JPH1072202A - Method for removing carbon monoxide in reformed gas and device therefor - Google Patents

Method for removing carbon monoxide in reformed gas and device therefor

Info

Publication number
JPH1072202A
JPH1072202A JP8247154A JP24715496A JPH1072202A JP H1072202 A JPH1072202 A JP H1072202A JP 8247154 A JP8247154 A JP 8247154A JP 24715496 A JP24715496 A JP 24715496A JP H1072202 A JPH1072202 A JP H1072202A
Authority
JP
Japan
Prior art keywords
reformed gas
catalyst layer
carbon monoxide
catalyst
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8247154A
Other languages
Japanese (ja)
Other versions
JP2869525B2 (en
Inventor
Toshiharu Okada
俊治 岡田
Yoshiaki Takatani
芳明 高谷
Ikuo Nagashima
郁男 永島
Seiji Terada
誠二 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SHIPBUILDING RES ASS
SHIPBUILD RES ASSOC JAPAN
Original Assignee
JAPAN SHIPBUILDING RES ASS
SHIPBUILD RES ASSOC JAPAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17159248&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1072202(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JAPAN SHIPBUILDING RES ASS, SHIPBUILD RES ASSOC JAPAN filed Critical JAPAN SHIPBUILDING RES ASS
Priority to JP8247154A priority Critical patent/JP2869525B2/en
Publication of JPH1072202A publication Critical patent/JPH1072202A/en
Application granted granted Critical
Publication of JP2869525B2 publication Critical patent/JP2869525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To efficiently and selectively remove carbon monoxide contained in a reformed gas and to prevent the poisoning of an electrode of a fuel cell due to carbon monoxide. SOLUTION: Reactors 10a, 10b, 10c...10n provided with catalyst layers 12a, 12b, 12c...12n of a carbon monoxide selective oxidation catalyst ate provided in multistage in a reformed gas conduit 14, in which the reformed gas containing carbon monoxide flows, a reformed gas temp. control means 16 for controlling a temp. to that suitable for the reaction by cooling the reformed gas in an outlet of each catalyst layer is provided in the reformed gas conduit 14 and an oxidizing gas distributing and supplying means 18 is provided between the reformed gas temp. controlling means 16 and each catalyst layer in the reformed gas conduit 14. As the catalyst, a ruthenium catalyst is preferably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、改質ガスに含まれ
る一酸化炭素(以下、適宜、COと記す)を選択的に効
率よく除去する方法及びこの方法を実施する装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively and efficiently removing carbon monoxide (hereinafter, appropriately referred to as CO) contained in a reformed gas and an apparatus for performing the method.

【0002】[0002]

【従来の技術】従来から、メタノールの改質反応(CH
3 OH+H2 O→CO2 +3H2 )により、水素を製造
して燃料電池の燃料とする方法が知られている。しか
し、固体高分子型燃料電池(PEFC)、りん酸型燃料
電池(PAFC)等のようにCOによって燃料電池の電
極が被毒して、性能低下をきたすものに対しては、改質
反応の副反応であるCO2 の逆シフト反応(CO2 +H
2 →CO+H2 O)で生成するCOを選択的に除去して
おく必要がある。既知の方法として、セレクトオキソ、
メタネーション、膜分離、吸着分離、電極酸化等の方法
が存在する。
2. Description of the Related Art Conventionally, a methanol reforming reaction (CH
A method is known in which hydrogen is produced from 3 OH + H 2 O → CO 2 + 3H 2 ) and used as fuel for a fuel cell. However, for the fuel cell electrodes poisoned by CO and deteriorating the performance, such as polymer electrolyte fuel cells (PEFC) and phosphoric acid fuel cells (PAFC), the reforming reaction reverse shift reaction of CO 2 by-reactions (CO 2 + H
2 → CO + H 2 O) must be selectively removed. Known methods include selectoxo,
There are methods such as methanation, membrane separation, adsorption separation, and electrode oxidation.

【0003】特開平3−276577号公報には、改質
ガス中に含まれるCOを優先して燃焼させる白金等の貴
金属の燃焼触媒からなる触媒燃焼器により、改質ガス中
のCOを、酸化剤(空気又は酸素)により燃焼させて、
COを殆ど含まない改質ガスを燃料電池に供給するよう
にした燃料電池発電装置が記載されている。
[0003] Japanese Patent Application Laid-Open No. 3-276577 discloses that CO in reformed gas is oxidized by a catalytic combustor comprising a combustion catalyst of a noble metal such as platinum which preferentially combusts CO contained in reformed gas. Burned with agent (air or oxygen)
There is described a fuel cell power generator in which a reformed gas containing almost no CO is supplied to the fuel cell.

【0004】また、特開平5−201702号公報に
は、アルミナ基材担体上にロジウム(Rh)又はルテニ
ウム(Ru)を担持させた触媒層に、約120℃以下、
好ましくは約100℃以下で、水素と一酸化炭素を含む
ガス流と酸素を含むガス流を好ましくはO2 :COの容
量比が1:1より小さくなるように混合して流し、水素
と酸素とを実質的に反応させずに、一酸化炭素を酸素と
反応させてガス流中の一酸化炭素濃度を低減するように
した一酸化炭素の選択的除去方法及びその装置が記載さ
れている。
Japanese Patent Application Laid-Open No. Hei 5-201702 discloses that a catalyst layer in which rhodium (Rh) or ruthenium (Ru) is supported on an alumina-based carrier has a temperature of about 120 ° C. or less.
A gas stream containing hydrogen and carbon monoxide and a gas stream containing oxygen are preferably mixed and flown at a temperature of about 100 ° C. or less so that the O 2 : CO volume ratio is preferably less than 1: 1. A method and apparatus for selectively removing carbon monoxide, wherein carbon monoxide is reacted with oxygen to substantially reduce the concentration of carbon monoxide in a gas stream without substantially reacting with the above.

【0005】[0005]

【発明が解決しようとする課題】上記のCO選択的除去
方法のうち、セレクトオキソ法では、CO+1/2O2
→CO2 の反応が発熱反応であるので、例えば、触媒を
図13に示すように触媒層長さL0 に充填すると、図1
5において破線で示すように、触媒層温度が反応上限温
度である210℃(触媒としてルテニウム系触媒、具体
的にはRu/Al2 3 を用いる場合)を超えてしま
い、COを効率よく除去することができない。
Among the above-mentioned selective CO removal methods, the select oxo method uses CO + 1 / 2O 2.
→ Since the reaction of CO 2 is an exothermic reaction, for example, when the catalyst is filled to the catalyst layer length L 0 as shown in FIG.
As indicated by the broken line in FIG. 5, the catalyst layer temperature exceeded the upper limit temperature of the reaction, 210 ° C. (when a ruthenium-based catalyst, specifically, Ru / Al 2 O 3 was used as the catalyst), and CO was efficiently removed. Can not do it.

【0006】本発明は上記の点に鑑みなされたもので、
その目的は、セレクトオキソ反応用の触媒層を2段以上
の多段に分割し、各段の出口ガス温度を冷却調整して、
最適温度条件になるようにする手段を設け、かつ、酸化
剤(空気又は酸素等)をこれら分解した触媒層に分配供
給して、一段当たりの温度分布範囲を最適条件に維持す
ることにより、反応到達率と選択率(CO除去率)を向
上させるようにした改質ガス中のCO除去方法及び装置
を提供することにある。
[0006] The present invention has been made in view of the above points,
The purpose is to divide the catalyst layer for select oxo reaction into two or more stages, and adjust the outlet gas temperature of each stage by cooling.
By providing means for maintaining the optimum temperature condition, and distributing and supplying an oxidizing agent (such as air or oxygen) to these decomposed catalyst layers, and maintaining the temperature distribution range per stage under the optimum condition, An object of the present invention is to provide a method and an apparatus for removing CO in a reformed gas, which improve the attainment rate and the selectivity (CO removal rate).

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の改質ガス中のCO除去方法は、一酸化炭
素を含む改質ガスを、ガス流れ方向に2段以上の多段に
設けられた一酸化炭素選択的酸化触媒層に順次供給する
方法であって、各触媒層の出口の改質ガスを反応に適す
る温度に冷却するとともに、各触媒層に酸化剤(空気又
は酸素)を分配供給するように構成されている(図1参
照)。この方法において、一酸化炭素選択的酸化触媒と
してルテニウム系触媒を用い、各触媒層の温度を60〜
210℃、望ましくは130〜180℃の範囲に維持す
ることが好ましい。触媒層温度が上記の範囲未満であれ
ば、改質ガス中のCOを効率よく除去することができな
い。また、上記の範囲を超えると、改質ガス中の水素ガ
スの反応量が増加し、燃料電池に供給できる燃料の水素
ガスが減少する。ルテニウム系触媒としては、Ru/A
2 3 、Ru/SiO2 、Ru/SiO2 −Ti
2 、Ru/ZrO2 、Ru/ゼオライト、Ru/コー
ジェライト等を挙げることができる。また、一酸化炭素
選択的酸化触媒としてロジウム系触媒を用い、各触媒層
の温度を130〜210℃、望ましくは120〜150
℃の範囲に維持することが好ましい。触媒温度が上記の
範囲未満であれば、改質ガス中のCOを効率よく除去す
ることができない。また、上記の範囲を超えると、改質
ガス中の水素ガスの反応量が増加し、燃料電池に供給で
きる燃料の水素ガスが減少する。ロジウム系触媒として
は、Rh/Al2 3 、Rh/SiO2 、Rh/SiO
2 −TiO2 、Rh/ZrO2 、Rh/ゼオライト、R
h/コージェライト等を挙げることができる。
In order to achieve the above object, a method for removing CO in a reformed gas according to the present invention comprises the steps of: converting a reformed gas containing carbon monoxide into two or more stages in a gas flow direction; Is a method of sequentially supplying the reformed gas at the outlet of each catalyst layer to a temperature suitable for the reaction, and adding an oxidizing agent (air or oxygen) to each catalyst layer. ) (See FIG. 1). In this method, a ruthenium-based catalyst is used as a carbon monoxide selective oxidation catalyst, and the temperature of each catalyst layer is set to 60 to
It is preferable to maintain the temperature in the range of 210 ° C, preferably 130 to 180 ° C. If the catalyst layer temperature is lower than the above range, CO in the reformed gas cannot be efficiently removed. In addition, when the above range is exceeded, the reaction amount of hydrogen gas in the reformed gas increases, and the amount of hydrogen gas of the fuel that can be supplied to the fuel cell decreases. As a ruthenium-based catalyst, Ru / A
l 2 O 3 , Ru / SiO 2 , Ru / SiO 2 —Ti
O 2 , Ru / ZrO 2 , Ru / zeolite, Ru / cordierite and the like can be mentioned. Further, a rhodium-based catalyst is used as a carbon monoxide selective oxidation catalyst, and the temperature of each catalyst layer is set to 130 to 210 ° C, preferably to 120 to 150 ° C.
It is preferable to maintain the temperature in the range of ° C. If the catalyst temperature is lower than the above range, CO in the reformed gas cannot be efficiently removed. In addition, when the above range is exceeded, the reaction amount of hydrogen gas in the reformed gas increases, and the amount of hydrogen gas of the fuel that can be supplied to the fuel cell decreases. Rh / Al 2 O 3 , Rh / SiO 2 , Rh / SiO 2
2 -TiO 2, Rh / ZrO 2 , Rh / zeolite, R
h / cordierite and the like.

【0008】また、各段の触媒層をルテニウム系触媒層
とロジウム系触媒層とに2分割し、ルテニウム系触媒層
で改質ガスを処理した後、昇温した改質ガスを隣接する
ロジウム系触媒層で処理する場合もある(図12参
照)。この場合、ルテニウム系触媒層に導入する改質ガ
スの温度を60〜100℃の範囲とし、隣接するロジウ
ム系触媒層に導入する改質ガスの温度を120〜150
℃の範囲とすることが好ましい。ルテニウム系触媒とし
ては、Ru/Al2 3 、Ru/SiO2 、Ru/Si
2 −TiO2 、Ru/ZrO2 、Ru/ゼオライト、
Ru/コージェライト等を挙げることができる。また、
ロジウム系触媒としては、Rh/Al2 3 、Rh/S
iO2 、Rh/SiO2 −TiO2 、Rh/ZrO2
Rh/ゼオライト、Rh/コージェライト等を挙げるこ
とができる。ルテニウム系触媒層の温度が60〜100
℃を外れる場合、ロジウム系触媒層の温度が120〜1
50℃の範囲を外れる場合は、いずれも改質ガス中のC
Oを効率よく除去することができない。
Further, the catalyst layer in each stage is divided into a ruthenium-based catalyst layer and a rhodium-based catalyst layer, and the reformed gas is treated with the ruthenium-based catalyst layer. In some cases, treatment is performed using a catalyst layer (see FIG. 12). In this case, the temperature of the reformed gas introduced into the ruthenium-based catalyst layer is in the range of 60 to 100 ° C., and the temperature of the reformed gas introduced into the adjacent rhodium-based catalyst layer is 120 to 150 ° C.
It is preferable to be in the range of ° C. Ru / Al 2 O 3 , Ru / SiO 2 , Ru / Si
O 2 —TiO 2 , Ru / ZrO 2 , Ru / zeolite,
Ru / cordierite and the like. Also,
Rhodium-based catalysts include Rh / Al 2 O 3 and Rh / S
iO 2 , Rh / SiO 2 —TiO 2 , Rh / ZrO 2 ,
Rh / zeolite, Rh / cordierite and the like can be mentioned. The temperature of the ruthenium-based catalyst layer is 60 to 100
° C, the temperature of the rhodium-based catalyst layer is from 120 to 1
If the temperature is out of the range of 50 ° C., the C
O cannot be efficiently removed.

【0009】これらの方法において、各触媒層入口にお
けるO2 /COモル比が0.5〜1.5(酸素量論比
1.0〜3.0)、望ましくは0.8〜1.0(酸素量
論比1.6〜2.0)の範囲になるように酸化剤を分配
供給することが好ましい。O2 /COモル比が上記の範
囲未満の場合は、COと反応する量のO2 量が足りな
く、未反応COが残ってしまうという不都合があり、一
方、O2 /COモル比が上記の範囲を超える場合は、C
Oと反応したO2 以外のO2 量が多くなり、発熱でガス
温度が上がっているため、改質ガス中のH2 とO2 が反
応してH2 ガスを減少させるという不都合がある。触媒
層としては、通常の粒子充填層(図4参照)やハニカム
充填層等でもよいが、触媒として触媒粒子を用い、ガラ
スビーズ、セラミックス粒子及び金属製粒子の少なくと
もいずれかを触媒粒子と混合して用いることが好ましい
(図5参照)。
In these methods, the O 2 / CO molar ratio at the inlet of each catalyst layer is 0.5 to 1.5 (oxygen stoichiometric ratio 1.0 to 3.0), preferably 0.8 to 1.0. The oxidizing agent is preferably distributed and supplied so as to be in the range of (oxygen stoichiometric ratio 1.6 to 2.0). If the O 2 / CO molar ratio is less than the above range, there is a disadvantage that the amount of O 2 that reacts with CO is insufficient and unreacted CO remains, while the O 2 / CO molar ratio is lower than the above range. If the value exceeds the range, C
O react with O 2 volume other than O 2 was increases, since the gas temperature is raised by heat generation, there is a disadvantage that H 2 and O 2 in the reformed gas decreases the reaction to H 2 gas. The catalyst layer may be a normal particle-filled layer (see FIG. 4) or a honeycomb-filled layer. However, catalyst particles are used as a catalyst, and at least one of glass beads, ceramic particles, and metal particles is mixed with the catalyst particles. (See FIG. 5).

【0010】本発明の改質ガス中のCO除去装置は、一
酸化炭素選択的酸化触媒の触媒層を備えた反応器を一酸
化炭素を含む改質ガスが流れる改質ガス導管に多段に設
け、各触媒層の出口の改質ガスを冷却して反応に適する
温度に調節するための改質ガス温度調整手段を改質ガス
導管に設け、これらの改質ガス温度調整手段と各触媒層
との間の改質ガス導管に酸化剤分配供給手段を設けたこ
とを特徴としている(図1参照)。上記の装置におい
て、各段の触媒層を上流側のルテニウム系触媒層と下流
側のロジウム系触媒層とに2分割するように構成するこ
ともできる(図12参照)。
In the apparatus for removing CO in reformed gas according to the present invention, a reactor equipped with a catalyst layer of a carbon monoxide selective oxidation catalyst is provided in multiple stages in a reformed gas conduit through which a reformed gas containing carbon monoxide flows. A reformed gas temperature adjusting means for cooling the reformed gas at the outlet of each catalyst layer and adjusting the temperature to a temperature suitable for the reaction is provided in the reformed gas conduit, and these reformed gas temperature adjusting means and each catalyst layer are An oxidizing agent distribution and supply means is provided in the reformed gas conduit between the two (see FIG. 1). In the above apparatus, the catalyst layer of each stage may be divided into two parts, a ruthenium-based catalyst layer on the upstream side and a rhodium-based catalyst layer on the downstream side (see FIG. 12).

【0011】これらの装置において、反応器として、円
筒状本体内に触媒を充填した管型のものを用いたり(図
6、7参照)、2枚のプレート間に触媒を充填したプレ
ート型のものを用いたり(図10、11参照)、円筒状
本体内に触媒を充填した複数本の小管を挿入したものを
用いたりすることができる(図8、9参照)。
In these apparatuses, a tubular reactor having a cylindrical body filled with a catalyst (see FIGS. 6 and 7) or a plate reactor having a catalyst filled between two plates is used as a reactor. (See FIGS. 10 and 11), or one in which a plurality of small tubes filled with a catalyst are inserted into a cylindrical main body (see FIGS. 8 and 9).

【0012】[0012]

【発明の実施の形態】図1は、本発明の実施の第1形態
による改質ガス中のCO除去装置を示している。10
a、10b、10c…10nは反応器で、これらの反応
器はCO選択的酸化触媒、例えばRu/Al2 3 (A
2 3 を担体とするルテニウム系触媒)の触媒層12
a、12b、12c…12nを備えている。これらの反
応器10a、10b、10c…10nをCOを含む改質
ガスが流れる改質ガス導管14に直列に、かつ多段に設
け、各触媒層の出口の改質ガスを冷却して反応に適する
温度に調節するための改質ガス温度調整手段16を改質
ガス導管14に設け、これらの改質ガス温度調整手段1
6と各触媒層12a、12b、12c…12nとの間の
改質ガス導管14に酸化剤分配供給手段18を設けてい
る。酸化剤としては、空気、酸素、酸素富化空気等のい
ずれか又はこれらの混合気体が用いられる。20は混合
器である。これらの混合器は必ずしも必要なものではな
く、改質ガス導管14に直接、酸化剤を供給して、改質
ガス導管14内で混合するようにしてもよい。22はメ
タノールリフォーマー、24はPEFC(固体高分子型
燃料電池)、PAFC(りん酸型燃料電池)等のCO被
毒型の燃料電池、26は空気又は水等の冷却媒体を制御
する冷媒流量調節弁、28は酸化剤流量調節弁である。
なお、第1触媒層12aの入口の改質ガス温度調整手段
は必ずしも必要なものではない。
FIG. 1 shows an apparatus for removing CO from reformed gas according to a first embodiment of the present invention. 10
a, 10b, 10c... 10n are reactors, which are CO selective oxidation catalysts, for example Ru / Al 2 O 3 (A
Catalyst layer 12 of ruthenium-based catalyst using l 2 O 3 as carrier
a, 12b, 12c... 12n. The reactors 10a, 10b, 10c... 10n are provided in series and in multiple stages in the reformed gas conduit 14 through which the reformed gas containing CO flows, and the reformed gas at the outlet of each catalyst layer is cooled to be suitable for the reaction. A reformed gas temperature adjusting means 16 for adjusting the temperature is provided in the reformed gas conduit 14, and these reformed gas temperature adjusting means 1 are provided.
An oxidizing agent distribution / supplying means 18 is provided in the reformed gas conduit 14 between the catalyst layer 6 and each of the catalyst layers 12a, 12b, 12c... 12n. As the oxidizing agent, any one of air, oxygen, oxygen-enriched air and the like or a mixed gas thereof is used. 20 is a mixer. These mixers are not always necessary, and the oxidizing agent may be supplied directly to the reformed gas conduit 14 and mixed therein. 22 is a methanol reformer, 24 is a CO poisoning fuel cell such as PEFC (Polymer Polymer Fuel Cell), PAFC (phosphoric acid fuel cell), and 26 is a refrigerant flow rate control for controlling a cooling medium such as air or water. A valve 28 is an oxidant flow control valve.
Note that the reformed gas temperature adjusting means at the inlet of the first catalyst layer 12a is not always necessary.

【0013】図2は、改質ガス温度調整手段16の一例
を示している。本例では、改質ガス温度調整手段16
は、冷却器30と、改質ガス導管内の改質ガスの温度を
検出し冷媒流量調節弁26を制御するための温度指示調
節器(TIC)32とからなっている。上記のように構
成された装置において、メタノールリフォーマー22か
らのCOを含む改質ガスは、温度が最適反応温度より高
い場合は、改質ガス温度調整手段16でCO選択的酸化
反応に適する温度に冷却されるとともに、酸化剤分配供
給手段18により酸化剤が供給されて第1触媒層12a
に導入される。なお、メタノールリフォーマー22から
のCOを含む改質ガスの温度が最適反応温度である場合
は、冷却することなく第1触媒層12aに導入される。
この第1触媒層12aで改質ガス中のCOの一部が除去
された後、上記と同様の操作が行われてCOを含む改質
ガスが第2触媒層12bに導入されて改質ガス中のCO
の一部又は残部が除去され、その後、上記と同様の操作
が行われて、第3触媒層12c、…第n触媒層12nに
導入されて、改質ガス中のCOがほぼ完全に除去され
る。
FIG. 2 shows an example of the reformed gas temperature adjusting means 16. In this example, the reformed gas temperature adjusting means 16
Comprises a cooler 30 and a temperature instruction controller (TIC) 32 for detecting the temperature of the reformed gas in the reformed gas conduit and controlling the refrigerant flow control valve 26. In the apparatus configured as described above, when the temperature of the reformed gas containing CO from the methanol reformer 22 is higher than the optimum reaction temperature, the reformed gas temperature adjusting means 16 adjusts the temperature to a temperature suitable for the CO selective oxidation reaction. While being cooled, the oxidizing agent is supplied by the oxidizing agent distributing / supplying means 18 so that the first catalyst layer 12a
Will be introduced. When the temperature of the reformed gas containing CO from the methanol reformer 22 is the optimum reaction temperature, the reformed gas is introduced into the first catalyst layer 12a without cooling.
After a part of CO in the reformed gas is removed in the first catalyst layer 12a, the same operation as described above is performed to introduce the reformed gas containing CO into the second catalyst layer 12b, CO inside
, And then the same operation as described above is performed to introduce the third catalyst layer 12c,..., The n-th catalyst layer 12n, so that CO in the reformed gas is almost completely removed. You.

【0014】図3は、本発明の改質ガス中の一酸化炭素
除去装置における制御機構の一例を示している。反応器
10aの入口の改質ガス温度を冷却媒体の流量により制
御する。すなわち、冷媒流量指示調節計60で冷却媒体
流量を検出し、改質ガス温度指示調節計62で改質ガス
温度を検出し、改質ガス温度が設定値になるように冷却
媒体の流量を冷媒流量調節弁26により制御する。ま
た、酸化剤流量指示調節計64で酸化剤流量を検出し、
改質ガス流量指示調節計66で改質ガス流量を検出する
とともに、CO濃度分析計68で改質ガス中のCO濃度
を検出し、これらの検出値から、必要な酸化剤を供給で
きるように、酸化剤(空気又は酸素)の流量を酸化剤流
量調節弁28により制御する。また、反応器の触媒層の
反応温度を、冷却媒体の流量制御により調整する。すな
わち、反応器10aに冷媒通路70を設け、この冷媒通
路70に導入するための冷媒流量を冷媒流量指示調節計
72により検出するとともに、触媒層12aの温度を触
媒温度指示調節計74で検出し、これらの検出値によ
り、反応器10aの触媒層12aの反応温度が設定値に
なるように、冷媒流量調節弁76を制御する。
FIG. 3 shows an example of a control mechanism in the apparatus for removing carbon monoxide in reformed gas of the present invention. The temperature of the reformed gas at the inlet of the reactor 10a is controlled by the flow rate of the cooling medium. That is, the flow rate of the cooling medium is detected by the refrigerant flow rate indicating controller 60, the reformed gas temperature is detected by the reformed gas temperature indicating controller 62, and the flow rate of the cooling medium is adjusted so that the reformed gas temperature becomes the set value. It is controlled by the flow control valve 26. Also, the oxidant flow rate controller 64 detects the oxidant flow rate,
The reformed gas flow rate controller 66 detects the reformed gas flow rate, and the CO concentration analyzer 68 detects the CO concentration in the reformed gas. From these detected values, the necessary oxidant can be supplied. The flow rate of the oxidant (air or oxygen) is controlled by the oxidant flow control valve 28. Further, the reaction temperature of the catalyst layer of the reactor is adjusted by controlling the flow rate of the cooling medium. That is, a refrigerant passage 70 is provided in the reactor 10a, and the flow rate of the refrigerant to be introduced into the refrigerant passage 70 is detected by the refrigerant flow instruction controller 72, and the temperature of the catalyst layer 12a is detected by the catalyst temperature instruction controller 74. Based on these detected values, the refrigerant flow control valve 76 is controlled so that the reaction temperature of the catalyst layer 12a of the reactor 10a becomes a set value.

【0015】反応器10の触媒層12は、図4に示すよ
うな従来から知られている触媒粒子34の充填層として
もよく、また、ハニカム形状としてもよい。しかし、図
4に示す構成では、触媒層10の冷却・放熱が十分行な
われないので、図5に示すように、触媒粒子34と伝熱
粒子36とを混合して充填する希釈充填方式とすること
が好ましい。伝熱粒子としては、ガラスビーズ、セラミ
ックス等の触媒活性を持たない粒子、アルミニウムやス
テンレススチール等の触媒活性を持たず熱伝導度の高い
金属の粒子等が用いられる。
The catalyst layer 12 of the reactor 10 may be a conventional packed layer of catalyst particles 34 as shown in FIG. 4, or may be a honeycomb shape. However, in the configuration shown in FIG. 4, since the cooling and heat radiation of the catalyst layer 10 are not sufficiently performed, as shown in FIG. 5, a dilution filling method in which the catalyst particles 34 and the heat transfer particles 36 are mixed and filled is used. Is preferred. As the heat transfer particles, particles having no catalytic activity such as glass beads and ceramics, and particles of metals having no catalytic activity and high thermal conductivity such as aluminum and stainless steel are used.

【0016】図14は、図4に示す触媒層12に分割す
る前の触媒層40を示し、触媒層長さL0 の場合を示し
ている。本発明における触媒層12は、図14に示す触
媒層40を分割したものであり、触媒層長さL0 よりも
短くなっている。図14に示す触媒粒子34のみを充填
した触媒層40では、図16において破線で示すよう
に、発熱反応により触媒層温度が上昇し、反応上限温度
を超えるので好ましくない。なお、触媒としてRu/A
2 3 粒子を用い、触媒層長さL0 =36mmに充填し
た場合を示している。そこで、図15に示すように伝熱
粒子36を混合した触媒粒子34を充填することが考え
られる。この場合の触媒層長さLN はL0 ×Nとなる。
ただし、Nは触媒の希釈倍率である。触媒として、Ru
/Al2 3 粒子を用い、伝熱粒子としてガラスビーズ
を希釈倍率N=6.3となるように用いると、触媒層長
さLN =L0 ×N=36×6.3=230mmとなった。
この場合の温度分布は、図16において実線で示すよう
に、発熱反応により触媒層温度が上昇するが、反応上限
温度以下に納まっていることがわかる。
FIG. 14 shows the catalyst layer 40 before being divided into the catalyst layers 12 shown in FIG. 4, and shows a case where the catalyst layer length is L 0 . The catalyst layer 12 in the present invention is obtained by dividing the catalyst layer 40 shown in FIG. 14, it is shorter than the catalyst layer length L 0. The catalyst layer 40 filled only with the catalyst particles 34 shown in FIG. 14 is not preferable because the temperature of the catalyst layer rises due to the exothermic reaction and exceeds the upper limit temperature of the reaction as shown by the broken line in FIG. The catalyst used was Ru / A.
This figure shows a case in which l 2 O 3 particles are used and the catalyst layer is filled to a catalyst layer length L 0 = 36 mm. Therefore, it is conceivable to fill the catalyst particles 34 mixed with the heat transfer particles 36 as shown in FIG. In this case, the length L N of the catalyst layer is L 0 × N.
Here, N is the dilution ratio of the catalyst. Ru as a catalyst
/ Al 2 O 3 particles and glass beads are used as heat transfer particles at a dilution ratio N = 6.3, the catalyst layer length L N = L 0 × N = 36 × 6.3 = 230 mm became.
In this case, as shown by the solid line in FIG. 16, the temperature distribution in the catalyst layer rises due to the exothermic reaction, but falls below the reaction upper limit temperature.

【0017】図14に示す通常の触媒充填方式と図15
に示す触媒希釈充填方式とにおける反応率を測定した結
果、図14に示す通常の触媒充填方式では、CO除去率
99.0%、出口CO濃度100ppm であったが(SV
=50000hr-1、LV=0.496Nm/sec )、図1
5に示す触媒希釈充填方式では、CO除去率99.84
%、出口CO濃度16ppm であった(SV=50000
hr-1、LV=0.496Nm/sec )。流量を半分にする
と、CO除去率99.93%、出口CO濃度7ppm であ
った(SV=25000hr-1、LV=0.248Nm/se
c )。なお、入口における改質ガス中のCO濃度はいず
れも、10000ppm であった。しかし、希釈充填方式
において、触媒層温度が反応上限温度以下になっている
と言っても、反応上限温度に近いので、より確実に、か
つ、さらに反応率を向上させるために、触媒層を多段に
分割する必要がある。
FIG. 15 shows a conventional catalyst charging method shown in FIG.
As a result of measurement of the reaction rate in the catalyst dilution and filling method shown in FIG. 14, in the ordinary catalyst filling method shown in FIG. 14, the CO removal rate was 99.0% and the outlet CO concentration was 100 ppm (SV
= 50000 hr -1 , LV = 0.496 Nm / sec), FIG.
In the catalyst dilution and filling method shown in FIG. 5, the CO removal rate was 99.84.
%, And the outlet CO concentration was 16 ppm (SV = 50,000).
hr −1 , LV = 0.496 Nm / sec). When the flow rate was halved, the CO removal rate was 99.93% and the outlet CO concentration was 7 ppm (SV = 25000 hr −1 , LV = 0.248 Nm / se).
c). The CO concentration in the reformed gas at the inlet was 10,000 ppm. However, in the dilution filling method, even though the catalyst layer temperature is lower than the reaction upper limit temperature, it is close to the reaction upper limit temperature, so that the catalyst layer is multi-staged in order to more reliably and further improve the reaction rate. Need to be split.

【0018】反応器10の形状としては、図6及び図7
に示すように、円筒状本体42内に触媒粒子34を充填
した管型とすることができる。44はジャケットで、冷
却媒体を流して触媒層を冷却するためのものである。ま
た、図8及び図9に示すように、反応器10として、円
筒状本体42内に触媒粒子34を充填した複数本の小管
46を挿入した構造とすることもできる。この場合は、
小管と小管の間を冷却媒体が流れるように構成される。
さらに、図10及び図11に示すように、反応器10と
して、2枚のプレート48、48間に触媒粒子34を充
填したプレート型とすることもできる。50は冷却媒体
通路、52は断熱層である。CO除去用反応器としてプ
レート型を採用する場合は、改質器(リフォーマー)及
びCOコンバーターと一体に組み込むことができるの
で、燃料電池発電装置のコンパクト化を図ることができ
る。
The shape of the reactor 10 is shown in FIGS.
As shown in FIG. 7, a tubular body in which the cylindrical main body 42 is filled with the catalyst particles 34 can be used. 44 is a jacket for flowing a cooling medium to cool the catalyst layer. As shown in FIGS. 8 and 9, the reactor 10 may have a structure in which a plurality of small tubes 46 filled with the catalyst particles 34 are inserted into a cylindrical main body 42. in this case,
The cooling medium is configured to flow between the small tubes.
Further, as shown in FIGS. 10 and 11, the reactor 10 may be a plate type in which the catalyst particles 34 are filled between two plates 48, 48. 50 is a cooling medium passage, and 52 is a heat insulating layer. When a plate-type reactor is used as the CO removal reactor, the reformer (reformer) and the CO converter can be integrated with each other, so that the fuel cell power generator can be made more compact.

【0019】図12は、本発明の実施の第2形態による
改質ガス中のCO除去装置を示している。本実施形態
は、各段の触媒層を上流側のルテニウム系触媒層54と
下流側のロジウム系触媒層56とに2分割し、ルテニウ
ム系触媒層54で改質ガス中のCOの一部を除去した
後、反応熱により昇温した改質ガスを隣接するロジウム
系触媒層56に導入して改質ガス中のCOを除去するよ
うに構成したものである。本実施形態では、反応熱を効
率よく利用することができるという利点がある。他の構
成は実施の第1形態の場合と同様である。
FIG. 12 shows an apparatus for removing CO in reformed gas according to a second embodiment of the present invention. In this embodiment, the catalyst layer of each stage is divided into a ruthenium-based catalyst layer 54 on the upstream side and a rhodium-based catalyst layer 56 on the downstream side, and a part of the CO in the reformed gas is separated by the ruthenium-based catalyst layer 54. After the removal, the reformed gas heated by the reaction heat is introduced into the adjacent rhodium-based catalyst layer 56 to remove CO in the reformed gas. In the present embodiment, there is an advantage that the reaction heat can be used efficiently. Other configurations are the same as those in the first embodiment.

【0020】図13は、CO・H2 酸化反応率に及ぼす
温度と触媒の影響を示すグラフである。○印はRh系触
媒(具体的にはRh/Al2 3 を用いた)の温度−η
CO曲線、●印はRu系触媒(具体的にはRu/Al2
3 を用いた)の温度−ηCO曲線、□印はRh系触媒
(Rh/Al2 3 )の温度−ηH2 曲線、■印はRu
系触媒(Ru/Al2 3 )の温度−ηH2 曲線を示し
ている。なお、触媒層(触媒粒子充填層)の入口のガス
組成は、いずれの場合も水素8500ppm 、一酸化炭素
900ppm 、酸素800ppm であり、SVはいずれの場
合も、20000hr-1、LVはいずれの場合も、0.2
15Nm/sec であった。
FIG. 13 is a graph showing the effect of temperature and catalyst on the CO.H 2 oxidation reaction rate.印 indicates the temperature of the Rh-based catalyst (specifically, Rh / Al 2 O 3 was used) −η
In the CO curve, ● marks indicate Ru-based catalysts (specifically, Ru / Al 2
Temperature -ηCO curve of O 3 was used), □ mark temperature -ItaH 2 curve of Rh catalyst (Rh / Al 2 O 3) , ■ mark Ru
2 shows a temperature-ηH 2 curve of a system catalyst (Ru / Al 2 O 3 ). The gas composition at the inlet of the catalyst layer (catalyst particle packed layer) was 8500 ppm of hydrogen, 900 ppm of carbon monoxide, and 800 ppm of oxygen in all cases, and SV was 20,000 hr -1 and LV was in any case. Also 0.2
It was 15 Nm / sec.

【0021】図13から、Ru系触媒を用いる場合は、
60〜100℃でCO酸化反応率が高く、水素酸化反応
率が低いことがわかる。また、最適温度範囲が狭いRh
系触媒を用いる場合は、120〜150℃でCO酸化反
応率が高く、水素酸化反応率が低いことがわかる。した
がって、図12に示す実施の第2形態の場合は、60〜
100℃のCOを含む改質ガス(より高温度の改質ガス
を60〜100℃にすることで得られる改質ガスを含
む)に対しては、Ru系触媒でCOを除去する反応を進
めることによって、Rh系触媒の最適温度条件である1
20〜150℃まで昇温させ、Rh系触媒でCOをさら
に除去し、副反応による水素、メタンの反応量を減らす
ことができる。
From FIG. 13, when a Ru-based catalyst is used,
It can be seen that the CO oxidation reaction rate is high and the hydrogen oxidation reaction rate is low at 60 to 100 ° C. Also, the optimum temperature range is narrow Rh
When a system catalyst is used, the CO oxidation reaction rate is high at 120 to 150 ° C., and the hydrogen oxidation reaction rate is low. Therefore, in the case of the second embodiment shown in FIG.
For a reformed gas containing 100 ° C. of CO (including a reformed gas obtained by changing a higher temperature reformed gas to 60 to 100 ° C.), a reaction for removing CO with a Ru-based catalyst is advanced. Thus, the optimum temperature condition of the Rh-based catalyst is 1
The temperature is raised to 20 to 150 ° C., and CO is further removed with a Rh-based catalyst, so that the reaction amounts of hydrogen and methane due to side reactions can be reduced.

【0022】[0022]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) セレクトオキソ反応用の触媒層を多段に分割
し、各段の出口に改質ガス温度調整手段を設けているの
で、一段当たりの温度分布範囲を最適条件に維持するこ
とができ、このため、反応到達率及び選択率(CO除去
率)の向上を図ることができる。 (2) 触媒粒子に伝熱粒子を混合して充填する場合
は、発熱反応による触媒層の昇温と熱除去を効率よく行
うことができる。 (3) 各段の触媒層を上流側のルテニウム系触媒と下
流側のロジウム系触媒とに2分割する場合は、発熱に対
して熱除去が追いつかないという問題を解決できるとと
もに、改質ガス温度を制御することにより、水素の減少
量、メタンの発生量を減らすことができる。
As described above, the present invention has the following effects. (1) The catalyst layer for the selectoxo reaction is divided into multiple stages, and the reformed gas temperature adjusting means is provided at the outlet of each stage, so that the temperature distribution range per stage can be maintained at the optimum condition. Therefore, the reaction attainment rate and the selectivity (CO removal rate) can be improved. (2) When the heat transfer particles are mixed and filled into the catalyst particles, the temperature rise and heat removal of the catalyst layer due to the exothermic reaction can be efficiently performed. (3) When the catalyst layer of each stage is divided into a ruthenium-based catalyst on the upstream side and a rhodium-based catalyst on the downstream side, it is possible to solve the problem that the heat removal cannot keep up with the heat generation, and to reduce the reformed gas temperature. , The amount of hydrogen reduction and the amount of methane generated can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態による改質ガス中のC
O除去装置を示すフローシートである。
FIG. 1 shows C in a reformed gas according to a first embodiment of the present invention.
It is a flow sheet which shows an O removal device.

【図2】図1における第1触媒層及び第2触媒層まわり
の詳細を示すフローシートである。
FIG. 2 is a flow sheet showing details around a first catalyst layer and a second catalyst layer in FIG. 1;

【図3】本発明の装置における制御機構の一例を示すフ
ローシートである。
FIG. 3 is a flow sheet showing an example of a control mechanism in the apparatus of the present invention.

【図4】図1における触媒層の一例を示す断面説明図で
ある。
FIG. 4 is an explanatory sectional view showing an example of a catalyst layer in FIG. 1;

【図5】図1における触媒層の他の例を示す断面説明図
である。
FIG. 5 is an explanatory sectional view showing another example of the catalyst layer in FIG. 1;

【図6】図1における触媒反応器の一例を示す縦断面説
明図である。
FIG. 6 is an explanatory longitudinal sectional view showing one example of the catalytic reactor in FIG. 1;

【図7】同横断面説明図である。FIG. 7 is an explanatory cross-sectional view of the same.

【図8】図1における触媒反応器の他の例を示す縦断面
説明図である。
8 is an explanatory longitudinal sectional view showing another example of the catalytic reactor in FIG. 1. FIG.

【図9】同横断面説明図である。FIG. 9 is an explanatory cross-sectional view of the same.

【図10】図1における触媒反応器のさらに他の例を示
す縦断面説明図である。
FIG. 10 is an explanatory longitudinal sectional view showing still another example of the catalytic reactor in FIG. 1;

【図11】同横断面説明図である。FIG. 11 is an explanatory cross-sectional view of the same.

【図12】本発明の実施の第2形態による改質ガス中の
CO除去装置を示すフローシートである。
FIG. 12 is a flow sheet showing an apparatus for removing CO in reformed gas according to a second embodiment of the present invention.

【図13】Ru系触媒及びRh系触媒を用いた場合の温
度とCO酸化反応率、H2 酸化反応率との関係を示すグ
ラフである。
FIG. 13 is a graph showing the relationship between the temperature, the CO oxidation reaction rate, and the H 2 oxidation reaction rate when a Ru-based catalyst and a Rh-based catalyst are used.

【図14】触媒粒子のみを均一に充填する通常の充填方
式の触媒層を示す断面説明図である。
FIG. 14 is an explanatory sectional view showing a catalyst layer of a normal filling method for uniformly filling only catalyst particles.

【図15】触媒粒子と伝熱粒子とを混合した触媒の希釈
充填方式の触媒層を示す断面説明図である。
FIG. 15 is an explanatory sectional view showing a catalyst layer of a dilution and filling system of a catalyst in which catalyst particles and heat transfer particles are mixed.

【図16】図14に示す通常充填方式の触媒層及び図1
5に示す希釈充填方式の触媒層における触媒層長さと触
媒層反応温度との関係を示すグラフである。
FIG. 16 shows a catalyst layer of a normal filling type shown in FIG. 14 and FIG.
6 is a graph showing the relationship between the catalyst layer length and the catalyst layer reaction temperature in the catalyst layer of the dilution filling method shown in FIG.

【符号の説明】[Explanation of symbols]

10、10a、10b、10c…10n 反応器 12、12a、12b、12c…12n 触媒層 14 改質ガス導管 16 改質ガス温度調整手段 18 酸化剤分配供給手段 20 混合器 22 メタノールリフォーマー 24 燃料電池 26、76 冷媒流量調節弁 28 酸化剤流量調節弁 30 冷却器 32 温度指示調節器 34 触媒粒子 36 伝熱粒子 40 触媒層 42 円筒状本体 44 ジャケット 46 小管 48 プレート 50 冷却媒体通路 52 断熱層 54 ルテニウム系触媒層 56 ロジウム系触媒層 60、72 冷媒流量指示調節計 62 改質ガス温度指示調節計 64 酸化剤流量指示調節計 66 改質ガス流量指示調節計 68 CO濃度分析計 70 冷媒通路 74 触媒温度指示調節計 10, 10a, 10b, 10c ... 10n Reactor 12, 12a, 12b, 12c ... 12n Catalyst layer 14 Reformed gas conduit 16 Reformed gas temperature control means 18 Oxidant distribution / supply means 20 Mixer 22 Methanol reformer 24 Fuel cell 26 , 76 Refrigerant flow control valve 28 Oxidant flow control valve 30 Cooler 32 Temperature indicator controller 34 Catalyst particles 36 Heat transfer particles 40 Catalyst layer 42 Cylindrical main body 44 Jacket 46 Small pipe 48 Plate 50 Cooling medium passage 52 Thermal insulation layer 54 Ruthenium system Catalyst layer 56 Rhodium-based catalyst layer 60, 72 Refrigerant flow rate indicator controller 62 Reformed gas temperature indicator controller 64 Oxidant flow rate indicator controller 66 Reformed gas flow rate indicator controller 68 CO concentration analyzer 70 Refrigerant passage 74 Catalyst temperature indicator Controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 8/04 C01B 31/18 B // C01B 31/18 B01D 53/36 Z (72)発明者 永島 郁男 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 寺田 誠二 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location H01M 8/04 C01B 31/18 B // C01B 31/18 B01D 53/36 Z (72) Inventor Ikuo Nagashima 1-1, Kawasaki-cho, Akashi-shi, Hyogo Prefecture Inside the Akashi factory of Kawasaki Heavy Industries, Ltd. (72) Inventor Seiji Terada 1-1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries, Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 一酸化炭素を含む改質ガスを、ガス流れ
方向に多段に設けられた一酸化炭素選択的酸化触媒層に
順次供給する方法であって、各触媒層の出口の改質ガス
を反応に適する温度に冷却するとともに、各触媒層に酸
化剤を分配供給することを特徴とする改質ガス中の一酸
化炭素除去方法。
1. A method for sequentially supplying a reformed gas containing carbon monoxide to a carbon monoxide selective oxidation catalyst layer provided in multiple stages in a gas flow direction, wherein a reformed gas at an outlet of each catalyst layer is provided. A method for cooling carbon monoxide to a temperature suitable for the reaction and distributing and supplying an oxidizing agent to each catalyst layer.
【請求項2】 一酸化炭素選択的酸化触媒としてルテニ
ウム系触媒を用い、各触媒層の温度を60〜210℃の
範囲に維持する請求項1記載の改質ガス中の一酸化炭素
除去方法。
2. The method for removing carbon monoxide in a reformed gas according to claim 1, wherein a ruthenium-based catalyst is used as a carbon monoxide selective oxidation catalyst, and the temperature of each catalyst layer is maintained in a range of 60 to 210 ° C.
【請求項3】 一酸化炭素選択的酸化触媒としてロジウ
ム系触媒を用い、各触媒層の温度を130〜210℃の
範囲に維持する請求項1記載の改質ガス中の一酸化炭素
除去方法。
3. The method for removing carbon monoxide in a reformed gas according to claim 1, wherein a rhodium-based catalyst is used as a carbon monoxide selective oxidation catalyst, and the temperature of each catalyst layer is maintained in a range of 130 to 210 ° C.
【請求項4】 各段の触媒層をルテニウム系触媒層とロ
ジウム系触媒層とに2分割し、ルテニウム系触媒層で改
質ガスを処理した後、昇温した改質ガスを隣接するロジ
ウム系触媒層で処理する請求項1記載の改質ガス中の一
酸化炭素除去方法。
4. The catalyst layer of each stage is divided into a ruthenium-based catalyst layer and a rhodium-based catalyst layer, and the reformed gas is treated with the ruthenium-based catalyst layer. The method for removing carbon monoxide in a reformed gas according to claim 1, wherein the treatment is performed with a catalyst layer.
【請求項5】 ルテニウム系触媒層に導入する改質ガス
の温度を60〜100℃の範囲とし、隣接するロジウム
系触媒層に導入する改質ガスの温度を120〜150℃
の範囲とする請求項4記載の改質ガス中の一酸化炭素除
去方法。
5. The temperature of the reformed gas introduced into the ruthenium-based catalyst layer is in the range of 60 to 100 ° C., and the temperature of the reformed gas introduced into the adjacent rhodium-based catalyst layer is 120 to 150 ° C.
5. The method for removing carbon monoxide in a reformed gas according to claim 4, wherein:
【請求項6】 各触媒層入口におけるO2 /COモル比
が0.5〜1.5の範囲になるように酸化剤を分配供給
する請求項1〜5のいずれかに記載の改質ガス中の一酸
化炭素除去方法。
6. The reformed gas according to claim 1, wherein the oxidizing agent is distributed and supplied such that the O 2 / CO molar ratio at each catalyst layer inlet is in the range of 0.5 to 1.5. Carbon monoxide removal method.
【請求項7】 触媒として触媒粒子を用い、ガラスビー
ズ、セラミックス粒子及び金属製粒子の少なくともいず
れかを触媒粒子と混合して用いる請求項1〜6のいずれ
かに記載の改質ガス中の一酸化炭素除去方法。
7. The reformed gas according to claim 1, wherein catalyst particles are used as the catalyst, and at least one of glass beads, ceramic particles, and metal particles is mixed with the catalyst particles. Carbon oxide removal method.
【請求項8】 一酸化炭素選択的酸化触媒の触媒層を備
えた反応器を一酸化炭素を含む改質ガスが流れる改質ガ
ス導管に多段に設け、各触媒層の出口の改質ガスを冷却
して反応に適する温度に調節するための改質ガス温度調
整手段を改質ガス導管に設け、これらの改質ガス温度調
整手段と各触媒層との間の改質ガス導管に酸化剤分配供
給手段を設けたことを特徴とする改質ガス中の一酸化炭
素除去装置。
8. Reactors provided with a catalyst layer of a carbon monoxide selective oxidation catalyst are provided in multiple stages in a reformed gas conduit through which a reformed gas containing carbon monoxide flows, and a reformed gas at an outlet of each catalyst layer is provided. A reformed gas temperature adjusting means for cooling and adjusting to a temperature suitable for the reaction is provided in the reformed gas conduit, and the oxidizing agent is distributed to the reformed gas conduit between the reformed gas temperature adjusting means and each catalyst layer. An apparatus for removing carbon monoxide in a reformed gas, comprising a supply unit.
【請求項9】 各段の触媒層を上流側のルテニウム系触
媒層と下流側のロジウム系触媒層とに2分割した請求項
8記載の改質ガス中の一酸化炭素除去装置。
9. The apparatus for removing carbon monoxide in a reformed gas according to claim 8, wherein each catalyst layer is divided into a ruthenium-based catalyst layer on the upstream side and a rhodium-based catalyst layer on the downstream side.
【請求項10】 反応器が、円筒状本体内に触媒を充填
した管型である請求項8又は9記載の改質ガス中の一酸
化炭素除去装置。
10. The apparatus for removing carbon monoxide in a reformed gas according to claim 8, wherein the reactor has a tubular shape in which a cylindrical body is filled with a catalyst.
【請求項11】 反応器が、2枚のプレート間に触媒を
充填したプレート型である請求項8又は9記載の改質ガ
ス中の一酸化炭素除去装置。
11. The apparatus for removing carbon monoxide in a reformed gas according to claim 8, wherein the reactor is a plate type in which a catalyst is filled between two plates.
【請求項12】 反応器が、円筒状本体内に触媒を充填
した複数本の小管を挿入したものである請求項8又は9
記載の改質ガス中の一酸化炭素除去装置。
12. The reactor in which a plurality of small tubes filled with a catalyst are inserted into a cylindrical main body.
An apparatus for removing carbon monoxide in a reformed gas as described in the above.
JP8247154A 1996-08-29 1996-08-29 Method and apparatus for removing carbon monoxide in reformed gas Expired - Fee Related JP2869525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8247154A JP2869525B2 (en) 1996-08-29 1996-08-29 Method and apparatus for removing carbon monoxide in reformed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8247154A JP2869525B2 (en) 1996-08-29 1996-08-29 Method and apparatus for removing carbon monoxide in reformed gas

Publications (2)

Publication Number Publication Date
JPH1072202A true JPH1072202A (en) 1998-03-17
JP2869525B2 JP2869525B2 (en) 1999-03-10

Family

ID=17159248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8247154A Expired - Fee Related JP2869525B2 (en) 1996-08-29 1996-08-29 Method and apparatus for removing carbon monoxide in reformed gas

Country Status (1)

Country Link
JP (1) JP2869525B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254507A (en) * 1999-01-08 2000-09-19 Sud Chem Mt Srl Catalyst for exothermic reaction in fixed bed
JP2001040376A (en) * 1999-07-28 2001-02-13 Aisin Seiki Co Ltd Carbon monoxide-reducing apparatus, modification apparatus, and fuel cell system
JP2002175826A (en) * 2000-12-07 2002-06-21 Ebara Ballard Corp Fuel cell power generation system
WO2002090248A1 (en) * 2001-05-07 2002-11-14 Matsushita Electric Industrial Co., Ltd. Hydrogen purification apparatus
KR20040005064A (en) * 2002-07-08 2004-01-16 현대자동차주식회사 Co gas removal device of air flow controlling device of fuel cell and method thereof
JP2008514536A (en) * 2004-09-28 2008-05-08 テキサコ ディベラップメント コーポレイション Apparatus and method for selective oxidation of carbon monoxide
JP2008247735A (en) * 2001-04-24 2008-10-16 Osaka Gas Co Ltd Fuel reforming system
JP2010132551A (en) * 2000-09-20 2010-06-17 Toshiba Corp Fuel reforming device for solid polyelectrolyte fuel cell
WO2011007493A1 (en) * 2009-07-13 2011-01-20 川崎重工業株式会社 Process for producing hydrogen and hydrogen production system
JP2011057498A (en) * 2009-09-09 2011-03-24 Kawasaki Heavy Ind Ltd Process and apparatus for producing hydrogen
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2013155091A (en) * 2012-01-31 2013-08-15 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
WO2019054151A1 (en) * 2017-09-14 2019-03-21 住友化学株式会社 Method for oxidizing carbon monoxide, device for oxidizing carbon monoxide, air purifier, and gas mask

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691098B2 (en) 2009-04-24 2015-04-01 国立大学法人山梨大学 Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254507A (en) * 1999-01-08 2000-09-19 Sud Chem Mt Srl Catalyst for exothermic reaction in fixed bed
JP2001040376A (en) * 1999-07-28 2001-02-13 Aisin Seiki Co Ltd Carbon monoxide-reducing apparatus, modification apparatus, and fuel cell system
JP2010132551A (en) * 2000-09-20 2010-06-17 Toshiba Corp Fuel reforming device for solid polyelectrolyte fuel cell
JP2002175826A (en) * 2000-12-07 2002-06-21 Ebara Ballard Corp Fuel cell power generation system
JP2008247735A (en) * 2001-04-24 2008-10-16 Osaka Gas Co Ltd Fuel reforming system
WO2002090248A1 (en) * 2001-05-07 2002-11-14 Matsushita Electric Industrial Co., Ltd. Hydrogen purification apparatus
KR20040005064A (en) * 2002-07-08 2004-01-16 현대자동차주식회사 Co gas removal device of air flow controlling device of fuel cell and method thereof
JP2008514536A (en) * 2004-09-28 2008-05-08 テキサコ ディベラップメント コーポレイション Apparatus and method for selective oxidation of carbon monoxide
WO2011007493A1 (en) * 2009-07-13 2011-01-20 川崎重工業株式会社 Process for producing hydrogen and hydrogen production system
CN102428024A (en) * 2009-07-13 2012-04-25 川崎重工业株式会社 Process for producing hydrogen and hydrogen production system
AU2010272097B2 (en) * 2009-07-13 2013-05-09 Kawasaki Jukogyo Kabushiki Kaisha Hydrogen Production Method and Hydrogen Production System
JP2011057498A (en) * 2009-09-09 2011-03-24 Kawasaki Heavy Ind Ltd Process and apparatus for producing hydrogen
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2013155091A (en) * 2012-01-31 2013-08-15 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
WO2019054151A1 (en) * 2017-09-14 2019-03-21 住友化学株式会社 Method for oxidizing carbon monoxide, device for oxidizing carbon monoxide, air purifier, and gas mask

Also Published As

Publication number Publication date
JP2869525B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
JP2869525B2 (en) Method and apparatus for removing carbon monoxide in reformed gas
US6254848B1 (en) Process for the production of hydrogen-rich gas
US8211387B2 (en) Anode tailgas oxidizer
JP2002104807A (en) Operating method of fuel processor conbining partial oxidation with steam reforming
WO2000048261A1 (en) Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
JP2008514536A (en) Apparatus and method for selective oxidation of carbon monoxide
US6387555B1 (en) Selective oxidizer in cell stack manifold
JP2001080904A (en) Fuel reformer
US6939634B2 (en) Fuel cell system having two reformer units for catalytic decomposition
JP3733753B2 (en) Hydrogen purification equipment
US20040177554A1 (en) WGS reactor incorporated with catalyzed heat exchanger for WGS reactor volume reduction
JP3515438B2 (en) CO removal device and fuel cell power generation system
JP2005200292A (en) Fuel processing system for reforming hydrocarbon fuel
US20010005498A1 (en) Device for the selective catalytic oxidation of carbon monoxide
JP2002293510A (en) Carbon monoxide converter
JP3545254B2 (en) Fuel cell carbon monoxide remover
JPH02188406A (en) Carbon monoxide converter
JP2002358994A (en) Process for controlling co concentration from priority oxidation reactor at decline of demand using multi-stage multi-port air injection
JP2000335904A (en) Co-remover and fuel cell system
KR100422804B1 (en) Apparatus to remove carbon monoxide for fuel cell
US20030211025A1 (en) Process, control system and apparatus for the optimal operation of a selective oxidation reactor
JP3669672B2 (en) Operation method of hydrogen production equipment
JP2002282690A (en) Catalyst for removing carbon monoxide, method for removing carbon monoxide, and reactor for removing carbon monoxide
JP2005174783A (en) Solid polymer fuel cell power generating system
JP2000264604A (en) Carbon monoxide remover for fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees