャ
ーレにカラスビシャクのカルスを直径3cmに広げ置床
し、25℃、16時間光照射下で3日間前培養する。培養カ
ルスに発射速度 360m/秒、試料間隔10cmの条件下で
DNAとしてpARK22(図2)をコートした金粒子をシャ
ーレ当たり2回発射した。次に、実施例1で検討した第
1段階の選抜培地である2mg/lのビアラホスを添加
したプロトコーム様多芽体形成培地へ移植した。1カ月
間同条件下で培養後、分化したプロトコーム様多芽体を
選抜した。その後、実施例2で検討した第2段階の選抜
培地である1mg/lのビアラホスを添加した再分化培
地に移植した。3カ月同条件下の培養により、一部のプ
ロトコーム様多芽体からビアラホスに耐性を示す形質転
換カラスビシャクが得られた。
【0025】遺伝子の導入を確かめるためにビアラホス
耐性カラスビシャクの葉から全DNAを抽出精製した鋳
型DNAを用いてPCRを行った。ビアラホス耐性遺伝
子内部 402bpを特異的に増幅するプライマーBを用い
て、形質転換および非形質転換カラスビシャクより抽出
精製したゲノムDNAとPCR反応を行ったところ、ビ
アラホス耐性カラスビシャクのみから約 400 bp のDN
A断片の増幅をみた(図3)。
【0026】
【実施例6】フォスフィノスリシンアセチルトランスフ
ェラーゼ活性の確認 形質転換カラスビシャクおよび非形質転換カラスビシャ
クの葉から粗酵素を抽出し、導入したbar遺伝子の発
現をフォスフィノスリシンアセチルトランスフェラーゼ
活性により調査した。即ち、1−14CアセチルCoAと
基質であるフォスフィノスリシンを加えた溶液に粗酵素
液を添加し反応を行う。反応液を薄層クロマトグラフィ
ーに付し、展開溶媒で展開後、薄層クロマトグラフィー
にフィルムをカバーして暗室にて1週間保存する。形質
転換カラスビシャクのみに1−14Cアセチルフォスフィ
ノスリシンのスポットが認められた(図4)。この結
果、形質転換カラスビシャクに外来の酵素であるフォス
フィノスリシンアセチルトランスフェラーゼが発現する
ことが確認された。
【0027】
【実施例7】ビアラホス耐性の確認 形質転換カラスビシャクと非形質転換カラスビシャクの
茎葉をビアラホス10mg/lの水溶液に各々浸漬して、
10日間、25℃、16時間日長下でインキュベートした。非
形質転換カラスビシャクは完全に枯死したが、形質転換
カラスビシャクは枯死することなく生存していた。この
結果から、形質転換カラスビシャクは明らかにビアラホ
ス耐性を獲得したことが確認された。
【0028】
【発明の効果】従来、サトイモ科植物、特にカラスビシ
ャクにおいて、形質転換法が確立していなかったことか
ら、サトイモ科植物に交配以外の方法で有用遺伝子を染
色体に組み込むことは不可能であった。しかし、本発明
により、カラスビシャクおよびプロトコーム様多芽体を
形成することができるサトイモ科植物において、有用遺
伝子が染色体に組み込まれ、かつキメラでない形質転換
植物を製造することができるようになった。
【図面の簡単な説明】
【図1】遺伝子導入に供したプラスミドDNA pBI221
を表す。図中、P35Sはカリフラワーモザイクウィル
ス35Sプロモーター、GUSはβ−グルクロニダーゼ遺
伝子、Tnosはノパリンシンターゼターミネータ部分
を表す。
【図2】ビアラホス耐性遺伝子の導入に用いたプラスミ
ドDNA pARK22 を表す。図中、P35Sはカリフラワ
ーモザイクウィルス35Sプロモーター、barはビアラ
ホス耐性(フォスフィノスリシンアセチルトランスフェ
ラーゼ)遺伝子、Tnosはノパリンシンターゼターミ
ネータ部分を表す。
【図3】形質転換カラスビシャクにおけるビアラホス耐
性遺伝子の存在を示すPCR増幅産物のアガロース電気
泳動の結果を示す。レーン1は非形質転換カラスビシャ
クの、レーン2〜7は形質転換カラスビシャクの、ゲノ
ムDNAを鋳型として用いた。また、ビアラホス耐性遺
伝子を特異的に増幅するプライマーとして、プライマー
Bを用いた。矢印はPCRにより増幅されたビアラホス
耐性遺伝子を示す。
【図4】フォスフォノスリシンアセチールトランスフェ
フーゼ活性を調査した結果を表す。1−14CアセチルC
oAと基質溶液とを粗酵素液で反応させ、薄層クロマト
グラフィーによりアセチルフォスフィノスリシン(Acet
yl-PPT)を確認した。レーン1は非形質転換カラスビシ
ャク、レーン2〜7は形質転換カラスビシャクを示す。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 サトイモ科植物のカルスにパーティクル
    ガンを用いて選択マーカー遺伝子および有用遺伝子を導
    入し、プロトコーム様多芽体を経由して、形質転換細胞
    のみよりなるサトイモ科植物を製造する方法
  2. 【請求項2】 選抜マーカー遺伝子としてフォスフィノ
    スリシンアセチルトランスフェラーゼ遺伝子を用い、プ
    ロトコーム様多芽体の形成前後に形質転換細胞の2段階
    選抜を行うことを特徴とする請求項1記載の方法
  3. 【請求項3】 形質転換細胞の2段階選抜が、プロトコ
    ーム様多芽体形成培地および再分化培地にビアラホスを
    添加して行うことを特徴とする請求項1、2記載の方法
  4. 【請求項4】 サトイモ科植物がカラスビシャクである
    請求項1〜3記載の方法
  5. 【請求項5】 請求項2、3に記載の方法により取得さ
    れた、ビアラホス耐性を有するサトイモ科植物
  6. 【請求項6】 サトイモ科植物がカラスビシャクである
    請求項5記載の植物
JP8232892A 1996-09-03 1996-09-03 トランスジェニック・サトイモ科植物の製造方法および除草剤耐性サトイモ科植物 Pending JPH1075673A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8232892A JPH1075673A (ja) 1996-09-03 1996-09-03 トランスジェニック・サトイモ科植物の製造方法および除草剤耐性サトイモ科植物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8232892A JPH1075673A (ja) 1996-09-03 1996-09-03 トランスジェニック・サトイモ科植物の製造方法および除草剤耐性サトイモ科植物

Publications (1)

Publication Number Publication Date
JPH1075673A true JPH1075673A (ja) 1998-03-24

Family

ID=16946486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8232892A Pending JPH1075673A (ja) 1996-09-03 1996-09-03 トランスジェニック・サトイモ科植物の製造方法および除草剤耐性サトイモ科植物

Country Status (1)

Country Link
JP (1) JPH1075673A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104186322A (zh) * 2014-08-28 2014-12-10 徐伟明 一种千年健的组织培养基及其增殖方法
CN120289602A (zh) * 2025-04-23 2025-07-11 淮北师范大学 一种半夏NAC类转录因子PtNAC61及其编码基因和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104186322A (zh) * 2014-08-28 2014-12-10 徐伟明 一种千年健的组织培养基及其增殖方法
CN120289602A (zh) * 2025-04-23 2025-07-11 淮北师范大学 一种半夏NAC类转录因子PtNAC61及其编码基因和应用

Similar Documents

Publication Publication Date Title
AU738153C (en) Methods for the production of stably-transformed, fertile wheat employing agrobacterium-mediated transformation and compositions derived therefrom
US5538877A (en) Method for preparing fertile transgenic corn plants
US5565346A (en) Transformation and regeneration system for legumes
US20040244075A1 (en) Methods for corn transformation
US20080229447A1 (en) Transformation of immature soybean seeds through organogenesis
US6153813A (en) Methods for genotype-independent nuclear and plastid transformation coupled with clonal regeneration utilizing mature zygotic embryos in rice (Oryza sativa) seeds
US20090023212A1 (en) Method for transforming soybean (Glycine max)
US6255559B1 (en) Methods for producing genetically modified plants, genetically modified plants, plant materials and plant products produced thereby
Shekhawat et al. Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L.
US20110055977A1 (en) Enhancement of Reproductive Heat Tolerance in Plants
US20020184663A1 (en) Method of agrobacterium mediated plant transformation through treatment of germinating seeds
WO1997042332A2 (en) Genetically transformed cassava cells and regeneration of transgenic cassava plants
EP1114169A1 (en) Methods for producing genetically modified plants, plant materials and plant products produced thereby
JPH1075673A (ja) トランスジェニック・サトイモ科植物の製造方法および除草剤耐性サトイモ科植物
KR102609708B1 (ko) 식물체의 재분화 효율을 조절하는 애기장대 유래 esr2 유전자 및 이의 용도
US6806399B1 (en) Pollen-mediated method for transformation of maize, tomato or melon
US20040210958A1 (en) A Novel Culture Method for Corn Transformation
US20030196219A1 (en) Novel Method for Agrobacterium Preparation for Plant Transformation
US6392125B1 (en) Method for producing the transformants of coffee plants and transgenic coffee plants
US7767885B2 (en) Plastid genetic engineering via somatic embryogenesis
KR100704751B1 (ko) 복합스트레스 내성 식물체 제조용 재조합 발현벡터 및이를 이용한 복합스트레스 내성 식물체의 제조방법
KR20050028255A (ko) 마커-프리 형질전환식물체 생산을 위한 신규 방법
KR100877889B1 (ko) 아그로박테리움 형질전환 기법을 이용한 제초제 저항성형질전환 고구마의 생산방법
Horakova et al. Agrobacterium tumefaciens-mediated transformation and regeneration of'Saaz'hop-Osvald's clones 31 and 72
KR100468624B1 (ko) 미생물 리컴비네이즈를 이용한 색소체 형질전환 방법