JPH1072676A - Electromagnetic wave shielding material and its production - Google Patents

Electromagnetic wave shielding material and its production

Info

Publication number
JPH1072676A
JPH1072676A JP9180311A JP18031197A JPH1072676A JP H1072676 A JPH1072676 A JP H1072676A JP 9180311 A JP9180311 A JP 9180311A JP 18031197 A JP18031197 A JP 18031197A JP H1072676 A JPH1072676 A JP H1072676A
Authority
JP
Japan
Prior art keywords
metal
coating film
complex
electroless plating
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9180311A
Other languages
Japanese (ja)
Inventor
Toshinori Marutsuka
利徳 丸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP9180311A priority Critical patent/JPH1072676A/en
Publication of JPH1072676A publication Critical patent/JPH1072676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electromagnetic wave shielding material which acts to shield electromagnetic waves and allows seeing-through of the inside when the material is installed to the front surface, etc., of a display device. SOLUTION: This process for producing the see-through electromagnetic wave shielding material consists in applying a resin soln. contg. a reducing metal onto a transparent base material, drying the coating to form a coating film, then subjecting the coating to a reduction treatment at need, forming an electroless plating layer over the entire surface of the coating film and, simultaneously, making the coating film black, forming the resist parts of desired patterns on the electroless plating layer and removing the electroless plating layer of the non-resist parts and the black parts in the coating film under the electroless plating layer by etching. The salt or complex of the metal or reduce particles are used as the reducing metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディスプレイ装置
前面等に設置し電磁波を遮蔽する透視性電磁波シールド
材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a transparent electromagnetic wave shielding material which is installed on the front of a display device or the like to shield electromagnetic waves.

【0002】[0002]

【従来の技術】ディスプレイ装置前面等に設置される電
磁波シールド材は、優れた電磁波シールド性能の他に、
透視性に優れ且つ視野角が広いことが要求されている。
この要求をみたす電磁波シールド材として特開平5―1
6281号に記載された発明が知られている。すなわ
ち、この発明は、「透明なアクリル板上にセルロースア
セテートプロピネートを塗布して親水性透明樹脂層を積
層する。風乾後、塩酸酸性パラジウムコロイド触媒液に
浸漬し、親水性透明樹脂に無電解メッキ核を形成し、水
洗後、無電解銅メッキを行なう。その後塩化第二鉄を用
いたレジスト法によりエッチングを行い無電解メッキ層
をパターン化する。無電解メッキ層表面は金属光沢色
で、パターン化された無電解メッキ層下の親水性透明樹
脂層は黒色パターン部となる。」ものである。
2. Description of the Related Art In addition to excellent electromagnetic wave shielding performance, an electromagnetic wave shielding material installed on the front of a display device, etc.
It is required to have excellent transparency and a wide viewing angle.
Japanese Unexamined Patent Publication No. 5-1 is an electromagnetic wave shielding material satisfying this requirement.
The invention described in No. 6281 is known. That is, the present invention provides a method of coating cellulose acetate propionate on a transparent acrylic plate and laminating a hydrophilic transparent resin layer. After forming a plating nucleus, washing with water, performing electroless copper plating, then etching by a resist method using ferric chloride to pattern the electroless plating layer. The hydrophilic transparent resin layer under the patterned electroless plating layer becomes a black pattern portion. "

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
5―16281号の発明は、無電解メッキ工程の前に塩
酸酸性パラジウムコロイド触媒液に浸漬し、親水性透明
樹脂に無電解メッキ核(触媒)を形成する必要があっ
た。
However, the invention disclosed in Japanese Patent Application Laid-Open No. Hei 5-16281 discloses an electroless plating nucleus (catalyst) which is immersed in a palladium hydrochloride-acid colloidal catalyst solution before the electroless plating step, and is immersed in a hydrophilic transparent resin. Had to be formed.

【0004】しかしこの方法は、無電解メッキ核が基板
両面に吸着し、両面メッキされるため、メッキコストが
高くなるという問題があった。また塗膜形成面のみをメ
ッキするためには、反対面にメッキ防止処理が必要とな
り、工程数が増加し、製造コストが上昇するという問題
があった。また、基板を触媒液中に浸漬する際に著しい
塗膜密着性の低下を伴うという問題があった。
[0004] However, this method has a problem that the plating cost increases because the electroless plating nuclei are adsorbed on both surfaces of the substrate and are plated on both surfaces. Further, in order to plate only the surface on which the coating film is formed, a plating prevention treatment is required on the opposite surface, which causes a problem that the number of steps increases and the manufacturing cost increases. In addition, when the substrate is immersed in the catalyst solution, there is a problem that the coating film adhesion is significantly reduced.

【0005】更に、基板を触媒液に浸漬することで塗膜
中へ触媒を浸透させるため、触媒分布を塗膜厚方向に均
一にすることが困難であり、メッキによる塗膜の黒色化
を安定かつ効率的に行なうことが困難であった。更に、
メッキ密着性にバラツキがあり、メッキ層のパターン化
の際に欠陥を生じ易く歩留まりが悪いという問題があっ
た。
Furthermore, since the catalyst is penetrated into the coating film by immersing the substrate in the catalyst solution, it is difficult to make the distribution of the catalyst uniform in the thickness direction of the coating film, and the blackening of the coating film by plating is stable. And it was difficult to perform it efficiently. Furthermore,
There is a problem in that the plating adhesion varies, and defects are likely to occur when patterning the plating layer, resulting in poor yield.

【0006】[0006]

【課題を解決するための手段】本発明は、(1)透明基
材上に還元性金属を含有する樹脂溶液を塗布、乾燥して
塗膜を形成し、次いで必要に応じて還元処理した後、該
塗膜全面に無電解メッキ層を形成すると同時に該塗膜を
黒色にし、無電解メッキ層上に所望のパターンのレジス
ト部を形成し、非レジスト部の無電解メッキ層および該
無電解メッキ層下の塗膜中の黒色部をエッチングにより
除去することを特徴とする透視性電磁波シールド材の製
造方法、 (2)還元性金属が金属の塩もしくは錯体、又は還元金
属粒子である(1)記載の方法。 (3)還元性金属が還元剤で接触的にのみ還元可能な
金属の塩又は錯体[A]及び直接還元可能な金属の塩又
は錯体[B]、あるいは還元剤で接触的にのみ還元可
能な金属の塩又は錯体[A]及び還元金属粒子[C]で
ある(1)記載の方法。 (4)透明基材上に還元金属粒子を分散した樹脂溶液を
塗布、乾燥して塗膜を形成し、次いで必要に応じて活性
化後、該塗膜全面に無電解メッキ層を形成すると同時に
該塗膜を黒色にし、無電解メッキ層上に所望のパターン
のレジスト部を形成し、非レジスト部の無電解メッキ層
および該無電解メッキ層下の塗膜中の黒色部をエッチン
グにより除去することを特徴とする(2)記載の方法。 (5)透明基材上に、還元剤で接触的にのみ還元可能な
金属の塩もしくは錯体[A]及び直接還元可能な金属の
塩もしくは錯体[B]、又は還元剤で接触的にのみ還元
可能な金属の塩もしくは錯体[A]及び還元金属粒子
[C]を溶解又は分散した樹脂溶液を塗布、乾燥して塗
膜を形成し、次いで還元処理をした後、該塗膜全面に無
電解メッキ層を形成すると同時に該塗膜を黒色にし、無
電解メッキ層上に所望のパターンのレジスト部を形成
し、非レジスト部の無電解メッキ層および該無電解メッ
キ層下の塗膜中の黒色部をエッチングにより除去するこ
とを特徴とする(3)記載の方法。 (6)金属の塩又は錯体が、元素周期律表の第Ib族、
又は第VIII族に属する金属の塩又は錯体である
(3)又は(5)記載の方法。 (7)還元金属粒子が、元素周期律表の第Ib族または
第VIII族に属する金属の還元金属コロイド粒子、又
は該分散液から得られる還元金属粉である(2)又は
(4)記載の方法。 (8)還元剤で接触的にのみ還元可能な金属の塩もしく
は錯体[A]が元素周期律表の第Ib族の第4周期又は
第VIII族の第4周期に属する金属の塩又は錯体であ
り、直接還元可能な金属の塩もしくは錯体[B]が第I
b族の第5、6周期又は第VIII族の第5、6周期に
属する金属の塩又は錯体であり、かつ還元金属粒子
[C]が第Ib族又は第VIII族に属する金属の還元
金属コロイド粒子、又は該分散液から得られる還元金属
粉である(5)記載の方法。 (9)樹脂溶液の樹脂がポリビニルアセタールである
(1)、(4)、又は(5)記載の方法。 (10)還元剤が[A]を接触的にのみ還元可能で
[B]を直接還元可能な化合物である(3)、(5)又
は(8)記載の方法。 (11)塗膜中に還元金属中のPd量をPdCl換算
で1〜200mg/m(塗膜単位面積当たり重量)含
有することを特徴とする(1)、(4)、(5)、
(8)又は(10)記載の方法。 (12)透明基材がガラス板あるいはプラスチックのフ
ィルム、シート、板のいずれかである(1)、(4)、
(5)、(8)又は(10)記載の方法。 (13)電磁波シールド材が、光透過率が65%以上、
30〜1000MHzにおけるシールド性能が40〜8
0dBである(1)、(4)、(5)、(8)又は(1
0)記載の方法。 (14)透明基材側から見た塗膜の黒化度が、光学濃度
(入射角7°、正反射を含まない場合)で2.9〜4.
0である透視性電磁波シールド材、である。
According to the present invention, there is provided (1) a method in which a resin solution containing a reducing metal is applied to a transparent substrate, dried to form a coating film, and then subjected to a reduction treatment if necessary. Forming an electroless plating layer on the entire surface of the coating film and simultaneously blackening the coating film, forming a resist portion of a desired pattern on the electroless plating layer, and forming an electroless plating layer of the non-resist portion and the electroless plating. A method for producing a see-through electromagnetic shielding material, wherein a black portion in a coating film under a layer is removed by etching; (2) the reducing metal is a metal salt or complex, or reduced metal particles (1) The described method. (3) A metal salt or complex [A] in which the reducing metal can be reduced only catalytically with a reducing agent and a metal salt or complex [B] directly reducible with a reducing agent, or can be reduced only catalytically with a reducing agent The method according to (1), which is a metal salt or complex [A] and reduced metal particles [C]. (4) A resin solution in which reduced metal particles are dispersed is applied to a transparent base material, dried to form a coating film, and then, if necessary, activated, and then an electroless plating layer is formed on the entire surface of the coating film. The coating film is blackened, a resist portion having a desired pattern is formed on the electroless plating layer, and the black portion in the coating film under the electroless plating layer and the electroless plating layer in the non-resist portion is removed by etching. The method according to (2), wherein (5) On a transparent substrate, a metal salt or complex [A] that can only be reduced catalytically with a reducing agent and a metal salt or complex [B] that can be directly reduced with a reducing agent, or only a catalytic reduction with a reducing agent A coating solution is formed by applying and drying a resin solution in which a possible metal salt or complex [A] and reduced metal particles [C] are dissolved or dispersed, and then subjected to a reduction treatment. Simultaneously with the formation of the plating layer, the coating film is blackened, a resist portion having a desired pattern is formed on the electroless plating layer, and the black portion of the electroless plating layer in the non-resist portion and the coating film below the electroless plating layer is formed. The method according to (3), wherein the portion is removed by etching. (6) The metal salt or complex is a group Ib of the periodic table of the elements,
Or the method according to (3) or (5), which is a salt or complex of a metal belonging to Group VIII. (7) The reduced metal particles according to (2) or (4), wherein the reduced metal particles are reduced metal colloid particles of a metal belonging to Group Ib or Group VIII of the periodic table of elements, or reduced metal powder obtained from the dispersion. Method. (8) A metal salt or complex that can be reduced only catalytically with a reducing agent [A] is a metal salt or complex belonging to Group 4b of Group Ib or Group VIII of Periodic Table. And a directly reducible metal salt or complex [B]
A reduced metal colloid of a metal belonging to Group Ib or Group VIII, which is a salt or complex of a metal belonging to Group b, Group 5 or 6 or Group VIII belonging to Group 5 or 6; The method according to (5), wherein the particles are particles or reduced metal powder obtained from the dispersion. (9) The method according to (1), (4), or (5), wherein the resin of the resin solution is polyvinyl acetal. (10) The method according to (3), (5) or (8), wherein the reducing agent is a compound capable of reducing [A] only catalytically and directly reducing [B]. (11) (1), (4), (5), wherein the coating film contains 1 to 200 mg / m 2 (weight per unit area of the coating film) of Pd in the reduced metal in terms of PdCl 2. ,
The method according to (8) or (10). (12) The transparent substrate is any of a glass plate or a plastic film, sheet or plate (1), (4),
(5) The method according to (8) or (10). (13) The electromagnetic wave shielding material has a light transmittance of 65% or more,
Shielding performance at 30 to 1000 MHz is 40 to 8
(1), (4), (5), (8) or (1)
0) A method as described above. (14) The degree of blackening of the coating film viewed from the transparent substrate side is 2.9 to 4. in terms of optical density (when the incident angle is 7 ° and specular reflection is not included).
0, which is a transparent electromagnetic wave shielding material.

【0007】[0007]

【発明の実施の形態】本発明の基材は用途によって選択
され、透明であることが要求され、たとえば、ガラス
板、プラスチックフィルム、プラスチックシート、プラ
スチック板等が挙げられる。また基材の形状も特に限定
されない。
BEST MODE FOR CARRYING OUT THE INVENTION The substrate of the present invention is selected depending on the application and is required to be transparent, and examples thereof include a glass plate, a plastic film, a plastic sheet, and a plastic plate. Also, the shape of the substrate is not particularly limited.

【0008】基材に使用されるプラスチックとしては透
明性の高い樹脂が好ましく、アクリル樹脂、ポリカーボ
ネート、ポリエチレン、AS樹脂、酢酸ビニル樹脂、ポ
リスチレン、ポリプロピレン、ポリエステル、ポリサル
ホン、ポリエーテルサルホン、ポリ塩化ビニル、オレフ
ィン・マレイミド共重合体、ノルボルネン系樹脂等が適
当であるが、なかでも耐熱性の高い、オレフィン・マレ
イミド共重合体、ノルボルネン系樹脂が好ましい。
[0008] As the plastic used for the substrate, a resin having high transparency is preferable. Acrylic resin, polycarbonate, polyethylene, AS resin, vinyl acetate resin, polystyrene, polypropylene, polyester, polysulfone, polyethersulfone, polyvinyl chloride Suitable are olefin / maleimide copolymers, norbornene-based resins, etc. Among them, olefin / maleimide copolymers and norbornene-based resins having high heat resistance are preferred.

【0009】プラスチックの熱変形温度は 140〜3
60℃、熱線膨張係数は6.2×10-5cm/cm・℃
以下、鉛筆硬度は2H以上、曲げ強度は1,200〜
2,000kgf/cm2 、曲げ弾性率は30,000
〜50,000kgf/cm2 、引張強度は700〜
1,200kgf/cm2 であることが好ましい。この
ようなプラスチックは、高温下でも反りにくく、傷つき
にくいため広範な環境下で使用できる。
The heat distortion temperature of plastic is 140-3
60 ° C., coefficient of thermal expansion is 6.2 × 10-Fivecm / cm ・ ℃
Hereinafter, the pencil hardness is 2H or more, and the bending strength is 1,200 to
2,000kgf / cmTwo , Flexural modulus is 30,000
~ 50,000kgf / cmTwo , Tensile strength is 700 ~
1,200kgf / cmTwo It is preferred that this
Such plastics are less likely to warp even at high temperatures,
Difficult to use in a wide range of environments.

【0010】又、プラスチックの光線透過率は90%以
上、アッベ数は50〜70、光弾性定数(ガラス領域)
の絶対値は10×10-13 cm2 /dyne以下であるこ
とが好ましい。このようなプラスチックは、透明性が高
く(明るく)、複屈折が小さい(2重像となりにくい)
ため、ディスプレイの本来の画質、輝度等を損なわな
い。
The light transmittance of plastic is 90% or less.
Above number is 50-70, photoelastic constant (glass area)
The absolute value of is 10 × 10-13 cmTwo / Dyne or less
Is preferred. Such plastics are highly transparent
(Bright), low birefringence (hard to form double images)
Therefore, the original image quality and brightness of the display are not impaired.
No.

【0011】基材に塗布する樹脂溶液中の樹脂は、透明
性が必要の他、金属の塩もしくは錯体、又は還元金属粒
子に対して良好な溶解性又は分散性を有する限りその種
類を問わない。
The resin in the resin solution to be applied to the base material is not limited to transparency, and may be of any type as long as it has good solubility or dispersibility in metal salts or complexes, or reduced metal particles. .

【0012】使用される樹脂としては、メッキ液が樹脂
中に浸透し、還元金属(メッキ触媒)が核となり反応
し、メッキ金属が析出して黒色化させるため、親水性の
透明樹脂が好ましく、親水性透明樹脂層としては、ビニ
ルアセタール系樹脂、ビニルアルコール系樹脂、アクリ
ル系樹脂、セルロース系樹脂などが適当であるが、なか
でもポリビニルブチラール等のビニルアセタール系樹
脂、及びセルロースアセテートブチレート等のセルロー
ス系樹脂が好ましい。
As the resin to be used, a hydrophilic transparent resin is preferable because the plating solution permeates into the resin, the reduced metal (plating catalyst) reacts as a nucleus, and the plated metal precipitates and turns black. As the hydrophilic transparent resin layer, a vinyl acetal resin, a vinyl alcohol resin, an acrylic resin, a cellulose resin, and the like are suitable, and among them, a vinyl acetal resin such as polyvinyl butyral, and a cellulose acetate butyrate are preferable. Cellulosic resins are preferred.

【0013】本発明に使用される還元性金属は、金属の
塩もしくは錯体、又は還元金属粒子であり、金属の塩又
は錯体は、後述する還元剤によって金属に容易に還元さ
れうる、後述の樹脂との共通溶媒に対して可溶性の有
機、又は無機の、特に無機の金属塩が好適である。具体
例としては、鉄、銅、ニッケル、コバルト、パラジウム
等の元素周期律表の第Ib族、及び第VIII族に属する金
属の硫酸塩、硝酸塩、塩化物、有機塩(たとえば酢酸
塩)、ベンゾニトリル錯体、アセチルアセトナト錯体、
アンモニア錯体等が挙げられる。
The reducing metal used in the present invention is a metal salt or complex, or a reduced metal particle, and the metal salt or complex can be easily reduced to a metal by a reducing agent described below. Organic or inorganic, especially inorganic metal salts that are soluble in the common solvent with are preferred. Specific examples include sulfates, nitrates, chlorides, organic salts (eg, acetates) of metals belonging to Group Ib and Group VIII of the Periodic Table of the Elements, such as iron, copper, nickel, cobalt, and palladium. Nitrile complex, acetylacetonato complex,
Ammonia complexes and the like can be mentioned.

【0014】又、還元金属粒子としては、還元金属コロ
イド分散液中のコロイド粒子、あるいは該分散液から得
られる還元金属粉であって、メッキ触媒活性を有し、塗
膜内に均一に分散できる限り、金属の種類、粒径は問わ
ない。かかる還元金属粒子は、大気又は湿気に対して安
定であることが望ましい。具体例としては、周期律表第
VIII族の金属(Ni、Co、Rh、Pdなど)を含むコ
ロイドで、還元Pdコロイド粒子、あるいは、これより
得られる還元Pd粉が特に好ましい。還元金属コロイド
粒子は、特開平1―315334号公報に記載の方法で
製造できる。すなわち、低級アルコール類と非プロトン
極性化合物とからなる混合溶液中で金属の塩を還元する
ことによりコロイド分散液が得られる。
The reduced metal particles are colloidal particles in a reduced metal colloidal dispersion or reduced metal powders obtained from the dispersion, have catalytic activity for plating, and can be uniformly dispersed in a coating film. The type and particle size of the metal are not limited as long as it is used. Desirably, such reduced metal particles are stable to the atmosphere or moisture. As a specific example,
Colloidal particles containing a Group VIII metal (Ni, Co, Rh, Pd, etc.), and reduced Pd colloid particles or reduced Pd powder obtained therefrom are particularly preferred. The reduced metal colloid particles can be produced by the method described in JP-A-1-315334. That is, a colloidal dispersion is obtained by reducing a metal salt in a mixed solution comprising a lower alcohol and an aprotic polar compound.

【0015】還元剤で接触的にのみ還元可能な金属の塩
もしくは錯体[A](以下、[A]という。)及び直接
還元可能な金属の塩もしくは錯体[B](以下、[B]
という。)、又は、[A]および還元金属粒子[C]
(以下、[C]という。)の場合、[A]の具体例とし
ては、鉄、コバルト、ニッケル、銅等の元素周期律表第
Ib族の第4周期又は第VIII族の第4周期に属する金属
の塩又は錯体であり、硫酸塩、硝酸塩、塩化物、有機
塩、ベンゾニトリル錯体、アセチルアセトナト錯体、ア
ンモニア錯体等が挙げられる。
A metal salt or complex [A] (hereinafter referred to as [A]) which can be reduced only catalytically with a reducing agent and a metal salt or complex [B] (hereinafter [B]) which can be directly reduced.
That. ) Or [A] and reduced metal particles [C]
In the case of (hereinafter referred to as [C]), specific examples of [A] include the fourth period of Group Ib or the fourth period of Group VIII of the periodic table of elements such as iron, cobalt, nickel, and copper. It is a salt or complex of a belonging metal, and examples thereof include a sulfate, a nitrate, a chloride, an organic salt, a benzonitrile complex, an acetylacetonato complex, and an ammonia complex.

【0016】還元剤で接触的にのみ還元可能という意味
は、還元に触媒が必要という意味で、後記する[B]が
還元して出来た還元金属、又は還元金属粒子[C]がこ
の還元触媒になる。従って、[A]は[B]又は[C]
と併用して還元に供されるのが好ましい。
[0016] The meaning that the catalyst can be reduced only catalytically with a reducing agent means that a catalyst is required for the reduction, and the reduced metal or the reduced metal particles [C] formed by the reduction [B] described below is the reduction catalyst. become. Therefore, [A] becomes [B] or [C]
It is preferable to be subjected to reduction in combination with.

【0017】又、[B]の直接還元可能な金属とは還元
に触媒が不要という意味で、たとえば、ロジウム、パラ
ジウム、銀、白金、金等の元素周期律表第Ib族の第
5、6周期又は第VIII族の第5、6周期に属する金属の
塩又は錯体である。
The directly reducible metal of [B] means that no catalyst is required for the reduction, and for example, rhodium, palladium, silver, platinum, gold, etc., elements 5 and 6 of group Ib of the periodic table of the element. It is a salt or complex of a metal belonging to the fifth cycle or the fifth or sixth cycle of Group VIII.

【0018】又、[C]は、前述した還元金属粒子と同
じものが使用できる。
[C] can be the same as the above-mentioned reduced metal particles.

【0019】これら金属の塩又は錯体、還元金属粒子、
[A]、[B]、[C]各々単独の使用量、あるいは
[A]及び[B]、又は[A]及び[C]のように混合
した場合はその全使用量の範囲は0.5〜100PHR
(樹脂100重量部に対する重量部)であることが望ま
しく、さらに好ましくは1〜50PHRの範囲である。
Salts or complexes of these metals, reduced metal particles,
When [A], [B], and [C] are used alone, or when they are mixed as in [A] and [B], or when they are mixed as in [A] and [C], the range of the total amount is 0.1. 5-100 PHR
(Parts by weight based on 100 parts by weight of resin), and more preferably in the range of 1 to 50 PHR.

【0020】0.5PHR未満ではめっき緻密性や光沢
に乏しく、100PHR超では塗膜物性が低下する。
If it is less than 0.5 PHR, the plating density and gloss are poor, and if it exceeds 100 PHR, the physical properties of the coating film deteriorate.

【0021】本発明の効果を発現する機構は明らかでは
ないが、強還元剤を用いて[A]を直接還元した場合で
は[A]と[B]若しくは[C]の還元金属粒子が混在
した状態であるのに対して、本発明の場合は、[B]、
[C]の還元金属粒子の存在下、これらの触媒作用によ
って[A]が還元されるので、[B]あるいは[C]の
還元金属粒子のまわりを[A]の還元金属がとりかこん
だ状態となっているからと思われる。
Although the mechanism for achieving the effect of the present invention is not clear, when [A] is directly reduced using a strong reducing agent, reduced metal particles of [A] and [B] or [C] are mixed. Whereas in the case of the present invention, [B],
[A] is reduced by these catalysis in the presence of the reduced metal particles of [C], so that the reduced metal of [A] wraps around the reduced metal particles of [B] or [C]. It seems that it is in a state.

【0022】そのため、粒子径が比較的大きくなり、ア
ンカー効果によりめっき密着性が向上する。
As a result, the particle diameter becomes relatively large, and the adhesion of the plating is improved by the anchor effect.

【0023】なお、[A]/[B]、[A]/[C]の
比を変えることで粒径の制御も可能である。
The particle diameter can be controlled by changing the ratio of [A] / [B] and [A] / [C].

【0024】前記[A]/[B]、[A]/[C]にお
いて[A]の量が少なくなれば、本発明の[A]を使用
可能とする本発明の目的に反し、又[B]、[C]が少
なくなれば、[A]の還元触媒が少なくなり、[A]の
有効活用が充分でなくなる。
In the above [A] / [B] and [A] / [C], if the amount of [A] is small, it is against the object of the present invention to enable the use of [A] of the present invention. When B] and [C] decrease, the reduction catalyst of [A] decreases, and the effective utilization of [A] becomes insufficient.

【0025】本発明の樹脂溶液をつくる溶媒は、樹脂及
び金属の塩又は錯体、[A]、[B]あるいは還元金属
粒子[C]を溶解あるいは混和可能であればその種類を
問わない。
The solvent for forming the resin solution of the present invention is not particularly limited as long as it can dissolve or mix the resin or metal salt or complex, [A], [B] or the reduced metal particles [C].

【0026】例えば、メタノール、エタノール、クロロ
ホルム、塩化メチレン、トリクロロエチレン、テトラク
ロロエチレン、ベンゼン、トルエン、キシレン、アセト
ン、酢酸エチル、ジメチルホルムアミド、ジメチルスル
ホキシド、ジメチルアセトアミド、N―メチルピロリド
ン等の単独又は混合溶媒が好ましく用いられる。
For example, single or mixed solvents such as methanol, ethanol, chloroform, methylene chloride, trichloroethylene, tetrachloroethylene, benzene, toluene, xylene, acetone, ethyl acetate, dimethylformamide, dimethylsulfoxide, dimethylacetamide, and N-methylpyrrolidone are preferred. Used.

【0027】用いる樹脂と金属の塩又は錯体あるいは還
元金属粒子との組合せに応じて適宜に選択する。
The appropriate selection is made according to the combination of the resin used and the metal salt or complex or the reduced metal particles.

【0028】溶媒の使用量は、適当な粘性、流動性を有
するように、かつ基材に塗布するのに適するように選ば
れる。
The amount of the solvent to be used is selected so as to have an appropriate viscosity and fluidity and to be suitable for coating on a substrate.

【0029】樹脂及び金属の塩もしくは錯体又は還元金
属粒子からなる溶液を任意形状の基材上に塗布し、乾燥
することにより、金属の塩もしくは錯体又は還元金属粒
子を含む塗膜を形成する。塗布は、ハケ塗り、スプレー
塗装、ディップコート、ロール塗装、カレンダー塗装、
スピンコート、バーコート等の通常の塗布方法を基材の
形状に応じて選択する。
A solution comprising a resin and a metal salt or complex or reduced metal particles is applied to a substrate having an arbitrary shape and dried to form a coating film containing a metal salt or complex or reduced metal particles. Application is brush coating, spray coating, dip coating, roll coating, calendar coating,
An ordinary coating method such as spin coating or bar coating is selected according to the shape of the substrate.

【0030】また、塗膜形成は、樹脂の種類、濃度、塗
膜厚さ等に応じて条件(温度、時間等)が決定される。
通常、不揮発分濃度が0.05〜20wt%で塗布され
る。塗膜厚は0.2〜10μ、好ましくは0.5〜5μ
とする。
The conditions (temperature, time, etc.) for forming the coating film are determined according to the type, concentration, thickness of the coating film and the like of the resin.
Usually, it is applied at a nonvolatile content of 0.05 to 20 wt%. The coating thickness is 0.2 to 10μ, preferably 0.5 to 5μ
And

【0031】還元処理は、通常最終キュア後に行なうが
キュア途中で行なってもよい。還元剤で処理すること
で、塗膜中金属の塩又は錯体が塗膜内部あるいは表面に
還元金属として析出し、これがめっき触媒となる。表面
析出したものは、表面に一部が突出し、塗膜内に一部が
埋没した一体化された還元金属めっき触媒層が形成され
る。
The reduction treatment is usually performed after the final curing, but may be performed during the curing. By treating with a reducing agent, a metal salt or complex in the coating film precipitates as a reducing metal inside or on the surface of the coating film, and this serves as a plating catalyst. The one deposited on the surface is partially protruded from the surface, and an integrated reduced metal plating catalyst layer partially embedded in the coating film is formed.

【0032】そのため、触媒効果と突出部のアンカー効
果によって、めっき密着性は極めて良好で、又エッチン
グ(表面粗化)を行なう必要もない。
Therefore, due to the catalytic effect and the anchor effect of the projecting portion, the plating adhesion is extremely good, and there is no need to perform etching (surface roughening).

【0033】金属の塩又は錯体を還元する還元剤として
は、水素化ホウ素ナトリウム、水素化ホウ素リチウム、
アミノボラン、ジメチルアミンボラン等の水素化ホウ素
化合物のほか、FeSO4の如き第一鉄塩、次亜リン酸
ソーダの如きリン酸水素金属塩、硫酸ヒドロキシルアミ
ン、ハイドロサルファイト,ホルマリン等も使用できる
が、通常前者の水素化ホウ素化物が好適である。
Examples of the reducing agent for reducing the metal salt or complex include sodium borohydride, lithium borohydride,
In addition to borohydride compounds such as aminoborane and dimethylamine borane, ferrous salts such as FeSO 4 , hydrogen phosphate metal salts such as sodium hypophosphite, hydroxylamine sulfate, hydrosulfite, and formalin can also be used. Usually, the former borohydride is preferred.

【0034】[A]及び[B]、又は[A]及び[C]
の場合、還元剤は[B]を直接還元可能かつ[A]を接
触還元可能な化合物であることが好ましい。
[A] and [B], or [A] and [C]
In this case, the reducing agent is preferably a compound capable of directly reducing [B] and catalytically reducing [A].

【0035】例えば、次亜リン酸ソーダ、ジメチルアミ
ノボラン、ホルマリン等が好ましく使用できる。
For example, sodium hypophosphite, dimethylaminoborane, formalin and the like can be preferably used.

【0036】これらの還元剤を通常は水溶液として使用
に供するが、還元剤を溶解又は分散できる溶媒系であれ
ば、有機溶媒であってもよく、限定されない。還元剤溶
液中における還元剤濃度は通常、0.05〜50重量
%、好ましくは0.1〜25重量%である。
These reducing agents are usually used as an aqueous solution, but may be an organic solvent as long as it can dissolve or disperse the reducing agent, and is not limited. The concentration of the reducing agent in the reducing agent solution is usually 0.05 to 50% by weight, preferably 0.1 to 25% by weight.

【0037】この還元は、金属の塩もしくは錯体又は還
元金属粒子を含む塗膜を有する基材を還元液中に適当時
間浸漬するか、又は還元液を吹きつける等の方法によっ
て簡単に行なえる。
This reduction can be easily carried out by immersing a substrate having a coating film containing a metal salt or complex or reduced metal particles in a reducing solution for an appropriate time or spraying the reducing solution.

【0038】還元温度は、10〜90℃程度が好まし
く、還元液との接触時間は数10秒〜30分程度が適当
である。
The reduction temperature is preferably about 10 to 90 ° C., and the contact time with the reducing solution is suitably several tens seconds to about 30 minutes.

【0039】塗膜中の溶媒は還元前に完全に加熱除去し
ても良いし、又は一部残留しても良い。一部残留させる
ことによって還元剤の塗膜中へ浸透が容易となることが
ある。
The solvent in the coating film may be completely removed by heating before reduction, or may partially remain. In some cases, the residual agent facilitates the penetration of the reducing agent into the coating film.

【0040】溶媒が完全に除去された塗膜の場合は、還
元液温を高くする、還元前に塗膜を予備加熱する、塗膜
を膨潤可能な溶液で処理する、さらには樹脂溶液と親和
性の良い同様の溶液系の還元液を用いる等の方法で還元
効率を上げることもできる。
In the case of a coating film from which the solvent has been completely removed, the temperature of the reducing solution is raised, the coating film is preheated before reduction, the coating film is treated with a swellable solution, and the resin solution has an affinity. The reduction efficiency can be increased by a method such as using a similar solution-based reducing solution having good properties.

【0041】還元は通常、少なくとも表面層に存在する
金属の塩又は錯体が還元されるまで行われるが、めっき
をするための触媒量が確保できた時点で止めてもよい。
The reduction is usually performed until at least the metal salt or complex present in the surface layer is reduced, but may be stopped when the amount of catalyst for plating can be secured.

【0042】還元金属粒子を単独で用いる場合は、表面
の触媒活性のムラをなくし均一にする、あるいは触媒活
性の程度を向上する目的で還元剤で処理するか、酸又は
アルカリで処理してもよい。
When the reduced metal particles are used alone, they may be treated with a reducing agent, or treated with an acid or alkali for the purpose of eliminating unevenness in the catalytic activity on the surface and improving the degree of catalytic activity. Good.

【0043】本発明では好ましい態様として、たとえば
塗膜中に還元金属中のPd量を、PdCl2換算で1〜
200mg/m2(塗膜単位面積当たり重量)含有する
のが好ましい。1mg/m2未満では、充分な黒色を得
ることが難しく、200mg/m2超では経済的でな
い。
In a preferred embodiment of the present invention, for example, the amount of Pd in the reduced metal in the coating film is 1 to 1 in terms of PdCl 2 .
The content is preferably 200 mg / m 2 (weight per unit area of the coating film). If it is less than 1 mg / m 2 , it is difficult to obtain a sufficient black color, and if it exceeds 200 mg / m 2, it is not economical.

【0044】メッキ下地(触媒)化された被メッキ物
は、無電解メッキ工程に移され、所望の金属メッキ物と
なる。無電解メッキは通常行なわれている方法を目的に
応じて選択すればよく、例えばNiメッキ、Cuメッキ
等が代表的である。
The substrate to be plated (catalyst) is transferred to an electroless plating step to obtain a desired metal plating. The electroless plating may be selected according to the purpose by a commonly used method, and typical examples thereof include Ni plating and Cu plating.

【0045】本発明の方法において、使用する樹脂及び
金属の塩もしくは錯体及び/又は還元金属粒子の種類を
適宜選択することにより、また、キュア、還元剤による
処理条件等の操作条件を変更することにより、得られる
メッキ下地化塗膜の密着性、硬度、強度、めっき触媒活
性等を目的に応じて調節することができる。
In the method of the present invention, by appropriately selecting the kind of the resin and the salt or complex of the metal and / or the reduced metal particles to be used, and changing the operating conditions such as the curing and the treatment conditions with the reducing agent. Thereby, the adhesion, hardness, strength, plating catalytic activity and the like of the obtained plating base coat can be adjusted according to the purpose.

【0046】次に、メッキ下地化塗膜を、無電解メッキ
液で処理して無電解メッキ層を形成する。無電解メッキ
層の形成と同時に塗膜が黒色化する。そして、透明基体
側から視た場合には前記無電解メッキ層が積層された部
分は黒色に見える。
Next, the plating base coat is treated with an electroless plating solution to form an electroless plating layer. The coating film turns black simultaneously with the formation of the electroless plating layer. When viewed from the transparent substrate side, the portion where the electroless plating layer is laminated appears black.

【0047】透視性電磁波シールド材の透明基材(厚さ
2mm、屈折率1.49、光透過率93%、平均粗さR
a40Å)側から見た塗膜の黒化度は、光学濃度(入射
角7°、正反射を含まない場合)で2.9以上であるこ
とが好ましい。光学濃度が2.9未満では、塗膜の黒化
度が低く視認性が悪い(光学濃度が低いほどめっき光沢
が強くまぶしい)。光学濃度が2.9以上では、塗膜の
黒化度が十分高く視認性は良好である(くっきり見え
る)。4.0を超えると実質的に肉眼では視認性がそれ
以上向上しない。
The transparent base material of the transparent electromagnetic wave shielding material (thickness 2 mm, refractive index 1.49, light transmittance 93%, average roughness R
The degree of blackening of the coating film viewed from the a40 °) side is preferably 2.9 or more in terms of optical density (when the incident angle is 7 ° and the specular reflection is not included). If the optical density is less than 2.9, the degree of blackening of the coating film is low and the visibility is poor (the lower the optical density, the stronger the plating gloss and dazzling). When the optical density is 2.9 or more, the degree of blackening of the coating film is sufficiently high and the visibility is good (clearly visible). If it exceeds 4.0, the visibility will not substantially improve with the naked eye.

【0048】次に、電磁波シールド材料の導電部のパタ
ーンと同じパターンのレジスト部を無電解メッキ層上に
形成する。レジスト部は印刷法、ホトリソ法等一般に知
られている方法で形成するとよい。
Next, a resist portion having the same pattern as that of the conductive portion of the electromagnetic wave shielding material is formed on the electroless plating layer. The resist portion may be formed by a generally known method such as a printing method and a photolithography method.

【0049】次に、非レジスト部の不要な無電解メッキ
層および不要な黒色部をエッチング液で処理して除去す
る。
Next, the unnecessary electroless plating layer in the non-resist part and the unnecessary black part are removed by processing with an etchant.

【0050】その結果、パターン化された無電解メッキ
層下にそれと同一のパターンの黒色部が塗膜に形成され
る。また、無電解メッキ層と黒色が除去された部分は透
視性を有する。その後、レジスト部をアルカリ水溶液な
ど、レジスト膜を溶解するような剥離液に浸漬、あるい
は吹き付けて除去する。
As a result, a black portion having the same pattern is formed under the patterned electroless plating layer in the coating film. Further, the portion from which the electroless plating layer and the black color have been removed has transparency. Thereafter, the resist portion is removed by dipping or spraying in a stripper such as an aqueous alkaline solution that dissolves the resist film.

【0051】このようにして、所望のパターンに形成さ
れた導電部を有する透視性電磁波シールド材が作製でき
る。
Thus, a see-through electromagnetic wave shielding material having a conductive portion formed in a desired pattern can be manufactured.

【0052】透視性電磁波シールド材の光透過率は65
%以上、30〜1,000MHzにおけるシールド性能
は40dB以上であることが好ましい。光透過率が65
%未満では暗く、シールド性能が40dB未満では実用
レベルでない。
The light transmittance of the transparent electromagnetic wave shielding material is 65.
%, And the shielding performance at 30 to 1,000 MHz is preferably 40 dB or more. Light transmittance of 65
%, It is not practical level when the shielding performance is less than 40 dB.

【0053】前記エッチング液は、無電解メッキ層の金
属の種類により適宜選択する。たとえば、無電解メッキ
層の金属がニッケルや銅などであれば、エッチング液と
して塩化第二鉄などを使用するとよい。
The etching solution is appropriately selected depending on the type of metal of the electroless plating layer. For example, if the metal of the electroless plating layer is nickel or copper, ferric chloride or the like may be used as an etching solution.

【0054】なお、電磁波シールド材の導電部のパター
ンを形成するには、エッチング処理によらず、他の方法
で形成するようにしてもよい。例えばめっき触媒含有樹
脂塗膜を基材上の導電部パターン形成予定部分にのみ形
成し、無電解めっきを施してもよい。この方法はエッチ
ング処理を省けるだけでなく、塗膜樹脂やめっき触媒を
節約できるので経済的に有利である。
The pattern of the conductive portion of the electromagnetic wave shielding material may be formed by another method without depending on the etching process. For example, a plating catalyst-containing resin coating film may be formed only on a portion where a conductive portion pattern is to be formed on the base material, and may be subjected to electroless plating. This method is economically advantageous because it not only saves the etching process but also saves the coating resin and the plating catalyst.

【0055】次に実施例及び比較例により本発明を具体
的に説明する。
Next, the present invention will be specifically described with reference to Examples and Comparative Examples.

【0056】[0056]

【実施例1】電気化学工業(株)製ポリビニルブチラー
ル(PVB)「デンカブチラール#6000―C」のア
ルコール溶液と奥野製薬工業(株)製水系パラジウム
(Pd)コロイド触媒液「OPC―80キャタリスト
M」を混合し塗布液とした(塗布液組成;PVB/触媒
液/メタノール/ブタノール=10/43/647/3
00,Pdコロイド3PHR(PdCl2換算))。
Example 1 Alcohol solution of polyvinyl butyral (PVB) "Denka Butyral # 6000-C" manufactured by Denki Kagaku Kogyo Co., Ltd. and aqueous palladium (Pd) colloid catalyst solution "OPC-80 Catalyst" manufactured by Okuno Pharmaceutical Co. M "as a coating solution (coating solution composition: PVB / catalyst solution / methanol / butanol = 10/43/647/3)
00, Pd colloid 3PHR (PdCl 2 conversion)).

【0057】この塗布液をA4サイズアクリル板にバー
コート法にて塗布・風乾後、80℃で1時間乾燥した
(塗膜厚;1μ)。
This coating solution was applied to an A4 size acrylic plate by a bar coating method, air-dried, and then dried at 80 ° C. for 1 hour (coating thickness: 1 μm).

【0058】この塗膜(触媒含有)形成品を直接、奥野
製薬工業(株)製ホルマリン含有銅めっき液「OPC―
700M」(25℃)中に1時間浸漬した。この結果、
アクリル板上塗膜表面は銅光沢、塗膜裏面(アクリル板
側から観察)は濃黒色を呈した。
The formed product of the coating film (containing a catalyst) was directly applied to a copper plating solution containing formalin “OPC-
700M "(25 ° C) for 1 hour. As a result,
The surface of the coating film on the acrylic plate had a copper luster, and the back surface of the coating film (observed from the acrylic plate side) was dark black.

【0059】この銅めっき品に対して、東京応化工業
(株)製エッチング用ポジ型フォトレジスト「PMER
P―DF40S」をメーカー推奨条件にて塗布・プリ
ベーク(塗膜厚;5μ)・露光(格子状パターンのマス
ク使用)・現像して格子状レジストパターンを形成し
た。
For this copper plated product, a positive type photoresist for etching “PMER” manufactured by Tokyo Ohka Kogyo Co., Ltd.
P-DF40S "was applied, prebaked (coating thickness: 5 μm), exposed (using a lattice pattern mask), and developed under the manufacturer's recommended conditions to form a lattice resist pattern.

【0060】このレジストパターン形成品をエッチング
液(20%塩化第二鉄/1.75%塩酸水溶液)に浸漬
し、銅めっき皮膜及び塗膜中の黒色銅をエッチング除去
した後、不要となったレジストを剥離し導電パターン
(電磁波シールド材)を作製した。
This resist pattern-formed product was immersed in an etching solution (20% ferric chloride / 1.75% hydrochloric acid aqueous solution) to remove the copper plating film and the black copper in the coating by etching, and became unnecessary. The resist was peeled off to form a conductive pattern (electromagnetic shielding material).

【0061】この電磁波シールド材は、シールド性能が
40〜80dB(30〜1000MHz)であり、透視
性は光透過率が75%であり、その他視認性、塗膜(/
基材)密着性、めっき(/塗膜)密着性、基板平坦性と
もに良好であった。
This electromagnetic wave shielding material has a shielding performance of 40 to 80 dB (30 to 1000 MHz), a transparency of 75%, a light transmittance of 75%, other visibility, and a coating film (/
Substrate) adhesion, plating (/ coating) adhesion, and substrate flatness were all good.

【0062】[0062]

【実施例2】塗膜厚を0.75μとした以外は実施例1
と同様に実施した。
Example 2 Example 1 except that the coating thickness was 0.75 μm.
Was performed in the same manner as described above.

【0063】[0063]

【実施例3】塗膜厚を0.5μとした以外は実施例1と
同様に実施した。
Example 3 The same operation as in Example 1 was carried out except that the thickness of the coating film was changed to 0.5 μm.

【0064】[0064]

【実施例4】塗膜厚を0.25μとした以外は実施例1
と同様に実施した。
Example 4 Example 1 except that the coating thickness was 0.25 μm.
Was performed in the same manner as described above.

【0065】[0065]

【実施例5】実施例1の塗布液において、Pdコロイド
3PHRの代わりにPdコロイド1PHR/硫酸銅14
PHRを用いて、塗布液を調製した。
Example 5 In the coating solution of Example 1, Pd colloid 1PHR / copper sulfate 14 was used instead of Pd colloid 3PHR.
A coating solution was prepared using PHR.

【0066】この塗布液を用いて、実施例1と同じ方法
・条件にて電磁波シールド材を作製した。
Using this coating solution, an electromagnetic wave shielding material was produced in the same manner and under the same conditions as in Example 1.

【0067】この電磁波シールド材は、実施例1と同
様、良好な各性能を示した。特に、塗膜黒化度の点で、
実施例1より優れていた。
This electromagnetic wave shielding material exhibited good performance in the same manner as in Example 1. In particular, in terms of the degree of blackening of the coating film,
It was superior to Example 1.

【0068】[0068]

【実施例6】実施例1の塗布液において、Pdコロイド
3PHRの代わりに塩化銅15PHRを用いて、塗布液
を調製した。
Example 6 A coating solution was prepared in the same manner as in the coating solution of Example 1, except that 15 PHR of copper chloride was used instead of 3 PHR of the Pd colloid.

【0069】この塗布液を用いて、実施例1と同じ方法
・条件にて塗膜を形成した(塗膜厚;1μ)。
Using this coating solution, a coating film was formed in the same manner and under the same conditions as in Example 1 (coating thickness: 1 μm).

【0070】この塗膜形成品を0.5%水素化ほう素ナ
トリウム水溶液中に10分間浸漬(還元)後、実施例1
と同じ方法・条件にて銅めっき、電磁波シールド材を作
製した。
This coated film-formed product was immersed (reduced) in a 0.5% aqueous solution of sodium borohydride for 10 minutes.
Copper plating and an electromagnetic wave shielding material were produced in the same manner and under the same conditions.

【0071】この電磁波シールド材は、実施例1と同
様、良好な各性能を示した。
This electromagnetic wave shielding material showed good performance in the same manner as in Example 1.

【0072】[0072]

【実施例7】実施例1の塗布液において、Pdコロイド
3PHRの代わりにパラジウムアセチルアセトナート5
PHRを用いて塗布液を調製した。
Example 7 In the coating solution of Example 1, palladium acetylacetonate 5 was used instead of Pd colloid 3PHR.
A coating solution was prepared using PHR.

【0073】この塗布液にて塗膜(塗膜厚;3μ)形成
後、10%次亜リン酸ソーダ水溶液(50℃)中に15
分間浸漬(還元)した後、めっき以降については実施例
1と同じ方法・条件にて電磁波シールド材を作製した。
After a coating film (thickness: 3 μm) was formed with this coating solution, 15% aqueous solution of sodium hypophosphite (50 ° C.) was added.
After being immersed (reduced) for a minute, an electromagnetic wave shielding material was produced in the same manner and under the same conditions as in Example 1 after plating.

【0074】この電磁波シールド材は、実施例1と同様
良好な各性能を示した。
This electromagnetic wave shielding material showed good performance in the same manner as in Example 1.

【0075】[0075]

【実施例8】実施例1の塗布液において、Pdコロイド
3PHRの代わりに酢酸パラジウム1PHR/酢酸ニッ
ケル24PHRを用いて塗布液を調製した。
Example 8 A coating solution was prepared by using 1 PHR of palladium acetate / 24 PHR of nickel acetate instead of 3 PHR of Pd colloid in the coating solution of Example 1.

【0076】この塗布液にて塗膜(塗膜厚;5μ)形成
後、5%ジメチルアミンボラン水溶液(40℃)中に1
0分間浸漬(還元)した後、めっき以降については実施
例1と同じ方法・条件にて電磁波シールド材を作製し
た。
After forming a coating film (film thickness: 5 μm) with this coating solution, 1% dimethylamine borane aqueous solution (40 ° C.) was added.
After being immersed (reduced) for 0 minutes, an electromagnetic wave shielding material was produced by the same method and conditions as in Example 1 after plating.

【0077】この電磁波シールド材は、実施例1と同様
良好な各性能を示した。特に、塗膜黒化度の点で実施例
1より優れていた。
This electromagnetic wave shielding material showed good performance in the same manner as in Example 1. In particular, it was superior to Example 1 in the point of the degree of blackening of the coating film.

【0078】[0078]

【実施例9】実施例1の塗布液において、PVBの代わ
りにイーストマン・コダック社製セルロースアセテート
ブチレート「CAB 553―0.4」を用いて、塗布
液を調製した。
Example 9 A coating solution was prepared by using cellulose acetate butyrate “CAB 553-0.4” manufactured by Eastman Kodak Co. in place of PVB in the coating solution of Example 1.

【0079】この塗布液を用いて、実施例1と同じ方法
・条件にて電磁波シールド材を作製した。
Using this coating solution, an electromagnetic wave shielding material was produced in the same manner and under the same conditions as in Example 1.

【0080】この電磁波シールド材は、実施例1と同
様、良好な各性能を示した。特に、透視性の点で、実施
例1より優れていた。
This electromagnetic wave shielding material exhibited good performance in the same manner as in Example 1. In particular, it was superior to Example 1 in terms of transparency.

【0081】[0081]

【実施例10】透明基材として実施例1のアクリル板の
代わりに東ソー(株)製オレフィン・マレイミド共重合
体「TI―160」又は日本合成ゴム(株)製ノルボル
ネン系樹脂「ARTON」の透明耐熱性プラスチック基
板を用いて電磁波シールド材を作製した。
Example 10 Instead of the acrylic plate of Example 1, a transparent base material of olefin / maleimide copolymer "TI-160" manufactured by Tosoh Corporation or a norbornene resin "ARTON" manufactured by Nippon Synthetic Rubber Co., Ltd. was used as the transparent substrate. An electromagnetic wave shielding material was manufactured using a heat-resistant plastic substrate.

【0082】これらの電磁波シールド材は、実施例1と
同様、良好な各性能を示した。特に、基板平坦性の点
で、実施例1より優れていた(同じ厚さ・面積の基板で
比較して、明らかに反りが小さかった)。
These electromagnetic wave shielding materials exhibited good performances, similarly to the first embodiment. In particular, the flatness of the substrate was superior to that of Example 1 (the warpage was clearly smaller than that of the substrate having the same thickness and area).

【0083】具体的には、(プラズマ)ディスプレイ前
面に配置し電磁波シールド材として使用した際に、通
常、耐熱性・剛性に乏しいプラスチック基板ではディス
プレイの発熱の影響で基板が大きく反る為、ディスプレ
イが割れたりモアレ縞が発生したりするが、これらの問
題は全く見られなかった。
More specifically, when a plastic substrate having a poor heat resistance and rigidity is generally warped due to the heat generated by the display when it is disposed on the front surface of the (plasma) display and used as an electromagnetic wave shielding material, the display is generally warped. However, these problems were not observed at all.

【0084】[0084]

【実施例11】実施例1の透明基材において、アクリル
板の代わりにPETフィルムを用いて、電磁波シールド
材を作製した。
Example 11 An electromagnetic wave shielding material was produced using the PET film instead of the acrylic plate on the transparent substrate of Example 1.

【0085】この電磁波シールド材は、実施例1と同
様、良好な各性能を示した。又、基材(PETフィル
ム)を屈曲しても、基材/塗膜間及び塗膜/めっき間の
剥離等は見られず、追随性の高いものであった。
This electromagnetic wave shielding material showed good performance in the same manner as in Example 1. Further, even when the substrate (PET film) was bent, peeling between the substrate and the coating film and between the coating film and the plating was not observed, and the film was highly followable.

【0086】[0086]

【実施例12】実施例1のめっき液において、銅めっき
液の代わりに銀めっき液(20℃)、又、エッチング液
において、塩化第二鉄/塩酸水溶液の代わりに3%硝酸
水溶液を用いて、電磁波シールド材を作製した。
Embodiment 12 In the plating solution of Example 1, a silver plating solution (20 ° C.) was used instead of the copper plating solution, and a 3% nitric acid aqueous solution was used in the etching solution instead of the ferric chloride / hydrochloric acid aqueous solution. Then, an electromagnetic wave shielding material was produced.

【0087】銀めっき液組成 (銀液) 硝酸銀 3.5g アンモニア水 沈でんが再溶解するまで 水 60ml 水酸化ナトリウム 2.5g/60ml水 (還元液) ぶどう糖 45g 酒石酸 4g アルコール 100ml 水 1000ml この電磁波シールド材は、実施例1と同様、良好な各性
能を示した。特に、電磁波シールド性能の点で、実施例
1より優れていた。
Composition of silver plating solution (silver solution) Silver nitrate 3.5 g Ammonia water Until sedimentation is redissolved Water 60 ml Sodium hydroxide 2.5 g / 60 ml Water (reducing solution) Glucose 45 g Tartaric acid 4 g Alcohol 100 ml Water 1000 ml This electromagnetic wave shielding material Showed good performance in the same manner as in Example 1. In particular, it was superior to Example 1 in terms of electromagnetic wave shielding performance.

【0088】[0088]

【比較例1】実施例1の塗布液において、触媒液の代わ
りに水を用いて、塗布液を調製した(塗布液組成;PV
B/水/メタノール/ブタノール=10/43/647
/300)。
Comparative Example 1 A coating solution was prepared from the coating solution of Example 1 by using water instead of the catalyst solution (coating solution composition; PV
B / water / methanol / butanol = 10/43/647
/ 300).

【0089】この塗布液を用いて、実施例1と同じ方法
・条件にて塗膜を形成した(塗膜厚;1μ)。
Using this coating liquid, a coating film was formed in the same manner and under the same conditions as in Example 1 (coating thickness: 1 μm).

【0090】この塗膜形成品を、実施例1と同じ触媒液
(25℃)中に15分間浸漬した(浸漬後の塗膜(触媒
吸着)は、実施例1の塗膜(触媒含有)より着色度が高
かった)。
This coated film-formed product was immersed in the same catalyst solution (25 ° C.) as in Example 1 for 15 minutes (the coated film after immersion (catalyst adsorption) was the same as the coated film of Example 1 (containing catalyst). The degree of coloring was high).

【0091】この触媒吸着塗膜を活性化せず、実施例1
と同じ方法・条件にて銅めっきを行った結果、両面から
銅めっきが析出した(塗膜の無い面の銅めっき皮膜は、
銅めっきの析出が進行しめっき厚が増してくると大部分
が剥離した)。
Example 1
As a result of performing copper plating under the same method and conditions as above, copper plating was precipitated from both surfaces (the copper plating film on the surface without a coating film was
When the deposition of copper plating progressed and the plating thickness increased, most of the coating peeled off).

【0092】めっき後のめっき層と塗膜との界面(アク
リル板側から観察)は、銅光沢を呈した。又、銅めっき
時に塗膜の膨れ・剥離が生じた(導電パターン化するに
値しないめっき品であった)。
The interface between the plated layer and the coating film after plating (observed from the acrylic plate side) exhibited a copper luster. In addition, swelling and peeling of the coating film occurred during copper plating (the plated product was not worthy of forming a conductive pattern).

【0093】[0093]

【比較例2】触媒付与の浸漬時間を30分とした以外は
比較例1と同様に行った。
Comparative Example 2 The same procedure as in Comparative Example 1 was carried out except that the immersion time for applying the catalyst was changed to 30 minutes.

【0094】[0094]

【比較例3】触媒付与の浸漬時間を45分とした以外は
比較例1と同様に行った。
Comparative Example 3 The same procedure as in Comparative Example 1 was carried out except that the immersion time for applying the catalyst was changed to 45 minutes.

【0095】[0095]

【比較例4】触媒付与の浸漬時間を60分とした以外は
比較例1と同様に行った。
Comparative Example 4 The same procedure as in Comparative Example 1 was carried out except that the immersion time for applying the catalyst was changed to 60 minutes.

【0096】実施例1〜12及び比較例1〜4について
比較した結果を第1及び2表に示す。第1、2表から本
発明の方法によれば、薄い塗膜層で、かつ少ない還元金
属(触媒)量で効率よく黒色化できることがわかる。
Tables 1 and 2 show the results of comparison between Examples 1 to 12 and Comparative Examples 1 to 4. It can be seen from Tables 1 and 2 that the method of the present invention can be efficiently blackened with a thin coating layer and a small amount of reduced metal (catalyst).

【0097】[0097]

【表1】 [Table 1]

【0098】[0098]

【表2】 [Table 2]

【0099】[0099]

【表3】 [Table 3]

【0100】[0100]

【発明の効果】本発明は次の効果を有する。 パターン設計の制約が小さい。 アースリード線との接続が容易。 導電性が高く、シールド効果が高い。 透明基材側が黒色であり視認性が良好。 黒塗りが不要。The present invention has the following effects. There are few restrictions on pattern design. Easy connection with earth lead wire. High conductivity and high shielding effect. Transparent substrate side is black and visibility is good. No need for black coating.

【0101】さらに、 塗膜形成・触媒付与(活性化)の工程が、触媒含有塗
膜形成の1工程ですむため製造コストが低い。 触媒含有塗膜を片面に形成するだけで片面めっきが可
能であり、めっきコストが低い。 触媒付与工程(塗膜密着性低下を伴う)が省略される
ため、塗膜密着性の確保が容易。 触媒が塗膜中に均一に分布しているため、めっきが確
実に塗膜内部から析出し、少ない触媒量で効率良く黒色
化が可能である(触媒コストが低い)。又、これにより
塗膜とめっき金属が一体化するため、めっき密着性も高
い。
Furthermore, the production cost is low because the step of forming the coating film and providing the catalyst (activation) is only one step of forming the coating film containing the catalyst. One-side plating is possible only by forming the catalyst-containing coating film on one side, and the plating cost is low. Since the step of providing a catalyst (with a decrease in coating film adhesion) is omitted, it is easy to ensure coating film adhesion. Since the catalyst is uniformly distributed in the coating film, plating is reliably deposited from the inside of the coating film, and blackening can be efficiently performed with a small amount of catalyst (the catalyst cost is low). In addition, since the coating film and the plated metal are integrated with each other, the plating adhesion is high.

【0102】(10)[A]/[B]あるいは[A]/
[C]の組合せで用いる場合は、[A]を接触的にのみ
還元可能([B]を直接還元可能)な還元剤を使用する
ことで、[B]あるいは[C]の還元金属粒子の回りを
[A]の還元金属が取り囲んだ状態とすることができ、
このため[A]/[B],[A]/[C]の比を変えれ
ば粒径の制御も可能となり、[A],[B],[C]を
単独で用いる場合より更に効率良く塗膜を黒色化するこ
とができる。又、めっき密着性も安定的に確保できる。
(10) [A] / [B] or [A] /
When used in the combination of [C], the use of a reducing agent that can only reduce [A] catalytically (can directly reduce [B]) allows the reduction metal particles of [B] or [C] to be reduced. The surroundings can be in a state surrounded by the reduced metal of [A],
Therefore, if the ratio of [A] / [B], [A] / [C] is changed, the particle size can be controlled, and the efficiency can be improved more efficiently than when [A], [B], and [C] are used alone. The coating can be blackened. Further, plating adhesion can be stably ensured.

【0103】このように本発明の効果は顕著である。As described above, the effect of the present invention is remarkable.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 透明基材上に還元性金属を含有する樹脂
溶液を塗布、乾燥して塗膜を形成し、次いで必要に応じ
て還元処理した後、該塗膜全面に無電解メッキ層を形成
すると同時に該塗膜を黒色にし、無電解メッキ層上に所
望のパターンのレジスト部を形成し、非レジスト部の無
電解メッキ層および該無電解メッキ層下の塗膜中の黒色
部をエッチングにより除去することを特徴とする透視性
電磁波シールド材の製造方法。
1. A resin solution containing a reducing metal is applied on a transparent substrate, dried to form a coating film, and if necessary, subjected to a reduction treatment, then an electroless plating layer is formed on the entire surface of the coating film. Simultaneously with the formation, the coating film is blackened, a resist portion of a desired pattern is formed on the electroless plating layer, and the black portion in the electroless plating layer of the non-resist portion and the coating film under the electroless plating layer is etched. A method for producing a see-through electromagnetic wave shielding material, comprising:
【請求項2】 還元性金属が金属の塩もしくは錯体、又
は還元金属粒子である請求項1記載の方法。
2. The method according to claim 1, wherein the reducing metal is a metal salt or complex, or reduced metal particles.
【請求項3】 還元性金属が還元剤で接触的にのみ還
元可能な金属の塩又は錯体[A]及び直接還元可能な金
属の塩又は錯体[B]、あるいは還元剤で接触的にの
み還元可能な金属の塩又は錯体[A]及び還元金属粒子
[C]である請求項1記載の方法。
3. A metal salt or complex [A] in which a reducing metal can be reduced only catalytically with a reducing agent and a metal salt or complex [B] directly reducible with a reducing agent, or reduced only catalytically with a reducing agent The method according to claim 1, wherein the metal salt or complex [A] and the reduced metal particles [C] are possible.
【請求項4】 透明基材上に還元金属粒子を分散した樹
脂溶液を塗布、乾燥して塗膜を形成し、次いで必要に応
じて活性化後、該塗膜全面に無電解メッキ層を形成する
と同時に該塗膜を黒色にし、無電解メッキ層上に所望の
パターンのレジスト部を形成し、非レジスト部の無電解
メッキ層および該無電解メッキ層下の塗膜中の黒色部を
エッチングにより除去することを特徴とする請求項2記
載の方法。
4. A coating solution is formed by applying a resin solution in which reduced metal particles are dispersed on a transparent base material, followed by drying to form a coating film. Then, if necessary, an electroless plating layer is formed on the entire coating film. At the same time, the coating is blackened, a resist portion having a desired pattern is formed on the electroless plating layer, and the black portion of the electroless plating layer of the non-resist portion and the coating under the electroless plating layer is etched. 3. The method of claim 2, wherein said removing is performed.
【請求項5】 透明基材上に、還元剤で接触的にのみ還
元可能な金属の塩もしくは錯体[A]及び直接還元可能
な金属の塩もしくは錯体[B]、又は、還元剤で接触的
にのみ還元可能な金属の塩もしくは錯体[A]及び還元
金属粒子[C]を溶解又は分散した樹脂溶液を塗布、乾
燥して塗膜を形成し、次いで還元処理をした後、該塗膜
全面に無電解メッキ層を形成すると同時に該塗膜を黒色
にし、無電解メッキ層上に所望のパターンのレジスト部
を形成し、非レジスト部の無電解メッキ層および該無電
解メッキ層下の塗膜中の黒色部をエッチングにより除去
することを特徴とする請求項3記載の方法。
5. A metal salt or complex [A] that can be reduced only catalytically with a reducing agent and a metal salt or complex [B] that can be directly reduced with a reducing agent, or a transparent substrate. A resin solution in which a metal salt or complex [A] reducible only to the metal and the reduced metal particles [C] are dissolved or dispersed, applied and dried to form a coating film, and then subjected to a reduction treatment, and then the entire coating film is coated. At the same time as forming an electroless plating layer, the coating film is blackened, a resist portion having a desired pattern is formed on the electroless plating layer, and the electroless plating layer of the non-resist portion and the coating film under the electroless plating layer are formed. 4. The method according to claim 3, wherein the black portion inside is removed by etching.
【請求項6】 金属の塩又は錯体が、元素周期律表の第
Ib族、又は第VIII族に属する金属の塩又は錯体である
請求項3又は5記載の方法。
6. The method according to claim 3, wherein the metal salt or complex is a metal salt or complex belonging to Group Ib or Group VIII of the Periodic Table of the Elements.
【請求項7】 還元金属粒子が、元素周期律表の第Ib
族または第VIII族に属する金属の還元金属コロイド粒
子、又は該分散液から得られる還元金属粉である請求項
2又は4記載の方法。
7. The reduced metal particles are selected from the group Ib of the periodic table of elements.
The method according to claim 2 or 4, wherein the metal is a colloidal particle of a metal belonging to Group III or Group VIII, or a reduced metal powder obtained from the dispersion.
【請求項8】 還元剤で接触的にのみ還元可能な金属の
塩もしくは錯体[A]が元素周期律表の第Ib族の第4
周期又は第VIII族の第4周期に属する金属の塩又は錯体
であり、直接還元可能な金属の塩もしくは錯体[B]が
第Ib族の第5、6周期又は第VIII族の第5、6周期に
属する金属の塩又は錯体であり、かつ、還元金属粒子
[C]が第Ib族又は第VIII族に属する金属の還元金属
コロイド粒子、又は該分散液から得られる還元金属粉で
ある請求項5記載の方法。
8. A metal salt or complex [A] which can be reduced only catalytically with a reducing agent is a metal salt or complex [A] of Group Ib of the Periodic Table of the Elements.
A salt or complex of a metal belonging to the fourth cycle of Group VIII or Group VIII, wherein the directly reducible metal salt or complex [B] is a fifth or sixth cycle of Group Ib or a fifth or sixth group of Group VIII. The reduced metal particle [C] is a reduced metal colloid particle of a metal belonging to Group Ib or Group VIII, or a reduced metal powder obtained from the dispersion, which is a salt or complex of a metal belonging to the periodicity. 5. The method according to 5.
【請求項9】 樹脂溶液の樹脂がポリビニルアセタール
である請求項1、4、又は5記載の方法。
9. The method according to claim 1, wherein the resin of the resin solution is polyvinyl acetal.
【請求項10】 還元剤が[A]を接触的にのみ還元可
能で[B]を直接還元可能な化合物である請求項3、5
又は8記載の方法。
10. The reducing agent is a compound capable of reducing [A] only catalytically and directly reducing [B].
Or the method of 8.
【請求項11】 塗膜中に還元金属中のPd量をPdC
2換算で1〜200mg/m2(塗膜単位面積当たり重
量)含有することを特徴とする請求項1、4、5、8又
は10記載の方法。
11. The amount of Pd in the reduced metal in the coating film is determined by PdC
Claim 1,4,5,8 or 10 The method according to, characterized in that l 2 converted at 1 to 200 mg / m 2 (weight per coating unit area) containing.
【請求項12】 透明基材がガラス板あるいはプラスチ
ックのフィルム、シート、板のいずれかである請求項
1、4、5、8又は10記載の方法。
12. The method according to claim 1, wherein the transparent substrate is a glass plate or a plastic film, sheet or plate.
【請求項13】 透視性電磁波シールド材が、光透過率
が65%以上、30〜1000MHzにおけるシールド
性能が40〜80dBである請求項1、4、5、8又は
10記載の方法。
13. The method according to claim 1, wherein the transparent electromagnetic wave shielding material has a light transmittance of 65% or more and a shielding performance at 30 to 1000 MHz of 40 to 80 dB.
【請求項14】 透明基材側から見た塗膜の黒化度が、
光学濃度(入射角7°、正反射を含まない場合)で2.
9〜4.0である透視性電磁波シールド材。
14. The degree of blackening of the coating film as viewed from the transparent substrate side,
1. Optical density (when the incident angle is 7 ° and specular reflection is not included)
A transparent electromagnetic wave shielding material having a thickness of 9 to 4.0.
JP9180311A 1996-07-03 1997-06-23 Electromagnetic wave shielding material and its production Pending JPH1072676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9180311A JPH1072676A (en) 1996-07-03 1997-06-23 Electromagnetic wave shielding material and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19167796 1996-07-03
JP8-191677 1996-07-03
JP9180311A JPH1072676A (en) 1996-07-03 1997-06-23 Electromagnetic wave shielding material and its production

Publications (1)

Publication Number Publication Date
JPH1072676A true JPH1072676A (en) 1998-03-17

Family

ID=26499880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9180311A Pending JPH1072676A (en) 1996-07-03 1997-06-23 Electromagnetic wave shielding material and its production

Country Status (1)

Country Link
JP (1) JPH1072676A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156591A (en) * 1998-09-17 2000-06-06 Gunze Ltd Composite member for shielding electromagnetic wave and production thereof
EP1109434A2 (en) * 1999-12-17 2001-06-20 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shield material and method of producing the same
JP2002185184A (en) * 2000-12-18 2002-06-28 Dainippon Printing Co Ltd Electromagnetic shield member and its manufacturing method
JP2003160876A (en) * 2001-11-22 2003-06-06 Sumitomo Osaka Cement Co Ltd Catalyst for electroless plating and method for forming metal plating pattern
US7205098B2 (en) 2004-11-19 2007-04-17 Samsung Corning Co., Ltd. Method for manufacturing high-transmittance optical filter for image display devices
US7338752B2 (en) 2003-05-13 2008-03-04 Samsung Electronics Co., Ltd. Method for forming metal pattern and electromagnetic interference filter using pattern formed by the method
JP2008085305A (en) * 2006-08-31 2008-04-10 Bridgestone Corp Method of manufacturing light transmissive electromagnetic wave shielding material, light transmissive electromagnetic wave shielding material, and filter for display

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156591A (en) * 1998-09-17 2000-06-06 Gunze Ltd Composite member for shielding electromagnetic wave and production thereof
EP1109434A2 (en) * 1999-12-17 2001-06-20 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shield material and method of producing the same
EP1109434A3 (en) * 1999-12-17 2002-07-24 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shield material and method of producing the same
JP2002185184A (en) * 2000-12-18 2002-06-28 Dainippon Printing Co Ltd Electromagnetic shield member and its manufacturing method
JP2003160876A (en) * 2001-11-22 2003-06-06 Sumitomo Osaka Cement Co Ltd Catalyst for electroless plating and method for forming metal plating pattern
US7338752B2 (en) 2003-05-13 2008-03-04 Samsung Electronics Co., Ltd. Method for forming metal pattern and electromagnetic interference filter using pattern formed by the method
US7205098B2 (en) 2004-11-19 2007-04-17 Samsung Corning Co., Ltd. Method for manufacturing high-transmittance optical filter for image display devices
JP2008085305A (en) * 2006-08-31 2008-04-10 Bridgestone Corp Method of manufacturing light transmissive electromagnetic wave shielding material, light transmissive electromagnetic wave shielding material, and filter for display

Similar Documents

Publication Publication Date Title
EP0890136B1 (en) Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JP4013021B2 (en) Transparent electromagnetic shielding material and manufacturing method thereof
JP2008218714A (en) Light-permeable electromagnetic wave shielding material and its production process, fine particle having extremely thin film of noble metal and its production process
US7244159B2 (en) Electromagnetic-shielding transparent window member and method for producing the same
EP0834898B1 (en) Electromagnetic radiation shield panel and method of producing the same
US6713161B1 (en) Light-transmitting electromagnetic shielding material and method for manufacturing the same
WO2008026726A1 (en) Method for manufacturing light transmitting electromagnetic wave shielding material, light transmitting electromagnetic wave shielding material and filter for display
EP0840542B1 (en) Transparent shielding material for electromagnetic interference and method of manufacture
JP3614707B2 (en) Method for producing translucent conductive film and translucent conductive film
US20010015279A1 (en) Electromagnetic radiation shield material and mehtod of producing the same
JPH1072676A (en) Electromagnetic wave shielding material and its production
JP2009263700A (en) Electroless plating preprocessing agent, manufacturing method of light-transmissive electromagnetic wave shielding material, and light-transmissive electromagnetic wave shielding material
JP2009129969A (en) Image forming method, light-transmissive electromagnetic wave shielding material manufacturing method, and light-transmissive electromagnetic wave shielding material
JP2001168574A (en) Method for producing see-through material for shielding electromagnetic wave
JP2009277924A (en) Light permeable electromagnetic shield material and method for manufacturing the same
JPH10163673A (en) Electromagnetic wave shielding panel and its manufacture
WO2003045127A1 (en) Electromagnetic wave shielded light-transmissive material and manufacturing method thereof
WO2010041675A1 (en) Light transparent electromagnetic wave shielding material and process for producing same
KR100964962B1 (en) Catalyst Precursor Resin Composition for Gravure Printing of Catalyst Pattern, Forming Method for Metal Patten and Metal Patten Prepared Thereby
WO2002099163A2 (en) Autocatalytic coating method
CN109306478B (en) Sheet, metal net and manufacturing method thereof
JP7454424B2 (en) Manufacturing method for plated products
JPH11163587A (en) Electromagnetic shield material, panel and manufacture thereof
JP2004068120A (en) Method for manufacturing metallic pattern film
JP2822775B2 (en) Manufacturing method of plating base