JPH107451A - Production of ceramic compact - Google Patents

Production of ceramic compact

Info

Publication number
JPH107451A
JPH107451A JP18556196A JP18556196A JPH107451A JP H107451 A JPH107451 A JP H107451A JP 18556196 A JP18556196 A JP 18556196A JP 18556196 A JP18556196 A JP 18556196A JP H107451 A JPH107451 A JP H107451A
Authority
JP
Japan
Prior art keywords
container
water
molded body
drying
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18556196A
Other languages
Japanese (ja)
Inventor
Akira Matsui
明 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYAMA PREF GOV
Toyama Prefecture
Original Assignee
TOYAMA PREF GOV
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYAMA PREF GOV, Toyama Prefecture filed Critical TOYAMA PREF GOV
Priority to JP18556196A priority Critical patent/JPH107451A/en
Publication of JPH107451A publication Critical patent/JPH107451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide a method for producing ceramic compact, capable of remarkably shortening solid casting time and drying time and rapidly and safely producing dried compact comprising fine particles and having large size and complex shape. SOLUTION: This method for producing ceramic compact comprises solidifying ceramic slurry in a prescribed form by using a binder curable with a chemical reaction and charging the water-containing ceramic compact into a container having a structure capable of releasing gas in the system out of the system when the pressure in the system becomes atmospheric pressure or above and introducing water content into the container and/or dehydrating water-containing ceramic compact while keeping steam partial pressure in the container to atmospheric pressure by water content released from water-containing ceramic compact and keeping atmospheric temperature to 100 deg.C or above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複雑な形状で大型
のセラミックス成形体を迅速かつ安全に製造する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quickly and safely producing a large-sized ceramic molded body having a complicated shape.

【0002】[0002]

【従来の技術】複雑な形状で大型のセラミックス成形体
の製造には鋳込み成形が利用されているが、従来の石膏
型を用いた鋳込み成形方法では、成形時間が長くかかる
こと、乾燥時間が著しく長くかかる等その生産性は著し
く低く、そのことがセラミックス製品のコストアップ要
因となっていた。特に原料粉がサブミクロンとなると水
分移動係数が小さくなるので成形時の生産性が悪く、ま
た乾燥時に内部と表層の含水率の差が大きくなり乾燥割
れや乾燥変形が起こりやすいのでこれを防ぐためには乾
燥期間を著しく長くする必要があった。乾燥時の水分移
動係数を上げるため恒温恒湿器を用いた調湿度乾燥やマ
イクロ波乾燥が開発され実用化されているがまだ十分で
はない。
2. Description of the Related Art Casting molding is used to produce large-sized ceramic molded bodies having complicated shapes. However, the casting method using a plaster mold requires a long molding time and a remarkably dry time. For example, it takes a long time and its productivity is extremely low, which has been a factor of increasing the cost of ceramic products. In particular, when the raw material powder becomes submicron, the moisture transfer coefficient becomes small, so the productivity at the time of molding is poor, and the difference in moisture content between the inside and the surface layer becomes large during drying, so that dry cracking and dry deformation tend to occur, so to prevent this Required a significantly longer drying period. Humidity control drying and microwave drying using a thermo-hygrostat have been developed and commercialized to increase the moisture transfer coefficient during drying, but they are not yet sufficient.

【0003】また、大気圧での加熱蒸気乾燥法も提案さ
れており100℃以上での乾燥速度は著しく速い利点が
あるが、成形体の温度を約100℃まで昇温させる過程
での乾燥収縮による変形や割れを起こし安い欠点があっ
た。この問題は、乾燥器内に多数の成形体が入れられた
場合など成形体の温度むらが大きい場合には特に欠点が
強調される。これは成形体の低温部でも結露しない水蒸
気圧で乾燥する必要があるため、加熱源に近い高温の成
形体では乾燥が進むからである。実務上は温度むらが起
こらないようなゆっくりとした速度で100℃まで時間
をかけて昇温する必要がある等の問題点があり、更に優
れた乾燥方法が要望されていた。
Further, a heating steam drying method at atmospheric pressure has been proposed, and the drying speed at 100 ° C. or more has an advantage that it is extremely fast. However, drying shrinkage in the process of raising the temperature of the molded body to about 100 ° C. Deformation and cracking were caused by the low cost. This problem is particularly emphasized when the temperature unevenness of the molded article is large, such as when a large number of molded articles are put in a dryer. This is because it is necessary to dry with a steam pressure that does not cause dew condensation even in a low-temperature portion of the molded body, so that drying proceeds with a high-temperature molded body close to a heating source. In practice, there is a problem that the temperature needs to be raised to 100 ° C. over a long period of time at a slow rate so that temperature unevenness does not occur, and a more excellent drying method has been demanded.

【0004】[0004]

【発明が解決しようとする課題】この発明では、従来の
鋳込み成形により作製した成形体を加熱蒸気乾燥法によ
り乾燥させるプロセスの欠点を解消し、大型製品をすば
やく成形し、迅速な昇温を可能にした加熱蒸気乾燥技術
により成形・乾燥時間を大幅に短縮する技術を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention eliminates the drawbacks of the conventional process of drying a molded article produced by casting using a hot-steam drying method, enables large-sized products to be molded quickly, and enables rapid temperature rise. It is an object of the present invention to provide a technique for greatly shortening the molding and drying time by using a heated steam drying technique.

【0005】[0005]

【課題を解決するための手段】化学反応で硬化する結合
材を用いてセラミックス泥漿を所定形状に固化させ、系
内が大気圧以上になると系外に系内ガスを放出できる構
造を有する容器に、そのセラミックス含水成形体を入
れ、容器に水分を導入することおよびまたはセラミック
ス含水成形体から放出される水分で容器内の水蒸気分圧
を大気圧に維持しながら100℃以上に雰囲気温度を保
持しつつセラミックス含水成形体から脱水を行うことに
より、セラミックス含水成形体の乾燥割れや変形を起こ
さずに迅速に乾燥させることができることを実験的に見
いだし本発明に至った。
Means for Solving the Problems In a container having a structure capable of solidifying ceramic slurry into a predetermined shape by using a binder which is hardened by a chemical reaction and releasing gas in the system outside the system when the inside of the system becomes higher than atmospheric pressure. The water-containing molded body is put into the container, and water is introduced into the container, or the atmospheric temperature is maintained at 100 ° C. or higher while maintaining the partial pressure of water vapor in the container at atmospheric pressure with the water released from the water-containing ceramic body. The present inventors have experimentally found that by performing dehydration from the water-containing ceramic molded body while drying, the ceramic water-containing molded body can be quickly dried without causing dry cracking or deformation.

【0006】以下詳細に説明する。化学反応で硬化する
結合材を含んだセラミックス泥漿を、金型、木型、プラ
スチック型、ゴム型、ゲル型、従来の石膏型等に固形鋳
込みし、化学反応により固化させてセラミックス含水成
形体を作製する。ここで化学反応で硬化する結合材とし
ては、ρアルミナ、水硬性アルミナ、アルミナセメン
ト、セメント、石膏、アクリル、ウレタン、PVA+ホ
ウ酸など化学反応により泥漿を固化させ離型・ハンドリ
ングが可能なものならその種類は問わない。また、カー
ドラン、アガロース、寒天等のゲル化により形態付与で
きる材料も使用できる。
The details will be described below. A ceramic slurry containing a binder that hardens by a chemical reaction is solid-cast into a mold, a wooden mold, a plastic mold, a rubber mold, a gel mold, a conventional gypsum mold, etc., and solidified by a chemical reaction to form a water-containing ceramic molded body. Make it. As a binder hardened by a chemical reaction, ρ-alumina, hydraulic alumina, alumina cement, cement, gypsum, acryl, urethane, PVA + boric acid, etc. are those that solidify mud by chemical reaction and can be released and handled. The type does not matter. In addition, a material such as curdlan, agarose, agar or the like which can be given a form by gelation can also be used.

【0007】得られた含水性成形体を、内部圧力が大気
圧以上でガス放出のできる容器に入れ、容器内に予め少
量の水を入れる等して容器内が飽和水蒸気圧に保たれる
状況でセラミックス含水成形体がその温度近傍に達する
まで容器を90〜100℃で保持する。次いで容器を水
の沸点以上の設定温度に保持し、大気圧を上回る容器内
の水蒸気圧を利用して容器外に水蒸気を放出させる。設
定温度での水蒸気放出が終了後、容器を常温まで冷却す
ると、冷却過程で被乾燥物内部の残留水分が容器壁に結
露し、脱水された乾燥体が得られる。
The obtained water-containing molded article is placed in a container capable of releasing gas when the internal pressure is equal to or higher than the atmospheric pressure, and a small amount of water is previously placed in the container to maintain the inside of the container at a saturated steam pressure. The container is held at 90 to 100 ° C. until the ceramics water-containing molded body reaches the vicinity of the temperature. Next, the container is kept at a set temperature equal to or higher than the boiling point of water, and water vapor is released outside the container using the water vapor pressure in the container which is higher than the atmospheric pressure. After the water vapor release at the set temperature is completed, the container is cooled to room temperature. In the cooling process, residual moisture inside the object to be dried is condensed on the container wall, and a dehydrated dried body is obtained.

【0008】この方法で用いる容器は、特別に製作され
たものである必要はなく、容器と蓋の間に明白な隙間が
できないものであれば容器に蓋を乗せた物や、容器開口
部をラップ等でシールし、ラップに針金で小穴をあけた
物で十分であり容器内部を大気圧と等しい厳密な水蒸気
分圧にする必要はない。また、1気圧以上で蒸気を外部
に放出できるようにした乾燥装置でもよいので特に容器
は限定されるものではない。また、被乾燥物であるセラ
ミックス含水成形体の容器へ収納方法は、容器底面にセ
ラミックボール等を置き、容器底面や壁面に被乾燥物が
直接接触しないようにすることが好ましい。
[0008] The container used in this method does not need to be specially manufactured. If there is no clear gap between the container and the lid, the container with the lid placed thereon or the container opening may be removed. It is sufficient to use a material which is sealed with a wrap or the like and a small hole is formed in the wrap with a wire, and it is not necessary to set the inside of the container to a strict water vapor partial pressure equal to the atmospheric pressure. Further, the container is not particularly limited because a drying device capable of releasing steam to the outside at 1 atm or more may be used. In addition, in the method of storing the ceramic hydrate molded article to be dried in the container, it is preferable to place a ceramic ball or the like on the bottom surface of the container so that the dried object does not directly contact the bottom surface or wall surface of the container.

【0009】容器の大きさに比較し被乾燥物が小さい場
合は昇温過程で急速な水分蒸発が起き乾燥割れや変形を
起こしやすいので、容器に予め少量の熱水や温水を入れ
ておくことや水蒸気を吹き込むことが重要である。
If the material to be dried is small compared to the size of the container, rapid evaporation of water occurs during the temperature rise process, which tends to cause dry cracking and deformation. It is important to blow water and steam.

【0010】この発明では、容器を水の沸点以上の設定
温度に保持し容器内の水蒸気圧を利用して容器外に水蒸
気を放出させることを特徴とするが、通常105℃〜1
50℃が好ましい。例えばサブミクロンの微細な原料粉
体で構成された成形体の場合、原料粒子間の曲率半径の
小さい部分の水の沸点は高いので、設定温度は徐々に高
くすることが好ましい。150℃以上の場合には被乾燥
物内部への熱伝達量が多く水分の蒸発量が多いので内部
の蒸気圧が高くなることや、容器内雰囲気の水蒸気の乾
き度が高くなり、成形体表層部が乾燥しすぎ応力緩和し
にくい状況になることから割れや爆裂を起こしやすいの
で好ましくないが特に限定されるものでは無い。
The present invention is characterized in that the container is maintained at a set temperature equal to or higher than the boiling point of water, and steam is released to the outside of the container by utilizing the steam pressure in the container.
50 ° C. is preferred. For example, in the case of a molded body composed of submicron fine raw material powder, since the boiling point of water is high in a portion having a small radius of curvature between raw material particles, it is preferable to gradually increase the set temperature. When the temperature is 150 ° C. or higher, the amount of heat transferred to the object to be dried is large, and the amount of evaporation of water is large, so that the internal vapor pressure becomes high, and the dryness of water vapor in the atmosphere in the container becomes high. The portion is too dry, and it is difficult to relieve the stress, so that cracks and explosions are likely to occur.

【0011】[0011]

【発明の実施の形態】この発明では、まず化学反応で硬
化する結合材を含んだセラミックス泥漿を、金型、木
型、プラスチック型、ゴム型、ゲル型、従来の石膏型等
に固形鋳込みし、化学反応により固化させてセラミック
ス含水成形体を作製することを特徴とするが、従来の固
形鋳込み鋳込み成形のように型による脱水により泥漿を
固化させる方式ではないため、成形体の固化時間は化学
反応速度に律速されており形状には律速されないので、
大型になっても成形固化時間は不変である。このため成
形体が大きくなればなる程成形時間短縮効果はより大き
くなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, first, a ceramic slurry containing a binder hardened by a chemical reaction is solid-cast into a mold, a wooden mold, a plastic mold, a rubber mold, a gel mold, a conventional plaster mold and the like. It is characterized by making a ceramics water-containing molded body by solidification by a chemical reaction, but it is not a method of solidifying the slurry by dehydration with a mold as in the conventional solid casting and casting, so the solidification time of the molded body is chemical Because it is limited by the reaction speed and not by the shape,
The molding solidification time does not change even when the size is increased. For this reason, the effect of shortening the molding time increases as the size of the molded body increases.

【0012】つづく乾燥方法は過熱蒸気乾燥法の一種で
あるが、加熱蒸気乾燥法では一般にH2Oが液体の場合
には水の突沸が起きることが常識化されている。しか
し、伝熱速度を突沸が起きる限界速度以下に制御するこ
とにより、水の蒸発潜熱と伝達熱量をバランスさせれば
突沸を起こさずに水蒸気の形で脱水を行うことが可能と
なることを実験で確認した。幸い、水の蒸発潜熱は大き
いので伝達熱量の選択幅が広いこと、さらに被乾燥材中
における熱伝導と拡散のそれぞれの偏微分方程式は同形
式であるので、乾燥の広範なステージにおいて蒸発潜熱
と伝達熱量のバランスが自動的にとれることから、被乾
燥物中で突沸を起こさずに水蒸気の形で脱水を容易に行
えることが理論的にも裏付けられる。
The following drying method is a kind of the superheated steam drying method, and it is generally accepted that the heated steam drying method causes bumping of water when H 2 O is liquid. However, by controlling the heat transfer rate below the critical speed at which bumping occurs, it was possible to perform dehydration in the form of steam without bumping by balancing the latent heat of vaporization and the amount of heat transferred. Confirmed. Fortunately, since the latent heat of vaporization of water is large, the choice of heat transfer is wide, and the partial differential equations for heat conduction and diffusion in the material to be dried are of the same form. Since the amount of heat transferred can be automatically balanced, it is theoretically supported that dehydration can be easily performed in the form of steam without causing bumping in the material to be dried.

【0013】セラミックスの場合、乾燥速度も重要であ
るが乾燥割れや乾燥変形無く乾燥させることが最も重要
である。大気圧下での過熱蒸気乾燥法をセラミックス含
水成形体に適応する場合、乾燥歪み・乾燥変形・乾燥割
れの大半は昇温過程に起こりその傾向は乾燥収縮率の大
きいもの程顕著である。昇温過程で容器内を成形体表面
温度の飽和水蒸気分圧に維持し続けることが可能なら
ば、成形体表面への結露や表面からの蒸発を防げるが、
実務上特に容器内に多くの製品を収納した場合には、成
形体に温度むらができるので高温部では蒸発がまた低温
部では結露が起きる。この傾向は昇温速度が速いほど助
長される。
In the case of ceramics, the drying speed is also important, but it is most important that the ceramics be dried without drying cracks and drying deformation. When the superheated steam drying method under atmospheric pressure is applied to a ceramics water-containing molded body, most of the drying distortion, drying deformation, and drying cracks occur in the temperature raising process, and the tendency is more remarkable as the drying shrinkage ratio is larger. If it is possible to keep the inside of the container at the saturated water vapor partial pressure of the molded body surface temperature during the temperature rise process, it is possible to prevent condensation on the molded body surface and evaporation from the surface,
In practice, especially when a large number of products are stored in a container, unevenness in the temperature of the molded body occurs, so that evaporation occurs in a high-temperature portion and dew condensation occurs in a low-temperature portion. This tendency is promoted as the heating rate increases.

【0014】化学反応で硬化する結合材を用いてセラミ
ックス泥漿を所定形状に固化させた含水成形体の場合、
結露があっても問題が起こらないので、容器の受熱部や
加熱部温度の飽和水蒸気を用いることができる。成形体
の低温部への伝熱には水蒸気の結露に伴う潜熱も利用で
きることから調理用の蒸し器と同じ様に成形体表面から
の蒸発を抑制し温度むらの少なくかつ迅速な昇温が可能
である。また当該成形体の場合結合材で固化されている
ため、乾燥収縮が小さいことが特徴であり、万一昇温過
程で成形体表面から蒸発がおきた場合でも乾燥歪み・乾
燥変形・乾燥割れは起こりにくい。このため、成形体表
面と内部との温度差起因の応力による破壊が起きない限
界までの迅速な昇温を行うことが可能であり、直径10
cm高さ12cmの円柱状成形体でも容器の加熱部温度をい
きなり100℃にセットしても昇温過程での割れ・変形
等の問題は認められなかった。
In the case of a water-containing molded product obtained by solidifying a ceramic slurry into a predetermined shape by using a binder hardened by a chemical reaction,
Since there is no problem even if there is dew condensation, it is possible to use saturated steam at the temperature of the heat receiving portion or the heating portion of the container. The latent heat associated with the condensation of water vapor can also be used to transfer heat to the low-temperature part of the molded body, so that evaporation from the molded body surface is suppressed, as in a steamer for cooking, and there is little temperature unevenness and rapid temperature rise is possible. is there. In addition, in the case of the molded article, since the molded article is solidified by a binder, it is characterized by a small drying shrinkage. Even if evaporation occurs from the surface of the molded article in the process of raising the temperature, drying distortion, drying deformation, and drying cracks are reduced. Less likely. For this reason, it is possible to quickly raise the temperature to the limit where destruction due to stress caused by the temperature difference between the surface of the molded body and the inside does not occur, and the diameter of the molded body can be reduced to 10 mm.
Even when the temperature of the heating part of the container was suddenly set to 100 ° C., no problem such as cracking or deformation was observed even in the cylindrical molded body having a height of 12 cm.

【0015】昇温完了後、産業上の利点を鑑み減圧装置
や減圧容器および加圧容器等の装置上の制約の無い、大
気圧での加熱蒸気乾燥試験を行った結果、乾燥初期から
減率乾燥期にあることまた被乾燥物の中心部の温度は約
100℃を長時間維持した後、乾燥後期に至り昇温を始
めることが認められた。このことから被乾燥物の外層は
水蒸気で内部は液状水の状態を保ちながら被乾燥物中の
液と水蒸気界面への伝達熱量と同じ蒸発潜熱に見合った
水が水蒸気の形で系外に出ていくとものと考えられる。
この条件で乾燥するとサブミクロンの原料粉体からなる
セラミックス含水成形体の場合でも従来の乾燥方法の1
/10〜1/100程度の極端な短時間で乾燥割れや乾
燥変形を起こさずに安全な乾燥ができることが実証され
た。このように、被乾燥物の外層は水蒸気で内部は液状
水という状態を保ちながら迅速に乾燥しても乾燥クラッ
クが発生しないことが認められた。環境水蒸気圧が約7
60mmHgもあるので被乾燥物の構成粒子を覆う水膜が厚
く応力緩和を行いやすいこと及び毛細管力により粒子間
距離があまり短くならないことに起因するものと推定さ
れるが、乾燥の早い時期から減率乾燥期にあることはそ
の傍証であると考えられる。
After the completion of the temperature increase, in consideration of the industrial advantages, a heating steam drying test was performed at atmospheric pressure without restrictions on devices such as a decompression device, a decompression container, and a pressurized container. It was recognized that the drying period was at the center of the material to be dried, which was maintained at about 100 ° C. for a long time, and then the temperature started to rise to the later stage of drying. From this, the outer layer of the object to be dried is water vapor, and the inside of the object is kept in the state of liquid water. It is thought that it will go.
When dried under these conditions, even in the case of a water-containing ceramic compact made of a submicron raw material powder, one of the conventional drying methods can be used.
It has been demonstrated that safe drying can be performed without causing dry cracking or dry deformation in an extremely short time of about / 10 to 1/100. As described above, it was recognized that drying cracks did not occur even when the outer layer of the material to be dried was quickly dried while maintaining the state of water vapor and liquid water inside. Environmental water vapor pressure is about 7
It is estimated that this is due to the fact that the water film covering the constituent particles of the material to be dried is thick and easy to relieve stress, and the distance between the particles is not too short due to capillary force. The fact that it is in the rate drying period is considered to be a proof.

【0016】脱水乾燥したのち、直ちに容器を開け成形
体を取り出すと微粉原料を用いた大きいセラミックス成
形体の場合には、表層部にヘアークラックが入りやす
い。これは、高い水蒸気圧下で乾燥させているため、原
料粒子の接触点など曲率半径の小さい部分の水の沸点は
高いので、成形体が絶乾状態には至っておらず、成形体
取り出し時にその水が急速に蒸発するためと考えられ
る。わずかな水分量であるので大きなクラックにならず
ヘアークラックになるものと推定される。これを防ぐた
めには2つ方法があり、一つは脱水後更に高い温度まで
乾燥雰囲気温度を徐々に上げることにより成形体の脱水
度を高めることや焼結工程を必要とするなら容器が耐熱
材料の時はそのまま焼成工程に入ることである。二つ目
は、設定温度での水蒸気放出が終了後、容器ごと常温ま
で冷却すると、冷却過程で成形体内部の水蒸気が容器壁
に結露し、脱水された乾燥成形体が得られるという方法
である。どちらの方法を採用するかは、経済性や装置上
の観点から決定されるべきである。
After dehydration and drying, if the container is immediately opened and the molded body is taken out, in the case of a large ceramic molded body using fine powder raw materials, hair cracks are liable to enter the surface layer. This is because the part having a small radius of curvature, such as the contact point of the raw material particles, has a high boiling point because the water is dried under a high steam pressure, and the molded body is not completely dried. Is thought to be due to rapid evaporation. Because of the small amount of water, it is presumed that a large crack is not formed and a hair crack is formed. To prevent this, there are two methods. One is to increase the degree of dehydration of the molded body by gradually increasing the drying atmosphere temperature to a higher temperature after dehydration, or if the sintering process is necessary, use a heat-resistant material. In this case, the process directly proceeds to the firing step. The second is a method in which after the release of water vapor at the set temperature is completed, when the entire container is cooled to room temperature, the water vapor inside the molded body is condensed on the container wall in the cooling process, and a dewatered dry molded body is obtained. . Which method should be used should be determined from the viewpoint of economy and equipment.

【0017】[0017]

【実施例】【Example】

(実施例1)平均粒子径0.4〜0.5μmのαアルミナ
(商品名AES11C)3600grと平均粒子径2μ
mの水硬性アルミナ(商品名BK103)400grと
クエン酸4gr、純水440grおよびポリカルボン酸
アンモニウム系分散剤(商品名SNディスパーサント5
468)10grを混合し、15℃の雰囲気下でアルミ
ナ製ポットミルを2時間用いて泥しょうを調製した。そ
のときの泥しょう粘度は760cPであった。内径10
cmφ高さ20cmの金型に金型に泥しょうを注入し、
60℃で1時間保持し、外形10cmφ高さ約12cm
の円柱状の含水成形体を得た。内容積約10リットルの
真空デシケーター底部に80℃の熱水30cc入れた
後、仕切板上に成形体を置き、開口部に内径5mmφのテ
フロンチューブを挿したゴム栓を入れた蓋をした。10
0℃以下での水蒸気の飛散をできるだけ防止するため、
テフロンチューブの上に7mmφのセラミックビーズを置
いた。このデシケーターを98℃にセットした乾燥器に
直接入れ1時間放置した後、110℃で1時間、120
℃で1時間、130℃で15時間乾燥後、乾燥器から取
り出し4時間自然冷却させた後、約50℃の成形体を取
り出した。検査の結果、乾燥割れは認められなかった。
成形から乾燥体取り出しまでの時間は約1日であった。
48時間放置後も異常は認められず、重量測定したとこ
ろ逆に空気中の水分を吸着し0.2gr増量していた。
一方、対照として約25℃で相対湿度約60%の室内で
陰干した含水成形体は、5日間恒率乾燥しつづけ6日目
で減率乾燥に移ったが、そのとき円柱の上部外面にクラ
ックが観察された。それ以降クラックが大きくなるとと
もにクラックの数も増えた。15日後には円柱外面のク
ラックの幅が小さくなりクラックが目立たなくなった。
21日後円柱の上面の中心にクラックが発生し経時的に
クラックの幅と長さが大きくなった。
(Example 1) 3600 gr of α-alumina (trade name: AES11C) having an average particle diameter of 0.4 to 0.5 μm and an average particle diameter of 2 μm
400 g of hydraulic alumina (trade name BK103), 4 gr of citric acid, 440 gr of pure water and ammonium polycarboxylate dispersant (trade name: SN Dispersant 5)
468) 10 gr was mixed, and a slurry was prepared using an alumina pot mill for 2 hours in an atmosphere at 15 ° C. The slurry viscosity at that time was 760 cP. Inner diameter 10
Inject the slurry into the mold into a mold with a height of 20 cm and a diameter of 20 cm,
Hold at 60 ° C for 1 hour, outer diameter 10cmφ, height about 12cm
Was obtained. After placing 30 cc of hot water at 80 ° C. into the bottom of a vacuum desiccator having an internal volume of about 10 liters, the molded body was placed on a partition plate, and a lid was inserted into the opening with a rubber stopper into which a Teflon tube having an inner diameter of 5 mmφ was inserted. 10
In order to prevent water vapor scattering below 0 ° C as much as possible,
Ceramic beads of 7 mmφ were placed on a Teflon tube. This desiccator was placed directly in a drier set at 98 ° C. and left for 1 hour.
After drying at 130 ° C. for 1 hour and at 130 ° C. for 15 hours, the product was taken out of the dryer and allowed to cool naturally for 4 hours, and then a molded product at about 50 ° C. was taken out. As a result of the inspection, no dry crack was observed.
The time from molding to removal of the dried body was about one day.
No abnormalities were observed after standing for 48 hours, and the weight was measured to conversely adsorb moisture in the air and increase the amount by 0.2 gr.
On the other hand, as a control, a water-containing molded product which had been shaded in a room at about 25 ° C. and a relative humidity of about 60%, was dried at a constant rate for 5 days, and was shifted to a reduced rate drying on the 6th day. Was observed. Since then, the cracks have grown and the number of cracks has increased. After 15 days, the width of the cracks on the outer surface of the cylinder became small, and the cracks became inconspicuous.
After 21 days, a crack occurred at the center of the upper surface of the cylinder, and the width and length of the crack increased with time.

【0018】(実施例2)平均粒子径0.4〜0.5μm
のαアルミナ(商品名AES11C)3600grと平
均粒子径2μmの水硬性アルミナ(商品名BK103)
400grと、純水440grおよびポリカルボン酸ア
ンモニウム系分散剤(商品名SNディスパーサント54
68)10grを混合し、15℃の雰囲気下でアルミナ
製ポットミルを2時間用いて泥しょうを調製した。その
ときの泥しょう粘度は860cPであった。内径10c
mφ高さ20cmの金型に泥しょうを注入し、60℃で
60分保持し、外形10cmφ高さ約12cmの円柱状
の含水成形体を得た。内容積約3リットルのステンレス
容器の底面に7mmのセラミックスビーズを敷き成形体を
入れ、厚さ2mmのステンレス板で蓋をした。このステン
レス容器をを98℃にセットした乾燥器に入れ20分放
置した後、110℃で1時間、120℃で2時間、13
0℃で12時間乾燥後、200℃で1時間保持してから
容器を乾燥器から取り出し直ちに蓋を開け自然冷却させ
た後、検査した結果、乾燥割れは認められなかった。
Example 2 Average particle size 0.4-0.5 μm
Alumina (trade name AES11C) 3600 gr and hydraulic alumina having an average particle diameter of 2 μm (trade name BK103)
400 gr, pure water 440 gr and ammonium polycarboxylate dispersant (trade name: SN Dispersant 54)
68) 10 gr was mixed, and a slurry was prepared using an alumina pot mill for 2 hours in an atmosphere at 15 ° C. The slurry viscosity at that time was 860 cP. Inner diameter 10c
The slurry was poured into a mold having an mφ height of 20 cm and kept at 60 ° C. for 60 minutes to obtain a cylindrical water-containing molded body having an outer diameter of 10 cm and a height of about 12 cm. A 7 mm ceramic bead was spread on the bottom surface of a stainless steel container having an internal volume of about 3 liters, and the formed body was put in the container. The lid was covered with a stainless steel plate having a thickness of 2 mm. This stainless steel container was placed in a drier set at 98 ° C., left for 20 minutes, and then left at 110 ° C. for 1 hour, 120 ° C. for 2 hours, 13 ° C.
After drying at 0 ° C. for 12 hours, the container was kept at 200 ° C. for 1 hour, the container was taken out of the drier, immediately opened, and allowed to cool naturally. As a result, no cracks were found.

【0019】(実施例3)5cm×10cm×18cmの市販
陶磁器杯土(テラコッタ用)を内容積約10リットルの
真空デシケーター底部に50℃の温水30cc入れた
後、仕切板上にアルミナビーズを敷きその上に成形体を
置き、開口部に内径5mmφのテフロンチューブを挿した
ゴム栓を入れた蓋をした。100℃以下での水蒸気の飛
散をできるだけ防止するため、テフロンチューブの上に
7mmφのセラミックビーズを置いた。このデシケーター
を95℃まで10時間で昇温後同温度で1時間放置し
た、110℃で8時間、120℃で5時間、130℃で
5時間乾燥後、乾燥器から取り出し自然冷却させた後、
約50℃の成形体を取り出した。成形体の乾燥状況を目
視検査した結果、昇温過程後期ですでに成形体表面にク
ラックの発生が認められた。
(Example 3) A commercially available porcelain potter's clay (for terracotta) of 5 cm x 10 cm x 18 cm was placed in the bottom of a vacuum desiccator having an internal volume of about 10 liters, and 30 cc of warm water at 50 ° C was placed. Then, alumina beads were laid on the partition plate. The molded body was placed thereon, and a lid with a rubber stopper in which a Teflon tube having an inner diameter of 5 mm was inserted into the opening was placed. Ceramic beads having a diameter of 7 mm were placed on a Teflon tube in order to prevent water vapor from scattering at a temperature of 100 ° C. or lower as much as possible. The desiccator was heated to 95 ° C. for 10 hours, left at the same temperature for 1 hour, dried at 110 ° C. for 8 hours, 120 ° C. for 5 hours, 130 ° C. for 5 hours, taken out of the dryer and allowed to cool naturally,
The molded body at about 50 ° C. was taken out. As a result of a visual inspection of the drying state of the molded product, cracks were already observed on the surface of the molded product in the latter stage of the temperature raising process.

【0020】[0020]

【発明の効果】この発明のセラミックス成形体の製造方
法によれば、大型製品になっても成形時間が長くならな
いことや、ラフな昇温操作を行っても従来の乾燥時間の
1/10〜1/100程度の短時間で乾燥割れや乾燥変
形無しに安価で安全な製品の乾燥が可能となる。特に固
形鋳込み成形の離型時間や乾燥時間が長くかかりすぎ工
業的には生産が不可能であったサブミクロンの原料を用
いた大型鋳込み成形体の乾燥品が短時間で得られること
は、今後高品位ファインセラミックス大型部材の開発と
応用に光明を与えるものと考えられる。また、成形に用
いる型の制限もなく、乾燥用に減圧装置や減圧容器、加
圧装置や加圧容器、マイクロ波発生装置など特別な装置
が入らないので広範囲な適用が可能である。
According to the method for producing a ceramic molded body of the present invention, the molding time does not become long even when the product becomes large, and even if a rough heating operation is performed, the drying time is 1/10 to the conventional drying time. Inexpensive and safe products can be dried in a short time of about 1/100 without drying cracks or dry deformation. In particular, the release time and drying time of solid casting are too long, and industrially impossible to produce large-sized cast molded products using submicron raw materials, which could not be produced industrially. It is thought to give bright light to the development and application of high-quality fine ceramics large members. Also, there is no limitation on the mold used for molding, and a special device such as a decompression device, a decompression container, a pressurization device, a pressurization container, and a microwave generator is not required for drying, so that a wide range of application is possible.

【0021】このように本発明によれば、特別な装置を
用いることなく大型製品や大型偏肉製品など従来技術で
は成形・乾燥が事実上不可能なセラミックス成形体を極
めて迅速かつ安全・安価に製造できるので、セラミック
ス成形の分野に広く応用でき産業上極めて有益である。
As described above, according to the present invention, it is possible to extremely quickly, safely and inexpensively form a ceramic molded body which cannot be formed and dried by conventional techniques such as a large product and a large-sized uneven thickness product without using a special device. Since it can be manufactured, it can be widely applied to the field of ceramics molding and is extremely useful in industry.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】化学反応で硬化する結合材を用いてセラミ
ックス泥漿を所定形状に固化させ、系内が大気圧以上に
なると系外に系内ガスを放出できる構造を有する容器
に、そのセラミックス含水成形体を入れ、容器に水分を
導入することおよびまたはセラミックス含水成形体から
放出される水分で容器内の水蒸気分圧を大気圧に維持し
ながら100℃以上に雰囲気温度を保持しつつセラミッ
クス含水成形体から脱水を行うことを特徴とするセラミ
ックス成形体の製造方法。
1. A container having a structure capable of solidifying ceramic slurry into a predetermined shape by using a binder hardened by a chemical reaction and releasing gas in the system outside the system when the pressure of the system exceeds atmospheric pressure. Putting the molded body and introducing water into the container, and / or maintaining the ambient temperature above 100 ° C while maintaining the atmospheric partial pressure of water vapor in the container with the moisture released from the ceramic-containing molded body, and forming the ceramic with water. A method for producing a ceramic molded body, comprising dehydrating a molded body.
【請求項2】化学反応で硬化する結合材として、ρアル
ミナ、水硬性アルミナ、アルミナセメント、セメント、
石膏、アクリル、ウレタン、PVA+ホウ酸 から選ば
れた一種または二種以上を用いることを特徴とする特許
請求の範囲第1項記載セラミックス成形体の製造方法。
2. The binder hardened by a chemical reaction includes ρ alumina, hydraulic alumina, alumina cement, cement,
2. The method of claim 1, wherein one or more selected from gypsum, acrylic, urethane, PVA and boric acid are used.
JP18556196A 1996-06-25 1996-06-25 Production of ceramic compact Pending JPH107451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18556196A JPH107451A (en) 1996-06-25 1996-06-25 Production of ceramic compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18556196A JPH107451A (en) 1996-06-25 1996-06-25 Production of ceramic compact

Publications (1)

Publication Number Publication Date
JPH107451A true JPH107451A (en) 1998-01-13

Family

ID=16172971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18556196A Pending JPH107451A (en) 1996-06-25 1996-06-25 Production of ceramic compact

Country Status (1)

Country Link
JP (1) JPH107451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120025A (en) * 2006-11-15 2008-05-29 National Institute Of Advanced Industrial & Technology Manufacturing process of inorganic material molding by binderless shaping using hydration reaction, and molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120025A (en) * 2006-11-15 2008-05-29 National Institute Of Advanced Industrial & Technology Manufacturing process of inorganic material molding by binderless shaping using hydration reaction, and molding

Similar Documents

Publication Publication Date Title
CA2197792C (en) Subcritical process for drying sol-gel derived porous bodies
Moritz et al. Ceramic bodies with complex geometries and ceramic shells by freeze casting using ice as mold material
JPH11509617A (en) Drying method of porous body
JPH107451A (en) Production of ceramic compact
Zheng et al. Studies of drying and sintering characteristics of gelcast BaTiO3-based ceramic parts
JPS58168507A (en) Method of casting slip
JPH0524902A (en) Method for drying slurry cast molding
JP3074004B2 (en) Manufacturing method of ceramic products
US3997640A (en) Method of forming a silicon nitride article
JPH11262907A (en) Manufacture of ceramic
JP2013193412A (en) Method for manufacturing dry ceramic molding
JP2610767B2 (en) Method for drying ceramic molded body and apparatus used therefor
JPH0543300A (en) Drying method for ceramics blank body
Wang et al. Forming of large thin walled fused silica shapes by gelcasting
US2015750A (en) Manufacture of ceramic ware
JPH11291217A (en) Method for molding ceramic powder
US1643181A (en) Unburned refractory brick
JPH07121834B2 (en) Manufacturing method for amorphous refractory moldings
JPH07109166A (en) Method for drying ceramic molded body
JP2003127124A (en) Method for manufacturing ceramics molded object
JPH0585884A (en) Inner shield of apparatus for pulling up single crystal
JPH05270917A (en) Sic sintered compact and calcining method thereof
Stakhovski CERAMIC BRICK FACTORY OF SMALL SIZE
JPH11291215A (en) Method for molding ceramic powder
JPS63147869A (en) Method of removing additive from powder formed body