JP2000335904A - Co-remover and fuel cell system - Google Patents

Co-remover and fuel cell system

Info

Publication number
JP2000335904A
JP2000335904A JP11152534A JP15253499A JP2000335904A JP 2000335904 A JP2000335904 A JP 2000335904A JP 11152534 A JP11152534 A JP 11152534A JP 15253499 A JP15253499 A JP 15253499A JP 2000335904 A JP2000335904 A JP 2000335904A
Authority
JP
Japan
Prior art keywords
reaction
reaction vessel
selective oxidation
reaction vessels
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11152534A
Other languages
Japanese (ja)
Inventor
Masataka Kadowaki
正天 門脇
Yasuo Miyake
泰夫 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11152534A priority Critical patent/JP2000335904A/en
Publication of JP2000335904A publication Critical patent/JP2000335904A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a CO-remover enabling a selective oxidation catalyst over the whole region in a reaction vessel to be maintained within an optimum temperature range, and having improved performance for removing carbon monoxide, and further to provide a fuel cell system having improved cell characteristics. SOLUTION: This CO-remover has plural reaction vessels 11A and 11B storing selective oxidation catalyst and connected to each other, and selectively oxidizes carbon monoxide in a CO-containing gas by the selective oxidation reaction caused by the selective oxidation catalyst by passing the CO-containing gas and air through the reaction vessel 11A and 11B. The upstream part and the downstream part of one reaction vessel 11A of the plural reaction vessels 11A and 11B arranged in series are arranged so as to be able to carry out the heat exchange with the downstream part and the upstream part of the other reaction vessel 11B, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一酸化炭素を含有
する含COガスから該一酸化炭素を除去するためのCO
除去装置、及びこれを備えた燃料電池システムに係り、
特にCO除去装置における一酸化炭素の除去性能を向上
させると共に、燃料電池システムの発電性能を向上させ
るための技術に関する。
The present invention relates to a method for removing carbon monoxide from a CO-containing gas containing carbon monoxide.
The present invention relates to a removing device and a fuel cell system including the same.
In particular, the present invention relates to a technique for improving the performance of removing carbon monoxide in a CO removal device and improving the power generation performance of a fuel cell system.

【0002】[0002]

【従来の技術】近年、環境保全の観点からガソリンや軽
油等の燃焼エネルギを用いたエンジンの代替が求められ
ており、車両等の駆動エネルギを燃料電池から得ること
が検討されている。この燃料電池においては、カソード
に空気等の酸化剤が、またアノードに水素リッチな燃料
ガスが供給されることにより発電が生じる。
2. Description of the Related Art In recent years, from the viewpoint of environmental protection, it has been required to replace an engine using combustion energy such as gasoline or light oil, and it has been studied to obtain driving energy of a vehicle or the like from a fuel cell. In this fuel cell, power is generated by supplying an oxidizing agent such as air to the cathode and supplying a hydrogen-rich fuel gas to the anode.

【0003】図4は通常の燃料電池システムの概略構成
を示すシステム構成図である。図示しない原料ガス供給
系から供給されるメタンやプロパンガス等の炭化水素系
の原料ガスはまず脱硫器1に供給され、該脱硫器1によ
り原料ガス中に付臭剤として添加されている硫黄成分が
除去された後に、改質器2に導入される。改質器2には
原料ガスと共に図示しない水蒸気供給系から水蒸気が供
給されており、水蒸気改質反応(CH4+H2O→CO+
3H2)により、水素濃度が75〜80%程度の水素リ
ッチな燃料ガスが生成される。
FIG. 4 is a system configuration diagram showing a schematic configuration of a normal fuel cell system. A hydrocarbon source gas such as methane or propane gas supplied from a source gas supply system (not shown) is first supplied to a desulfurizer 1, and a sulfur component added as an odorant to the source gas by the desulfurizer 1. Is removed and introduced into the reformer 2. Steam is supplied to the reformer 2 from a steam supply system (not shown) together with the raw material gas, and the steam reforming reaction (CH 4 + H 2 O → CO +
3H 2 ) generates a hydrogen-rich fuel gas having a hydrogen concentration of about 75 to 80%.

【0004】斯かる改質器2から出た直後の燃料ガスに
は10〜15%程度の濃度の一酸化炭素が含まれてい
る。この一酸化炭素はアノードに用いられている触媒の
性能を低下させるために、改質器2から出た直後の燃料
ガスを直接燃料電池本体のアノードに供給すると、燃料
電池本体の発電性能を低下させる。
[0004] The fuel gas immediately after leaving the reformer 2 contains carbon monoxide at a concentration of about 10 to 15%. When the fuel gas immediately after leaving the reformer 2 is directly supplied to the anode of the fuel cell body to reduce the performance of the catalyst used for the anode, the carbon monoxide deteriorates the power generation performance of the fuel cell body. Let it.

【0005】そこで、従来改質器2から出た燃料ガスを
CO変成器3及びCO除去器4を介して燃料電池本体5
のアノード51に供給している。CO変成器3内ではC
Oシフト反応(CO+H2O→CO2+H2)により一酸
化炭素が二酸化炭素にシフトされ、一酸化炭素濃度が1
%程度にまで低減される。さらに、CO除去装置4内で
は選択酸化反応(CO+1/2O2→CO2)が生じ、一
酸化炭素が選択酸化されてその濃度が10ppm程度に
まで低減される。そして、このように一酸化炭素が10
ppm程度にまで低減された水素リッチな燃料ガスが、
燃料電池本体5のアノード51に供給されている。ま
た、燃料電池本体5のカソード52には図示しないブロ
ア等の空気供給手段により空気が供給され、この結果燃
料電池本体5で発電が生じる。
[0005] Therefore, the fuel gas discharged from the conventional reformer 2 is passed through a CO converter 3 and a CO remover 4 to a fuel cell main body 5.
Is supplied to the anode 51. C in the CO transformer 3
The carbon monoxide is shifted to carbon dioxide by the O shift reaction (CO + H 2 O → CO 2 + H 2 ), and the carbon monoxide concentration becomes 1
%. Further, a selective oxidation reaction (CO + 1 / 2O 2 → CO 2 ) occurs in the CO removing device 4, and carbon monoxide is selectively oxidized and its concentration is reduced to about 10 ppm. And thus, carbon monoxide is 10
The hydrogen-rich fuel gas reduced to about ppm
It is supplied to the anode 51 of the fuel cell body 5. Air is supplied to the cathode 52 of the fuel cell main body 5 by an air supply means such as a blower (not shown), and as a result, power is generated in the fuel cell main body 5.

【0006】上記CO除去装置4は、通常ルテニウム,
ロジウム等の選択酸化触媒が内部に収納された細長の鋼
管容器(反応容器)から成ると共に、この反応容器内に
その長手方向に沿って、燃料ガスが空気と共に導入され
るように構成されている。そして、斯様に燃料ガスが反
応容器内を通過する際に、燃料ガス中の一酸化炭素が選
択酸化触媒により選択酸化されて二酸化炭素となり、一
酸化炭素濃度が低減されている(特開平5−20170
2号)。
The above-mentioned CO removing device 4 is usually made of ruthenium,
It comprises an elongated steel tube container (reaction container) in which a selective oxidation catalyst such as rhodium is accommodated, and is configured such that fuel gas is introduced into the reaction container along with its longitudinal direction together with air. . Then, when the fuel gas passes through the inside of the reaction vessel, carbon monoxide in the fuel gas is selectively oxidized by the selective oxidation catalyst to carbon dioxide, and the carbon monoxide concentration is reduced (Japanese Patent Laid-Open No. −20170
No. 2).

【0007】ところで、斯かるCO除去装置にあって
は、反応容器内に燃料ガスと空気が導入されると入口側
から選択酸化反応が進行し、ガス流れ方向に沿って燃料
ガス中の一酸化炭素及び空気中の酸素が選択酸化反応に
より消費されながら出口側にまで達する。このため、一
酸化炭素及び酸素の濃度は入口側で高く、出口側で低く
なり、これに応じて反応容器内で生じる選択酸化反応も
入口側で多く、出口側で少なくなる。また、斯かる選択
酸化反応は発熱反応であることから、反応容器内で発生
する熱量も入口側で多く、出口側で少なくなり、従って
反応容器内にはガス流れ方向に沿って、入口側で高温、
出口側で低温という温度分布が生じる。
[0007] In such a CO removal device, when fuel gas and air are introduced into the reaction vessel, a selective oxidation reaction proceeds from the inlet side, and the mono-oxidation in the fuel gas proceeds along the gas flow direction. The carbon and oxygen in the air reach the outlet side while being consumed by the selective oxidation reaction. For this reason, the concentrations of carbon monoxide and oxygen are high on the inlet side and low on the outlet side, and accordingly, the selective oxidation reaction occurring in the reaction vessel is high on the inlet side and low on the outlet side. Further, since such a selective oxidation reaction is an exothermic reaction, the amount of heat generated in the reaction vessel is large at the inlet side and reduced at the outlet side. high temperature,
A temperature distribution of low temperature occurs at the outlet side.

【0008】一方、上記ルテニウムやロジウムといった
選択酸化触媒を用いて一酸化炭素を選択酸化するために
は、これら選択酸化触媒の温度を最適な温度範囲に維持
する必要がある。例えばルテニウム系の選択酸化触媒を
用いた場合、一酸化炭素を十分に選択酸化するためには
触媒の温度を130℃〜190℃の温度範囲に維持する
必要がある。選択酸化触媒の温度がこの温度範囲よりも
高い温度であると一酸化炭素又は二酸化炭素が水素と結
合してメタンが生成されるため、燃料となる水素が消費
されてしまい、燃料電池本体に供給される水素量が減少
してしまうこととなり、発電量が低下してしまう。一
方、上記温度範囲よりも低い温度では一酸化炭素を十分
に除去できるだけの選択酸化反応が生じない。
On the other hand, in order to selectively oxidize carbon monoxide using a selective oxidation catalyst such as ruthenium or rhodium, it is necessary to maintain the temperature of these selective oxidation catalysts in an optimum temperature range. For example, when a ruthenium-based selective oxidation catalyst is used, it is necessary to maintain the temperature of the catalyst in a temperature range of 130 ° C. to 190 ° C. in order to sufficiently selectively oxidize carbon monoxide. If the temperature of the selective oxidation catalyst is higher than this temperature range, carbon monoxide or carbon dioxide is combined with hydrogen to produce methane, so that hydrogen as fuel is consumed and supplied to the fuel cell body. As a result, the amount of generated hydrogen decreases, and the amount of power generation decreases. On the other hand, at a temperature lower than the above temperature range, a selective oxidation reaction that can sufficiently remove carbon monoxide does not occur.

【0009】従って、従来のCO除去装置においては上
述したように入口側で高温、出口側で低温という温度分
布が生じるために、反応容器内の選択酸化触媒を全ての
範囲にわたって最適な温度範囲に維持することが困難と
なり、選択酸化反応の効率低下を招いて一酸化炭素を十
分に除去できない、或いは燃料として供給される水素量
が少なくなる虞があった。
Therefore, in the conventional CO removing apparatus, as described above, a temperature distribution of a high temperature at the inlet side and a low temperature at the outlet side occurs, so that the selective oxidation catalyst in the reaction vessel is set to an optimum temperature range over the entire range. It becomes difficult to maintain, and the efficiency of the selective oxidation reaction is reduced, so that carbon monoxide cannot be sufficiently removed or the amount of hydrogen supplied as fuel may be reduced.

【0010】そこで、斯かる課題を解決するために、複
数の反応容器を備え、夫々の反応容器の上流側に酸素を
導入するようにしたCO除去装置が提案されている(特
開平8−47621号)。
In order to solve such a problem, there has been proposed a CO removal apparatus including a plurality of reaction vessels and introducing oxygen into the upstream side of each of the reaction vessels (Japanese Patent Application Laid-Open No. 8-47621). issue).

【0011】[0011]

【発明が解決しようとする課題】然し乍ら、斯かる装置
においても、夫々の反応容器においてガス流れ方向に沿
って入口側で高温、出口側で低温となる温度分布が生じ
るという課題を根本的に解決することはできず、このた
め選択酸化触媒を最適温度範囲に調整することが困難と
なり、選択酸化反応の効率低下を招いて一酸化炭素を十
分に除去できない、或いは燃料となる水素量が減少する
という課題が、依然として残っていた。
However, even in such an apparatus, the problem that a temperature distribution at the inlet side becomes high and a temperature at the outlet side becomes low in each of the reaction vessels along the gas flow direction is fundamentally solved. Therefore, it becomes difficult to adjust the selective oxidation catalyst to the optimum temperature range, and the efficiency of the selective oxidation reaction is reduced, so that carbon monoxide cannot be sufficiently removed or the amount of hydrogen as fuel decreases. The problem still remained.

【0012】本発明は、斯かる従来の課題を解決し、反
応容器のガス流れ方向に生じる温度分布を均一な分布に
近付け、反応容器内の選択酸化触媒を全ての範囲にわた
って最適な温度範囲に維持することを可能とし、一酸化
炭素の除去性能の向上したCO除去装置を提供すると共
に、このCO除去装置を用いて電池性能の向上した燃料
電池システムを提供することを目的とする。
The present invention solves the above-mentioned conventional problems, makes the temperature distribution generated in the gas flow direction of the reaction vessel close to a uniform distribution, and makes the selective oxidation catalyst in the reaction vessel an optimum temperature range over the entire range. It is an object of the present invention to provide a CO removal device capable of maintaining the same and having improved carbon monoxide removal performance, and to provide a fuel cell system having improved cell performance using the CO removal device.

【0013】[0013]

【課題を解決するための手段】斯かる従来の課題を解決
するために、本発明CO除去装置は、選択酸化触媒を収
納すると共に互いに連結された複数の反応容器を有し、
一酸化炭素を含有する含COガス及び空気を前記複数の
反応容器内に通過させ、前記選択酸化触媒によって生じ
る選択酸化反応により前記含COガス中の一酸化炭素を
選択酸化するCO除去装置であって、前記複数の反応容
器のうち連続して配された反応容器における一方の反応
容器の上流部及び下流部が、他方の反応容器の下流部及
び上流部と夫々熱伝達可能に配されていることを特徴と
する。
Means for Solving the Problems In order to solve such a conventional problem, a CO removing apparatus according to the present invention has a plurality of reaction vessels accommodating a selective oxidation catalyst and connected to each other,
A CO removal device that passes a CO-containing gas and air containing carbon monoxide through the plurality of reaction vessels and selectively oxidizes carbon monoxide in the CO-containing gas by a selective oxidation reaction generated by the selective oxidation catalyst. The upstream part and the downstream part of one of the reaction vessels in the consecutively arranged reaction vessels among the plurality of reaction vessels are arranged so as to be able to transfer heat to the downstream part and the upstream part of the other reaction vessel, respectively. It is characterized by the following.

【0014】また、前記複数の反応容器のうち連続して
配された反応容器における一方の反応容器の上流部及び
下流部が、他方の反応容器の下流部及び上流部と夫々近
接して配されていることを特徴とする。
The upstream and downstream portions of one of the plurality of reaction vessels are arranged close to the downstream and upstream portions of the other reaction vessel. It is characterized by having.

【0015】さらに、前記一方の反応容器と他方の反応
容器とが、良好な熱伝導性を有する接続部材により互い
に近接して接続されていることを特徴とする。
Further, the one reaction vessel and the other reaction vessel are connected close to each other by a connection member having good thermal conductivity.

【0016】加えて、前記複数の反応容器を互いに連通
する複数の連通部のうちの少なくとも1つに、空気を導
入するための空気導入口を設けたことを特徴とする。
In addition, an air inlet for introducing air is provided in at least one of a plurality of communicating portions that communicate the plurality of reaction vessels with each other.

【0017】さらには、前記複数の反応容器が扁平形状
をなし、且つ連続して配された前記反応容器は、互いの
面積が最も大きい面同士が対向して配されたことを特徴
とし、前記複数の反応容器内に、サーペンタイン状のガ
ス流路が形成されていることを特徴とする。
Further, the reaction vessels in which the plurality of reaction vessels have a flat shape and are arranged continuously are characterized in that the surfaces having the largest areas are arranged to face each other. A serpentine gas flow path is formed in a plurality of reaction vessels.

【0018】また、本発明燃料電池システムは、上記C
O除去装置を燃料ガスの供給経路に有することを特徴と
する。
Further, the fuel cell system of the present invention
An O removing device is provided in a fuel gas supply path.

【0019】[0019]

【発明の実施の形態】以下に、本発明の実施の形態に係
るCO除去装置について、図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a CO removing apparatus according to an embodiment of the present invention will be described with reference to the drawings.

【0020】図1は本実施の形態に係るCO除去装置の
概略構成を説明するための斜視図であり、図2は図1に
おけるA−A線矢視正面図である。
FIG. 1 is a perspective view for explaining a schematic configuration of a CO removing apparatus according to the present embodiment, and FIG. 2 is a front view taken along line AA in FIG.

【0021】図中11A及び11Bは夫々ステンレスか
ら構成される反応容器であり、例えば扁平形状をなして
いる。夫々の反応容器11A,11Bの内部には、一酸
化炭素を選択酸化するためのルテニウム,ロジウム等の
粒状或いはペレット状の選択酸化触媒が充填されてい
る。図2に示す如く反応容器11A内には複数のガス流
路仕切板16が設けられ、ガス流路が蛇行状(サーペン
タイン状)の構成とされている。また、反応容器11B
内にも同様に複数のガス流路仕切板が設けられており、
ガス流路がサーペンタイン状の構成とされている。
In the figure, reference numerals 11A and 11B denote reaction vessels made of stainless steel, for example, each having a flat shape. The inside of each of the reaction vessels 11A and 11B is filled with a granular or pellet-shaped selective oxidation catalyst such as ruthenium or rhodium for selectively oxidizing carbon monoxide. As shown in FIG. 2, a plurality of gas flow path partition plates 16 are provided in the reaction vessel 11A, and the gas flow path has a meandering (serpentine) configuration. Also, the reaction vessel 11B
Similarly, a plurality of gas flow path partition plates are provided inside,
The gas channel has a serpentine configuration.

【0022】尚、上記仕切板16を設ける方向は、同図
に示す如く鉛直方向とすることが好ましい。仕切板16
を水平方向に設けると、反応容器内に充填された選択酸
化触媒が重力の影響により下方に堆積し、上部に隙間が
生じることとなり、含COガスがこの隙間を通過して流
れるからである。
The direction in which the partition plate 16 is provided is preferably a vertical direction as shown in FIG. Partition plate 16
Is provided in the horizontal direction, the selective oxidation catalyst filled in the reaction vessel accumulates under the influence of gravity, and a gap is formed in the upper portion, and the CO-containing gas flows through this gap.

【0023】また、12は一方の反応容器11A内に一
酸化炭素を含有する含COガスを導入するためのガス導
入配管であり、13は空気を導入するための空気導入配
管である。
Reference numeral 12 denotes a gas introduction pipe for introducing a CO-containing gas containing carbon monoxide into one reaction vessel 11A, and reference numeral 13 denotes an air introduction pipe for introducing air.

【0024】含COガス及び空気は夫々ガス導入配管1
2及び空気導入配管13を介して、一方の反応容器11
Aの供給口21より該反応容器11A内に導入される。
そして、ガス流れ方向に沿って該反応容器11A内に充
填された選択酸化触媒により選択酸化され乍ら排出口2
2に至り、該排出口22から一酸化炭素濃度が低減され
たガスが排出される。
The CO-containing gas and air are respectively supplied to the gas introduction pipe 1
2 and one of the reaction vessels 11 through the air introduction pipe 13.
A is introduced into the reaction vessel 11A from the supply port 21 of A.
The outlet 2 is selectively oxidized by the selective oxidation catalyst filled in the reaction vessel 11A along the gas flow direction.
Then, the gas having a reduced concentration of carbon monoxide is discharged from the outlet 22.

【0025】この排出口22は、連通部14を構成する
ガス配管により他方の反応容器11Bにおける供給口2
3と連通しており、一方の反応容器11Aの排出口22
から排出されたガスは、連通部14を介して他方の反応
容器11Bの供給口23より該反応容器11B内に導入
される。そして、ガス流れ方向に沿って該反応容器11
B内に充填された選択酸化触媒により選択酸化され乍ら
排出口24に至り、該排出口24から一酸化炭素濃度が
さらに低減されたガスが、ガス排出配管15を介して外
部に排出される。
The discharge port 22 is connected to the supply port 2 in the other reaction vessel 11B by a gas pipe constituting the communication section 14.
3 and the outlet 22 of one reaction vessel 11A.
Is discharged into the reaction vessel 11B from the supply port 23 of the other reaction vessel 11B via the communication portion 14. Then, the reaction vessel 11 is moved along the gas flow direction.
The gas reaches the outlet 24 while being selectively oxidized by the selective oxidation catalyst filled in B, and the gas having a further reduced carbon monoxide concentration is discharged from the outlet 24 through the gas discharge pipe 15 to the outside. .

【0026】以上のように、一酸化炭素を含有する含C
Oガスは、空気と共に一方の反応容器11Aに導入さ
れ、該反応容器11A内に充填された選択酸化触媒によ
る選択酸化反応によりそのガス中の一酸化炭素濃度が低
減された後に、再度他方の反応容器11B内に導入さ
れ、該反応容器11B内に充填された選択酸化触媒によ
る選択酸化反応によりそのガス中の一酸化炭素濃度がさ
らに低減された状態で、外部に排出される。
As described above, the carbon-containing C-containing carbon monoxide
The O gas is introduced into one reaction vessel 11A together with air, and after the concentration of carbon monoxide in the gas is reduced by the selective oxidation reaction by the selective oxidation catalyst filled in the reaction vessel 11A, the other reaction is performed again. The gas is introduced into the vessel 11B, and is discharged to the outside in a state where the concentration of carbon monoxide in the gas is further reduced by the selective oxidation reaction by the selective oxidation catalyst filled in the reaction vessel 11B.

【0027】ここで、上述の様に反応容器11A及び1
1B内では、供給口21,23が配された上流側の方が
温度が高く、排出口22,24が配された下流側の方が
温度が低い、という温度分布を生じる。然し乍ら、本発
明にあっては一方の反応容器11Aの上流側及び下流側
が、夫々他方の反応容器11Bの下流側及び上流側と熱
伝達可能なように、反応容器11Aと11Bとを配して
いる。具体的には、図1に示す如く、扁平形状をなす反
応容器11Aと11Bとを、夫々の最も面積が大きな面
同士を近接させて配している。このとき、一方の反応容
器11Aの上流側、即ち供給口21が配された側と、他
方の反応容器11Bの下流側、即ち排出口24が配され
た側とを近接させ、一方の反応容器11Aの下流側、即
ち排出口22が配された側と、他方の反応容器11Bの
上流側、即ち供給口23が配された側とを近接させて配
している。
Here, as described above, the reaction vessels 11A and 1A
Within 1B, there is a temperature distribution in which the temperature is higher on the upstream side where the supply ports 21 and 23 are arranged, and lower on the downstream side where the discharge ports 22 and 24 are arranged. However, in the present invention, the reaction vessels 11A and 11B are arranged so that the upstream and downstream of one reaction vessel 11A can conduct heat with the downstream and upstream of the other reaction vessel 11B, respectively. I have. More specifically, as shown in FIG. 1, flat reaction vessels 11A and 11B are arranged such that their surfaces having the largest areas are close to each other. At this time, the upstream side of one of the reaction vessels 11A, that is, the side where the supply port 21 is arranged, and the downstream side of the other reaction vessel 11B, that is, the side where the discharge port 24 is arranged, are brought close to each other. The downstream side of 11A, that is, the side where the discharge port 22 is arranged, and the upstream side of the other reaction vessel 11B, that is, the side where the supply port 23 is arranged, are arranged close to each other.

【0028】斯かる構成によれば、一方の反応容器11
Aにおける高温部である上流側には、他方の反応容器1
1Bにおける低温部である下流側で発生した熱量が熱伝
達される。また、一方の反応容器11Aにおける低温部
である下流側には、他方の反応容器11Bにおける高温
部である下流側で発生した熱量が熱伝達される。このよ
うに、反応容器11Aに反応容器11Bから熱伝達され
る熱量は、高温部である上流側では小さく、低温部であ
る下流側では大きい。このため、上流側と下流側で生じ
る温度差を従来よりも小さくすることができる。また、
同様に、反応容器11B内においても上流側と下流側で
生じる温度差を従来よりも小さくすることができる。従
って、反応容器内の選択酸化触媒の温度をガス流れ方向
に亘って最適な温度範囲に保つことが可能となり、CO
除去装置の一酸化炭素除去性能を向上させることが可能
となる。
According to such a configuration, one of the reaction vessels 11
On the upstream side, which is the high temperature part in FIG.
The amount of heat generated on the downstream side, which is the low temperature part in 1B, is transferred. Further, the amount of heat generated on the downstream side, which is the high-temperature part, in the other reaction vessel 11B is transferred to the downstream side, which is the low-temperature part in one reaction vessel 11A. Thus, the amount of heat transferred from the reaction vessel 11B to the reaction vessel 11A is small on the upstream side, which is a high temperature part, and large on the downstream side, which is a low temperature part. For this reason, the temperature difference generated between the upstream side and the downstream side can be made smaller than before. Also,
Similarly, the temperature difference between the upstream side and the downstream side in the reaction vessel 11B can be reduced as compared with the conventional case. Therefore, it is possible to maintain the temperature of the selective oxidation catalyst in the reaction vessel in the optimum temperature range over the gas flow direction,
It becomes possible to improve the carbon monoxide removal performance of the removal device.

【0029】さらに、本実施形態のCO除去装置によれ
ば、反応容器の内部にサーペンタイン状(蛇行状)のガ
ス流路が形成されており、ガス流路の長さが反応容器の
サイズに比べて極めて大きい。このため、反応容器内で
生じる選択酸化反応の量に比べて反応容器のサイズを小
さくすることができ、装置のコンパクト化を図ることが
できる。
Further, according to the CO removing apparatus of the present embodiment, a serpentine (meandering) gas flow path is formed inside the reaction vessel, and the length of the gas flow path is smaller than the size of the reaction vessel. And extremely large. For this reason, the size of the reaction vessel can be made smaller than the amount of the selective oxidation reaction generated in the reaction vessel, and the apparatus can be made compact.

【0030】(実施例)寸法が1.2cm×15cm×
20cmで触媒充填長さ(ガス流れ方向の長さ)が1.
2mのステンレス製の容器内に、選択酸化触媒としての
ルテニウムがアルミナ表面に担持されたペレット状の触
媒を充填した反応容器A,Bを、図1の構成に配してな
る本発明のCO除去装置を用意した。そして、このCO
除去装置に含COガスとして、水素79%,二酸化炭素
20%,一酸化炭素1%のガスを20NL/minの流
量で導入した。また、同時に[O2]/[CO]=0.
3となる量の空気を導入した。そして、斯かる本実施例
CO除去装置における反応容器A内のガス流れ方向に沿
った温度分布を測定した。この結果を図3に示す。ま
た、比較のために、反応容器A及びBを夫々の間での熱
交換が生じないように離間させて配した以外は実施例と
同一の構成を有する比較例のCO除去装置を用いた場合
の温度分布も同図に合わせて示す。
(Example) The dimensions are 1.2 cm × 15 cm ×
At 20 cm, the catalyst filling length (length in the gas flow direction) is 1.
Reaction containers A and B in which a pellet-shaped catalyst in which ruthenium as a selective oxidation catalyst is supported on an alumina surface in a 2 m stainless steel container are disposed in the configuration of FIG. 1 to remove CO of the present invention. The device was prepared. And this CO
A gas containing 79% of hydrogen, 20% of carbon dioxide, and 1% of carbon monoxide was introduced into the removing device at a flow rate of 20 NL / min. At the same time, [O 2 ] / [CO] = 0.
3 air was introduced. Then, the temperature distribution along the gas flow direction in the reaction vessel A in the CO removal apparatus of this example was measured. The result is shown in FIG. Further, for comparison, a case where a CO removal device of a comparative example having the same configuration as that of the example was used except that the reaction vessels A and B were arranged so as to be separated from each other so that heat exchange did not occur between them. Is also shown in FIG.

【0031】同図に示す如く、実線で示す実施例装置の
場合には反応容器の上流側と下流側で生じる温度差を6
0℃程度とでき、ガス流れ方向の全体に亘って選択酸化
触媒の温度を130℃〜190℃の最適な温度範囲に維
持することができる。一方、破線で示す比較例装置の場
合には100℃程度もの温度差が生じており、下流側で
の温度が最適な温度範囲よりも低くなり、選択酸化触媒
の温度をガス流れ方向の全体に亘って最適な温度範囲に
維持することができない。従って、本発明によれば反応
容器の上流側と下流側で生じる温度差を小さくすること
ができ、ガス流れ方向の全体に亘って選択酸化触媒の温
度を最適な温度範囲に維持できることがわかった。
As shown in the figure, in the case of the embodiment shown by the solid line, the temperature difference between the upstream side and the downstream side of the reaction vessel is reduced by 6%.
The temperature can be about 0 ° C., and the temperature of the selective oxidation catalyst can be maintained in an optimal temperature range of 130 ° C. to 190 ° C. over the entire gas flow direction. On the other hand, in the case of the comparative example device indicated by the broken line, a temperature difference of about 100 ° C. has occurred, the temperature on the downstream side has become lower than the optimum temperature range, and the temperature of the selective oxidation catalyst has been reduced over the entire gas flow direction. The optimum temperature range cannot be maintained over the entire temperature range. Therefore, according to the present invention, it has been found that the temperature difference generated between the upstream side and the downstream side of the reaction vessel can be reduced, and the temperature of the selective oxidation catalyst can be maintained in an optimum temperature range throughout the gas flow direction. .

【0032】この結果、本実施例のCO除去装置によれ
ば、選択酸化反応を十分に進行させることができ、反応
容器Bから排出されるガス中の一酸化炭素濃度を9pp
mまで低減できた。一方、比較例装置の場合には選択酸
化反応の進行が不充分となり、一酸化炭素濃度を30p
pmまでしか低減することができなかった。
As a result, according to the CO removing apparatus of this embodiment, the selective oxidation reaction can be sufficiently advanced, and the concentration of carbon monoxide in the gas discharged from the reaction vessel B is 9 pp.
m. On the other hand, in the case of the comparative example device, the progress of the selective oxidation reaction was insufficient, and the carbon monoxide concentration was reduced to 30 p.
pm only.

【0033】以上説明したように、本発明のCO除去装
置によれば、反応容器内で生じる温度差を従来よりも小
さくすることができ、反応容器内のガス流れ方向に沿う
範囲に亘って選択酸化触媒の温度を適正な範囲に保持す
ることができる。このため、一酸化炭素の除去性能を従
来よりも向上させることが可能となり、従来よりも一酸
化炭素濃度を低減することが可能となる。
As described above, according to the CO removing apparatus of the present invention, the temperature difference generated in the reaction vessel can be made smaller than before, and the temperature difference can be selected over the range along the gas flow direction in the reaction vessel. The temperature of the oxidation catalyst can be kept in an appropriate range. For this reason, the performance of removing carbon monoxide can be improved more than before, and the concentration of carbon monoxide can be lower than before.

【0034】また、上記の様に連続する2つの反応容器
を近接させて配しているので、CO除去装置の寸法を従
来よりも小さくすることができ、コンパクト化が可能と
なる。
Further, since the two continuous reaction vessels are arranged close to each other as described above, the size of the CO removing device can be made smaller than before, and the size can be reduced.

【0035】尚、以上の実施形態にあっては2個の反応
容器を備える構成について説明したが、反応容器の数は
2個に限らず3個以上であっても良い。3個以上の反応
容器を備える場合においても、連続して配された2つの
反応容器のうち、一方の反応容器における上流側及び下
流側が、夫々他方の反応容器における下流側及び上流側
と熱伝達可能なように配することで、本発明の効果を奏
することができる。
In the above embodiment, the configuration including two reaction vessels has been described. However, the number of reaction vessels is not limited to two, and may be three or more. Even when three or more reaction vessels are provided, of the two reaction vessels arranged continuously, the upstream side and the downstream side in one of the reaction vessels are in heat transfer with the downstream side and the upstream side in the other reaction vessel, respectively. By arranging as much as possible, the effects of the present invention can be achieved.

【0036】また、連続して配される2つの反応容器
は、熱伝達可能であれば密接して配する必要はない。例
えば、一方の反応容器における上流側での発熱量が大き
すぎる場合には、一方の反応容器と他方の反応容器との
間に隙間を設けた状態で配しても良い。斯かる形態によ
れば、夫々の反応容器間で熱伝達される熱量を低減で
き、且つ隙間での放熱も生じるので、温度が上昇しすぎ
ることを抑制することができる。このように、一方の反
応容器と他方の反応容器とは熱伝達可能に配していれば
良く、それらの間に間隔を設ける場合には、反応容器内
で生じる温度分布が適正な温度範囲内に収まるよう適宜
定めれば良い。
It is not necessary to arrange two reaction vessels that are continuously arranged close as long as heat can be transferred. For example, when the amount of heat generated on the upstream side in one of the reaction vessels is too large, it may be arranged with a gap provided between one of the reaction vessels and the other. According to such an embodiment, the amount of heat transferred between the respective reaction vessels can be reduced, and heat is also released in the gap, so that the temperature can be prevented from rising too much. Thus, it is sufficient that one reaction vessel and the other reaction vessel are arranged so as to be able to transfer heat, and when an interval is provided between them, the temperature distribution generated in the reaction vessel falls within an appropriate temperature range. It may be determined appropriately so as to fall within the range.

【0037】このように一方の反応容器と他方の反応容
器とを間に隙間を設けた状態で近接させて配置するにあ
たっては、良好な熱伝導性を有する接続部材により両者
を接続すると良い。例えば図1に示す形態の扁平形状を
有した反応容器1A及び1Bを互いに近接させて配する
にあたっては、互いの面積が最も大きい面同士を対向さ
せ、その間にステンレス等の良好な熱伝導性を有する材
料から成る板状の接続部材を介挿させた状態で接続する
と良い。斯かる形態によれば、良好な熱伝導性を有する
接続部材を介した反応容器間での熱交換が可能となると
共に、この接続部材を介した放熱も可能となる。
In order to arrange one reaction vessel and the other reaction vessel close to each other with a gap provided therebetween, it is preferable to connect the two by a connection member having good thermal conductivity. For example, when disposing the reaction vessels 1A and 1B having the flat shape shown in FIG. 1 close to each other, the surfaces having the largest areas are opposed to each other, and a good thermal conductivity such as stainless steel is provided therebetween. The connection is preferably performed with a plate-shaped connection member made of a material having the material interposed therebetween. According to such an embodiment, heat can be exchanged between the reaction vessels via a connection member having good thermal conductivity, and heat can be released via the connection member.

【0038】さらに、反応容器内に空気を導入するため
の空気導入口は、上述の実施形態の如く最も上流側に位
置する反応容器の上流側に加えて、複数の反応容器を互
いに連通させるための連通部に設けてもよい。斯かる構
成とすることで、連通部よりも上流側に位置する反応容
器内で空気が消費され、下流側の反応容器に供給される
空気の量が不足したとしても、連通部に設けた空気導入
口から新たに空気が導入されるので、下流側に配された
反応容器内での選択酸化反応を十分に進行させることが
できる。尚、空気導入口を設ける連通部の位置及び空気
導入口の個数は、必要に応じて適宜定めれば良い。
Further, the air inlet for introducing air into the reaction vessel is provided not only on the upstream side of the reaction vessel located at the most upstream side as in the above-described embodiment, but also for connecting a plurality of reaction vessels to each other. May be provided in the communication part of the. With such a configuration, even if the air is consumed in the reaction vessel located on the upstream side of the communication part and the amount of air supplied to the reaction vessel on the downstream side is insufficient, the air provided in the communication part Since air is newly introduced from the inlet, the selective oxidation reaction in the reaction vessel arranged on the downstream side can sufficiently proceed. In addition, the position of the communication part in which the air inlet is provided and the number of the air inlets may be appropriately determined as needed.

【0039】加えて、以上の形態のCO除去装置を燃料
電池システムに適用し、このCO除去装置を燃料ガスの
供給経路に備えることで、一酸化炭素が十分に低減され
た燃料ガスを燃料電池本体のアノードに供給することが
可能となり、電池性能及び寿命の向上を図ることができ
る。さらには燃料電池システム全体のコンパクト化を図
ることが可能となる。
In addition, by applying the above-described CO removing device to a fuel cell system and providing the CO removing device in a fuel gas supply path, the fuel gas in which carbon monoxide is sufficiently reduced can be supplied to the fuel cell system. It can be supplied to the anode of the main body, and battery performance and life can be improved. Further, the whole fuel cell system can be made compact.

【0040】[0040]

【発明の効果】以上説明した如く、本発明のCO除去装
置によれば、反応容器内で生じる温度差を従来よりも小
さくすることができ、反応容器内のガス流れ方向に沿う
範囲に亘って触媒の温度を適正な範囲に保持することが
できる。このため、一酸化炭素の除去性能を従来よりも
向上させることが可能となり、従来よりも一酸化炭素濃
度を低減することが可能となる。
As described above, according to the CO removing apparatus of the present invention, the temperature difference generated in the reaction vessel can be made smaller than in the prior art, and the temperature difference can be reduced over the range along the gas flow direction in the reaction vessel. The temperature of the catalyst can be kept in an appropriate range. For this reason, the performance of removing carbon monoxide can be improved more than before, and the concentration of carbon monoxide can be lower than before.

【0041】また、上記の様に連続する2つの反応容器
を近接させて配しているので、CO除去装置の寸法を従
来よりも小さくすることができ、コンパクト化が可能と
なる。
Further, since the two consecutive reaction vessels are arranged close to each other as described above, the size of the CO removing device can be made smaller than before, and the size can be reduced.

【0042】さらに、斯かるCO除去装置を用いた本発
明燃料電池システムによれば、一酸化炭素が十分に低減
された燃料ガスが燃料電池本体のアノードに供給される
こととなるために、発電性能の向上及び寿命の向上を図
ることができる。
Further, according to the fuel cell system of the present invention using such a CO removing device, the fuel gas whose carbon monoxide is sufficiently reduced is supplied to the anode of the fuel cell main body, so that the power generation is performed. It is possible to improve the performance and the service life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るCO除去装置の概略
構成を説明するための斜視図である。
FIG. 1 is a perspective view for explaining a schematic configuration of a CO removal device according to an embodiment of the present invention.

【図2】図1におけるA−A線矢視正面図である。FIG. 2 is a front view taken along the line AA in FIG.

【図3】実施例及び比較例のCO除去装置における、ガ
ス流れ方向に沿った温度分布を示す特性図である。
FIG. 3 is a characteristic diagram illustrating a temperature distribution along a gas flow direction in the CO removing devices of the example and the comparative example.

【図4】燃料電池システムの概略構成を示すシステム構
成図である。
FIG. 4 is a system configuration diagram showing a schematic configuration of a fuel cell system.

【符号の説明】[Explanation of symbols]

1…脱硫器、2…改質器、3…CO変成器、4…CO除
去装置、5…燃料電池本体、11A,11B…反応容
器、12…ガス導入配管、13…空気導入配管、14…
連通部、15…ガス排出配管、21,23…供給口、2
2,24…排出口
DESCRIPTION OF SYMBOLS 1 ... Desulfurizer, 2 ... Reformer, 3 ... CO converter, 4 ... CO removal apparatus, 5 ... Fuel cell main body, 11A, 11B ... Reaction vessel, 12 ... Gas introduction piping, 13 ... Air introduction piping, 14 ...
Communication section, 15: gas discharge pipe, 21, 23 ... supply port, 2
2, 24 ... outlet

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA03 EA07 EB31 FA06 FB04 FC07 FE03 4G069 AA03 BA01B BA41A BC70B CC32 EA02Y 5H027 AA02 BA01 BA17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G040 EA03 EA07 EB31 FA06 FB04 FC07 FE03 4G069 AA03 BA01B BA41A BC70B CC32 EA02Y 5H027 AA02 BA01 BA17

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 選択酸化触媒を収納すると共に互いに連
結された複数の反応容器を有し、一酸化炭素を含有する
含COガス及び空気を前記複数の反応容器内に通過さ
せ、前記選択酸化触媒によって生じる選択酸化反応によ
り前記含COガス中の一酸化炭素を選択酸化するCO除
去装置であって、 前記複数の反応容器のうち連続して配された反応容器に
おける一方の反応容器の上流部及び下流部が、他方の反
応容器の下流部及び上流部と夫々熱伝達可能に配されて
いることを特徴とするCO除去装置。
1. A selective oxidation catalyst comprising: a plurality of reaction vessels accommodating a selective oxidation catalyst and connected to each other, wherein a CO-containing gas containing carbon monoxide and air are passed through the plurality of reaction vessels. A CO removal device that selectively oxidizes carbon monoxide in the CO-containing gas by a selective oxidation reaction caused by the upstream part of one of the plurality of reaction vessels and one of the reaction vessels arranged continuously. A CO removal device, wherein a downstream portion is arranged so as to be able to transfer heat to a downstream portion and an upstream portion of the other reaction vessel, respectively.
【請求項2】 前記複数の反応容器のうち連続して配さ
れた反応容器における一方の反応容器の上流部及び下流
部が、他方の反応容器の下流部及び上流部と夫々近接し
て配されていることを特徴とする請求項1記載のCO除
去装置。
2. An upstream part and a downstream part of one of the plurality of reaction vessels which are arranged continuously are arranged close to a downstream part and an upstream part of the other reaction vessel, respectively. The CO removal device according to claim 1, wherein
【請求項3】 前記一方の反応容器と他方の反応容器と
が、良好な熱伝導性を有する接続部材により互いに近接
して接続されていることを特徴とする請求項2記載のC
O除去装置。
3. The C according to claim 2, wherein the one reaction vessel and the other reaction vessel are connected close to each other by a connecting member having good thermal conductivity.
O removal device.
【請求項4】 前記複数の反応容器を互いに連通する複
数の連通部のうちの少なくとも1つに、空気を導入する
ための空気導入口を設けたことを特徴とする請求項1乃
至3のいずれかに記載のCO除去装置。
4. An air inlet for introducing air is provided in at least one of a plurality of communication portions connecting the plurality of reaction vessels to each other. A CO removal device according to any one of the above.
【請求項5】 前記複数の反応容器が扁平形状をなし、
且つ連続して配された前記反応容器は、互いの面積が最
も大きい面同士が対向して配されたことを特徴とする請
求項1乃至4のいずれかに記載のCO除去装置。
5. The plurality of reaction vessels have a flat shape,
The CO removal apparatus according to any one of claims 1 to 4, wherein the reaction vessels arranged continuously have the surfaces having the largest areas facing each other.
【請求項6】 前記複数の反応容器内に、サーペンタイ
ン状のガス流路が形成されていることを特徴とする請求
項1乃至5のいずれかに記載のCO除去装置。
6. The CO removal device according to claim 1, wherein a serpentine gas flow path is formed in each of the plurality of reaction vessels.
【請求項7】 請求項1乃至6のいずれかに記載のCO
除去装置を燃料ガスの供給経路に有することを特徴とす
る燃料電池システム。
7. The CO according to any one of claims 1 to 6,
A fuel cell system comprising a removal device in a fuel gas supply path.
JP11152534A 1999-05-31 1999-05-31 Co-remover and fuel cell system Withdrawn JP2000335904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11152534A JP2000335904A (en) 1999-05-31 1999-05-31 Co-remover and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11152534A JP2000335904A (en) 1999-05-31 1999-05-31 Co-remover and fuel cell system

Publications (1)

Publication Number Publication Date
JP2000335904A true JP2000335904A (en) 2000-12-05

Family

ID=15542553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11152534A Withdrawn JP2000335904A (en) 1999-05-31 1999-05-31 Co-remover and fuel cell system

Country Status (1)

Country Link
JP (1) JP2000335904A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090917A2 (en) * 2002-04-26 2003-11-06 General Motors Corporation Reactor for preferential oxidation and method of use
JP2006232611A (en) * 2005-02-24 2006-09-07 Tokyo Gas Co Ltd Steam reformer for hydrocarbon fuel
JP2007246313A (en) * 2006-03-14 2007-09-27 Casio Comput Co Ltd Reaction apparatus
JP2010215502A (en) * 2010-05-14 2010-09-30 Casio Computer Co Ltd Reactor
US7815699B2 (en) 2003-10-21 2010-10-19 Gm Global Technology Operations, Inc. Method for starting a primary reactor
JP2011000586A (en) * 2010-07-28 2011-01-06 Casio Computer Co Ltd Reactor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090917A2 (en) * 2002-04-26 2003-11-06 General Motors Corporation Reactor for preferential oxidation and method of use
US6824904B2 (en) * 2002-04-26 2004-11-30 General Motors Corporation Reactor for preferential oxidation and method of use
WO2003090917A3 (en) * 2002-04-26 2009-06-18 Gen Motors Corp Reactor for preferential oxidation and method of use
US7815699B2 (en) 2003-10-21 2010-10-19 Gm Global Technology Operations, Inc. Method for starting a primary reactor
JP2006232611A (en) * 2005-02-24 2006-09-07 Tokyo Gas Co Ltd Steam reformer for hydrocarbon fuel
JP4550617B2 (en) * 2005-02-24 2010-09-22 東京瓦斯株式会社 Hydrocarbon fuel steam reformer
JP2007246313A (en) * 2006-03-14 2007-09-27 Casio Comput Co Ltd Reaction apparatus
JP4665803B2 (en) * 2006-03-14 2011-04-06 カシオ計算機株式会社 Reactor
JP2010215502A (en) * 2010-05-14 2010-09-30 Casio Computer Co Ltd Reactor
JP2011000586A (en) * 2010-07-28 2011-01-06 Casio Computer Co Ltd Reactor

Similar Documents

Publication Publication Date Title
US7736774B2 (en) Solid oxide fuel cell system
JP5227706B2 (en) Reformer
JPS62148303A (en) Manufacture of hydrogen-containing gas, continuous supply ofhydrogen fuel to fuel cell, reaction equipment and fuel cellsystem
JP2002104807A (en) Operating method of fuel processor conbining partial oxidation with steam reforming
JPH07315801A (en) System for producing high-purity hydrogen, production of high-purity hydrogen and fuel cell system
US20060143983A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
KR102044766B1 (en) High Efficiency Fuel Cell System Improved Thermal Efficiency and Performance of the Maintenance
KR100993081B1 (en) Autooxidation internal heating type steam reforming system
US20020131919A1 (en) Modular fuel processing system for plate reforming type units
JP2869525B2 (en) Method and apparatus for removing carbon monoxide in reformed gas
JP2001080904A (en) Fuel reformer
JP2000335904A (en) Co-remover and fuel cell system
JP3733753B2 (en) Hydrogen purification equipment
JP2005336003A (en) High purity hydrogen producing device
US20040177554A1 (en) WGS reactor incorporated with catalyzed heat exchanger for WGS reactor volume reduction
JP2004299939A (en) Fuel reformer, and fuel battery generator
JP2005294207A (en) Fuel cell system
JP3515438B2 (en) CO removal device and fuel cell power generation system
JP4107407B2 (en) Air mixing method in CO selective oxidation reaction of oxidation reactor and hydrogen production apparatus
JP5584022B2 (en) Fuel cell system and starting method thereof
JP3721946B2 (en) Carbon monoxide removal equipment
KR101250418B1 (en) fuel processor of fuel cell
JP2001115172A (en) Co-reforming apparatus
JP2008204662A (en) Fuel cell power generation system
JP2002293509A (en) Co remover

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040218