JPH1070331A - Wavelength multiplex transmission method using surface light emitting element - Google Patents

Wavelength multiplex transmission method using surface light emitting element

Info

Publication number
JPH1070331A
JPH1070331A JP8225276A JP22527696A JPH1070331A JP H1070331 A JPH1070331 A JP H1070331A JP 8225276 A JP8225276 A JP 8225276A JP 22527696 A JP22527696 A JP 22527696A JP H1070331 A JPH1070331 A JP H1070331A
Authority
JP
Japan
Prior art keywords
light
wavelength
optical fibers
emitting element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8225276A
Other languages
Japanese (ja)
Other versions
JP2953392B2 (en
Inventor
Mikihiro Kajita
幹浩 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8225276A priority Critical patent/JP2953392B2/en
Publication of JPH1070331A publication Critical patent/JPH1070331A/en
Application granted granted Critical
Publication of JP2953392B2 publication Critical patent/JP2953392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength multiplex transmission method at a low cost by using a surface light emitting element whose device cost is low. SOLUTION: A device is comprised of a surface emission element 1 which emits light of wide spectrum width in each of light emitting parts 2A, 2B, 2C, a plurality of optical fibers 3A, 3B, 3C with different wavelength transmitting regions, a photocoupler 4 which transmits light transmitted through the plurality of optical fibers by photocoupling and transmission optical fiber 5. Lights emitted by the surface emission element 1 of different wavelength regions alone are transmitted by a plurality of optical fibers 3A, 3B, 3C and the lights are coupled and subjected to wavelength multiplex transmission. Therefore, it is not necessary to provide a surface emission element itself with light emission function of different wavelength regions. Furthermore, it is possible to constitute a monolithic surface emission element, to manufacture it readily and to provide wavelength multiplex transmission which enables information processing of a large volume at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光を用いた大容量の
データ伝送やデータ通信を提供する波長多重伝送方式に
関し、特に発光源に面発光素子を用いた伝送方式に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength division multiplexing transmission system for providing large-capacity data transmission and data communication using light, and more particularly to a transmission system using a surface emitting element as a light emitting source.

【0002】[0002]

【従来の技術】近い将来、光ファイバが各家庭にも敷設
されることが予定されており、加入者系という性格上、
大容量かつ安価な伝送方式を提供することが必要とな
る。他方、コンピュータ間を結ぶデータリンクに関して
も、大容量かつ安価な伝送方式を提供することが必要と
される。大容量という点に関しては、現行の時間多重方
式よりも多重度が大きく、伝送容量の大きな通信が可能
となるため、光のもつ波長多重性を利用して複数の波長
に情報をのせて伝送することが検討されている。また、
安価な技術という点に関しては、面発光素子を用いるこ
とで、低コストな光源を得ることができる。面発光素子
は端面発光素子に比べ、劈開が不要であることから歩留
まりが向上する点、ウェハ上での検査が可能であること
から検査費用が安価な点等により、デバイスコストが安
くなることが期待できる。面発光素子はアレイ伝送が可
能であることから、アレイ全体でのスループットが大き
くなり、大容量伝送に適している。こうした面発光素子
については、伊賀らによって先駆的な研究が行われ、彼
らの一連の研究成果は1988年発光の伊賀他著のジャ
ーナル・オブ・クァンタム・エレクトロニクス(Journa
l of Quantum Electronics)第24巻1845〜185
5ページ記載の論文に歴史的な経緯を含めてまとめられ
ている。
2. Description of the Related Art In the near future, it is planned that optical fibers will be installed in each home.
It is necessary to provide a large-capacity and inexpensive transmission system. On the other hand, it is necessary to provide a large-capacity and inexpensive transmission system for a data link connecting computers. Regarding the large capacity, since the multiplicity is larger than the current time multiplexing method and communication with a large transmission capacity is possible, information is transmitted on a plurality of wavelengths using the wavelength multiplexing property of light. That is being considered. Also,
Regarding inexpensive technology, a low-cost light source can be obtained by using a surface-emitting element. Compared to edge emitting devices, surface emitting devices can reduce device costs by improving yield because they do not require cleavage, and by enabling inspection on wafers, which can lower inspection costs. Can be expected. Since the surface light emitting element can perform array transmission, the throughput of the entire array increases and is suitable for large capacity transmission. Pioneering research on such surface-emitting devices has been conducted by Iga et al., And a series of research results have been published in 1988 by Iga et al., Journal of Quantum Electronics (Journa).
l of Quantum Electronics) Vol. 24, 1845-185
It is summarized in a five-page paper, including its historical background.

【0003】以上の点から、面発光素子を波長多重伝送
することが安価かつ大容量の伝送に対する有効な手段と
なる。そこで、小倉らは面発光素子を波長多重光源とし
て、各々異なった発振波長を有する面発光素子でアレイ
を構成し、それを石英光ファイバに結合させることで、
波長多重伝送を行うことを提案した。これらに関して
は、1995年発光の小倉他著のアイ・イー・アイ・シ
ー・イートランサクションズ・オン・エレクトロニクス
(IEICE Transactions on Electronics )第E78−C
巻22〜27ページ記載の論文に詳細に記述されてい
る。図5はその概念を示す図であり、発振波長が各々λ
1〜λ9の異なる面発光素子D1〜D9を9個、3×3
アレイに形成する。これちの面発光素子D1〜D9を1
つの石英ファイバFに結合させ、各面発光素子からの光
を合波して波長多重伝送するというものである。
[0003] In view of the above, wavelength multiplex transmission of a surface emitting element is an effective means for inexpensive and large-capacity transmission. Ogura et al. Used a surface emitting device as a wavelength multiplexed light source, constructed an array of surface emitting devices having different oscillation wavelengths, and coupled it to a quartz optical fiber.
It was proposed to perform wavelength multiplex transmission. These are described in IEICE Transactions on Electronics No. E78-C by Ogura et al., Published in 1995.
It is described in detail in the paper described in Vol. FIG. 5 is a diagram showing the concept, in which the oscillation wavelengths are each λ.
9 surface light-emitting elements D1 to D9 having different 1 to λ9, 3 × 3
Form into an array. The surface light-emitting elements D1 to D9
The light from each surface light emitting element is multiplexed and wavelength-multiplexed and transmitted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この方
式では、各面発光素子の光が相互に干渉されないよう
に、各面発光素子の発光波長の制御をかなり厳格に行う
必要があり、しかも各面発光素子を1つのファイバに結
合するために、これられをアレイ状に実装する必要があ
った。波長制御を所望通りに行うのは、高価な波長制御
システムを必要とすることになり、かつ個々の面発光素
子の製造歩留まりも、所定の波長というパラメータが加
わることで低下する。また、個々の波長の素子を切り出
すことは、アレイで用いるという面発光素子の特徴と相
反する手法であり、低コスト化には適さない。
However, in this method, it is necessary to control the emission wavelength of each surface light-emitting element very strictly so that the light of each surface light-emitting element does not interfere with each other. In order to couple the light emitting elements into one fiber, they had to be mounted in an array. Performing the wavelength control as desired requires an expensive wavelength control system, and the production yield of individual surface light emitting elements is also reduced by adding a parameter of a predetermined wavelength. In addition, cutting out elements of individual wavelengths is a technique contradictory to the feature of the surface emitting element used in an array, and is not suitable for cost reduction.

【0005】この点で、モノリシックに波長制御された
素子を形成する方法として、斉藤らにマスクシャッタ法
というものがある。これは結晶成長時にウェハ上にマス
クをすることで、マスクのない部分のみを成長し、この
マスクを何回かに分けて移動させてマスクのない部分を
ずらしていくことで、その成長ごとに積層される膜厚が
異なり多波長光源となるとしたものである。しかしなが
ら、これもマスクの構成等かなり高度な技術が必要とな
り、成長時間も従来より何倍もかかるため経済的ではな
い。
In this respect, as a method of forming a device whose wavelength is controlled monolithically, there is a method called a mask shutter method by Saito et al. This is done by masking the wafer on the wafer during crystal growth, growing only the part without the mask, moving this mask in several steps and shifting the part without the mask, so that each growth It is assumed that the film thickness to be laminated is different and a multi-wavelength light source is obtained. However, this also requires a fairly sophisticated technique such as the configuration of a mask, and the growth time is many times longer than before, so that it is not economical.

【0006】本発明の目的は、デバイスコストの安価な
面発光素子を用いて波長多重伝送方式を低コストで提供
することを目的とする。
An object of the present invention is to provide a wavelength division multiplexing transmission system at a low cost using a surface emitting device having a low device cost.

【0007】[0007]

【課題を解決するための手段】本発明の波長多重伝送方
式は、スペクトル幅の広い光を発光する面発光素子と、
この面発光素子に光結合され、それぞれが異なる波長透
過領域を有する複数本の光ファイバと、これら複数の光
ファイバを透過された光を光結合して伝送する伝送手段
とを備えたものであり、面発光素子をモノリシックに構
成することが可能となり、低コスト化を実現することが
可能となる。この場合、面発光素子で発光される光は、
複数本の光ファイバの各波長透過領域を含むスペクトル
幅となるように構成される。また、面発光素子には複数
の発光部が一体に形成され、複数本の光ファイバはその
一端部においてそれぞれが各発光部に光結合され、かつ
他端部において光カプラにより一体的に伝送用光ファイ
バに光結合されることが好ましい。一方、複数本の光フ
ァイバは光透過プラスチックで形成され、それぞれに添
加される物質の添加量の相違により各光ファイバの波長
透過領域が設定される構成とすることが好ましい。
SUMMARY OF THE INVENTION A wavelength division multiplexing transmission system according to the present invention comprises: a surface emitting element which emits light having a wide spectrum width;
It comprises a plurality of optical fibers optically coupled to the surface light emitting element, each having a different wavelength transmission region, and transmission means for optically coupling and transmitting light transmitted through the plurality of optical fibers. In addition, the surface light emitting element can be configured in a monolithic manner, and cost reduction can be realized. In this case, the light emitted by the surface emitting element is
It is configured to have a spectrum width including each wavelength transmission region of a plurality of optical fibers. A plurality of light-emitting portions are integrally formed on the surface light-emitting element, and a plurality of optical fibers are optically coupled to each light-emitting portion at one end thereof, and are integrally transmitted by an optical coupler at the other end. Preferably, it is optically coupled to an optical fiber. On the other hand, it is preferable that the plurality of optical fibers are formed of light transmitting plastic, and the wavelength transmission region of each optical fiber is set according to the difference in the amount of the substance added to each.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施形態について
図面を参照して説明する。図1は本発明による伝送方式
の実施形態を示す概念構成図である。モノリシック構成
の面発光素子1と、この面発光素子1にそれぞれ形成さ
れた複数個、ここでは3個の発光部2A,2B,2Cに
各一端部が光結合する3本の光ファイバ3A,3B,3
Cと、これら光ファイバ3A,3B,3Cの他端部に接
続される光カプラ4と、この光カプラ4により前記各光
ファイバ3と光結合される伝送用の光ファイバ5とで構
成される。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual configuration diagram showing an embodiment of a transmission system according to the present invention. A surface light emitting element 1 having a monolithic structure, and three optical fibers 3A and 3B each having one end optically coupled to a plurality of light emitting units 2A, 2B and 2C formed on the surface light emitting element 1, respectively. , 3
C, an optical coupler 4 connected to the other ends of the optical fibers 3A, 3B, 3C, and a transmission optical fiber 5 optically coupled to the optical fibers 3 by the optical coupler 4. .

【0009】前記面発光素子1の発光部2A,2B,2
Cの構成は、図2に示すとおりであり、ここでは波長9
80nmに共振波長がくるように設計した面発光素子2
Aについて説明する。まず、n型GaAs基板11上に
n型AlAs層12およびn型GaAs層13を各々8
2.9nm,69.5nmの膜厚で交互に、例えば18
周期積層し、これによりn型半導体多層膜14を形成す
る。次に、このn型半導体多層膜14の上に、n型クラ
ッド層15として例えばAl0.25Ga0.75As層を14
5.7nm形成する。このn型クラッド層15上に活性
層16として例えばIn0.2 Ga0.8 Asを幅10nm
で3層形成する。この活性層16の上にp型クラッド層
17としてAl0.25Ga0.75As層を145.7nm形
成する。
The light emitting units 2A, 2B, 2 of the surface light emitting element 1
The configuration of C is as shown in FIG.
Surface-emitting element 2 designed so that the resonance wavelength comes to 80 nm
A will be described. First, an n-type AlAs layer 12 and an n-type GaAs layer 13 are formed on an n-type GaAs substrate 11 respectively.
Alternately with a film thickness of 2.9 nm and 69.5 nm, for example, 18
Periodic lamination is performed, thereby forming an n-type semiconductor multilayer film 14. Next, an Al 0.25 Ga 0.75 As layer, for example, as an n-type clad layer 15 is formed on the n-type semiconductor multilayer film 14.
It is formed to 5.7 nm. On this n-type cladding layer 15, for example, In 0.2 Ga 0.8 As is applied as an active layer 16 to a width of 10 nm.
To form three layers. On this active layer 16, an Al 0.25 Ga 0.75 As layer is formed as a p-type cladding layer 17 to a thickness of 145.7 nm.

【0010】さらに、このp型クラッド層17上の一部
にp型AlAs層18およびp型GaAs層19を各々
82.9nm,69.5nmの膜厚で交互に、例えば1
5周期積層し、p型半導体多層膜20を形成する。p電
極21はこのp型半導体多層膜20の上にクロム、金を
蒸着して形成し、n電極22は前記p型クラッド層17
の他の一部をn型半導体多層膜14までエッチングして
開口し、この開口内にAuGeNi/Auを蒸着するこ
とで得る。なお、前記p型半導体多層膜20のメサ構造
や、n電極22の開口を形成する際の各エッチングは塩
素ガスを用いたドライエッチングにより作製する。
Further, a p-type AlAs layer 18 and a p-type GaAs layer 19 are alternately formed on a part of the p-type cladding layer 17 with a film thickness of 82.9 nm and 69.5 nm, respectively, for example, 1 nm.
The p-type semiconductor multilayer film 20 is formed by laminating five cycles. The p-electrode 21 is formed by depositing chromium and gold on the p-type semiconductor multilayer film 20, and the n-electrode 22 is formed by the p-type cladding layer 17.
The other part is etched to the n-type semiconductor multilayer film 14 to form an opening, and AuGeNi / Au is vapor-deposited in the opening. The etching for forming the mesa structure of the p-type semiconductor multilayer film 20 and the opening of the n-electrode 22 is performed by dry etching using chlorine gas.

【0011】こうして面発光素子のメササイズにより横
モードの数を制御することができ、25ミクロン程度で
図3に示すような広いスペクトル幅を得ることができ
る。この広いスペクトル幅を有するレーザ光が面発光素
子の前記n型GaAs基板11側から出射される。
In this manner, the number of transverse modes can be controlled by the mesa size of the surface emitting element, and a wide spectrum width as shown in FIG. 3 can be obtained at about 25 microns. The laser light having this wide spectral width is emitted from the n-type GaAs substrate 11 side of the surface emitting element.

【0012】一方、前記3本の光ファイバ3A,3B,
3Cはそれぞれ同一素材のプラスチックファイバで構成
されているが、それぞれに添加されるフッ素の添加量を
相違させたものを用いる。この結果、各光ファイバは、
図4(a)〜(b)に示すように、それぞれ異なる伝搬
損失の波長依存性を有するものとして構成される。ここ
で、伝搬損失はある波長域において非常に狭い窓が開く
ことがわかる。この窓となる波長は、プラスチックファ
イバに添加するフッ素のドーピング量に依存しており、
図4に示すようにその波長はフッ素添加量で制御するこ
とができる。なお、この実施形態では、光ファイバ3A
では波長975nmを中心に、光ファイバ3Bでは波長
978nmを中心に、光ファイバ3Cでは波長981n
mを中心に、それぞれ狭い領域に窓が開かれ、各光ファ
イバはこれらの波長領域の光を透過させることになる。
On the other hand, the three optical fibers 3A, 3B,
Each of the 3Cs is made of the same material plastic fiber, but uses different amounts of fluorine added to each. As a result, each optical fiber
As shown in FIGS. 4A and 4B, the transmission loss is configured to have different wavelength dependences of the propagation loss. Here, it can be seen that the propagation loss opens a very narrow window in a certain wavelength range. The wavelength that becomes this window depends on the doping amount of fluorine added to the plastic fiber,
As shown in FIG. 4, the wavelength can be controlled by the amount of added fluorine. In this embodiment, the optical fiber 3A
In the optical fiber 3B, the wavelength is 975 nm. In the optical fiber 3B, the wavelength is 978 nm.
A window is opened in a narrow area around m, and each optical fiber transmits light in these wavelength areas.

【0013】これにより、面発光素子1の各発光部2
A,2B,2Cからは図3に示したスペクトル特性のレ
ーザ光が出射され、それぞれ光結合された光ファイバ3
A,3B,3Cに入射される。そして、各光ファイバを
透過する際に、図4に示した各光ファイバの透過特性に
従って、それぞれ異なる波長領域の光のみが透過され
る。このことは、換言すれば、3個の発光部2A,2
B,2Cで異なる波長のレーザ光が発光されて光ファイ
バを透過されたのと等価な状態となる。そして、各光フ
ァイバ3A,3B,3Cの他端では、各光ファイバを透
過された光をカプラ4により結合することにより、各光
ファイバ3A,3B,3Cのレーザ光は波長多重され、
この波長多重された光が伝送用光ファイバ5によって伝
送されることになる。
Thus, each light emitting section 2 of the surface light emitting element 1
A, 2B and 2C emit laser light having the spectral characteristics shown in FIG.
A, 3B, and 3C are incident. Then, when transmitting through each optical fiber, only light in different wavelength regions is transmitted according to the transmission characteristics of each optical fiber shown in FIG. This means that, in other words, the three light emitting units 2A, 2
A state equivalent to that in which laser beams of different wavelengths are emitted in B and 2C and transmitted through the optical fiber is obtained. At the other end of each optical fiber 3A, 3B, 3C, the light transmitted through each optical fiber is coupled by a coupler 4 so that the laser light of each optical fiber 3A, 3B, 3C is wavelength-multiplexed.
The wavelength-multiplexed light is transmitted by the transmission optical fiber 5.

【0014】このように、この波長多重伝送方式では、
複数本の光ファイバ3A,3B,3Cにフィルタ特性が
保有されており、面発光素子1の各発光部2A,2B,
2Cは複数の光ファイバの透過波長領域を含むスペクト
ル特性の光を発光するように構成することで、波長多重
伝送が実現できる。そして、光ファイバの異なるフィル
タ特性は、光ファイバに添加するフッ素添加量によって
容易に制御することができる。また、面発光素子1はモ
ノリシック構成の複数の発光部2A,2B,2Cが全て
同じ発光特性であるため、その製造は極めて容易に実現
できる。この結果、面発光素子および光ファイバのそれ
ぞれを容易にかつ安価に製造でき、低コストな波長多重
伝送方式が実現可能となる。
Thus, in this wavelength division multiplex transmission system,
The plurality of optical fibers 3A, 3B, and 3C have filter characteristics, and each light emitting unit 2A, 2B,
The 2C is configured to emit light having a spectral characteristic including a transmission wavelength region of a plurality of optical fibers, thereby realizing wavelength multiplex transmission. The different filter characteristics of the optical fiber can be easily controlled by the amount of fluorine added to the optical fiber. In addition, since the surface light emitting device 1 has the same light emitting characteristics in all of the plurality of light emitting portions 2A, 2B, and 2C having a monolithic configuration, the manufacture thereof can be realized very easily. As a result, each of the surface emitting element and the optical fiber can be easily and inexpensively manufactured, and a low-cost wavelength division multiplexing transmission system can be realized.

【0015】ここで、面発光素子の構成は、複数本の光
ファイバのフィルタ特性を含むスペクトル特性のレーザ
光を発光するものであれば、前記した実施形態のものに
限られるものではない。また、光ファイバは所要のフィ
ルタ特性を得ることができるものであれば、プラスチッ
クファイバに添加する物質も前記した実施形態のフッ素
に制限されるものではない。さらに、発光部および光フ
ァイバの数も必要に応じて任意の数に設定できることは
言うまでもない。
Here, the configuration of the surface emitting element is not limited to the above-described embodiment as long as it emits laser light having a spectral characteristic including the filter characteristic of a plurality of optical fibers. In addition, the substance added to the plastic fiber is not limited to the fluorine of the above-described embodiment as long as the optical fiber can obtain the required filter characteristics. Further, it goes without saying that the numbers of the light emitting units and the optical fibers can be set to arbitrary numbers as needed.

【0016】[0016]

【発明の効果】以上説明したように本発明は、スペクト
ル幅の広い光を発光する面発光素子と、この面発光素子
に光結合され、それぞれが異なる波長透過領域を有する
複数本の光ファイバと、これら複数の光ファイバを透過
された光を光結合して伝送する伝送手段とを備えた構成
であるために、面発光素子に異なる波長領域の発光機能
をもたせる必要がなく、これにより面発光素子をモノリ
シックに構成することが可能となり、その製造が容易に
なるとともに低コスト化が実現でき、大容量な情報処理
の可能な波長多重伝送を安価に構築することが可能とな
る。
As described above, the present invention relates to a surface emitting device that emits light having a wide spectrum width, and a plurality of optical fibers optically coupled to the surface emitting device and each having a different wavelength transmission region. And a transmitting means for optically coupling and transmitting the light transmitted through the plurality of optical fibers, so that it is not necessary for the surface light emitting element to have a light emitting function in a different wavelength region. The element can be configured in a monolithic manner, which facilitates its manufacture, realizes a reduction in cost, and makes it possible to construct wavelength-division multiplexing transmission capable of large-capacity information processing at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を説明するための概念構成図
である。
FIG. 1 is a conceptual configuration diagram for describing an embodiment of the present invention.

【図2】面発光素子の断面構成図である。FIG. 2 is a cross-sectional configuration diagram of a surface light emitting device.

【図3】面発光素子で発光される光のスペクトル特性図
である。
FIG. 3 is a spectrum characteristic diagram of light emitted from a surface light emitting element.

【図4】光ファイバのフィルタ特性を示す図である。FIG. 4 is a diagram illustrating filter characteristics of an optical fiber.

【図5】従来の波長多重伝送方式の概念を説明するため
の図である。
FIG. 5 is a diagram for explaining the concept of a conventional wavelength division multiplexing transmission system.

【符号の説明】[Explanation of symbols]

1 面発光素子 2A,2B,2C 発光部 3A,3B,3C 光ファイバ 4 光カプラ 5 伝送用光ファイバ 1 surface emitting element 2A, 2B, 2C light emitting section 3A, 3B, 3C optical fiber 4 optical coupler 5 transmission optical fiber

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 スペクトル幅の広い光を発光する面発光
素子と、この面発光素子に光結合され、それぞれが異な
る波長透過領域を有する複数本の光ファイバと、これら
複数の光ファイバを透過された光を光結合して伝送する
伝送手段とを備えることを特徴とする面発光素子を用い
た波長多重伝送方式。
1. A surface-emitting device that emits light having a wide spectrum width, a plurality of optical fibers optically coupled to the surface-emitting device, each having a different wavelength transmission region, and transmitted through the plurality of optical fibers. A wavelength division multiplexing transmission method using a surface emitting element, comprising: a transmission unit for optically coupling the transmitted light.
【請求項2】 面発光素子で発光される光は、複数本の
光ファイバの各波長透過領域を含むスペクトル幅である
請求項1の波長多重伝送方式。
2. The wavelength division multiplexing transmission system according to claim 1, wherein the light emitted by the surface emitting element has a spectrum width including each wavelength transmission region of the plurality of optical fibers.
【請求項3】 面発光素子には複数の発光部が一体に形
成され、複数本の光ファイバはその一端部においてそれ
ぞれが各発光部に光結合され、かつ他端部において光カ
プラにより一体的に伝送用光ファイバに光結合される請
求項2の波長多重伝送方式。
3. A plurality of light-emitting portions are integrally formed on the surface light-emitting element. Each of the plurality of optical fibers is optically coupled to each light-emitting portion at one end thereof, and is integrally formed at the other end thereof by an optical coupler. 3. The wavelength division multiplexing transmission system according to claim 2, wherein the transmission line is optically coupled to a transmission optical fiber.
【請求項4】 複数本の光ファイバは光透過プラスチッ
クで形成され、それぞれに添加される物質の添加量の相
違により各光ファイバの波長透過領域が設定される請求
項1ないし3のいずれかの波長多重方式。
4. The optical fiber according to claim 1, wherein the plurality of optical fibers are formed of a light-transmitting plastic, and a wavelength transmission region of each optical fiber is set by a difference in the amount of a substance added to each of the plurality of optical fibers. Wavelength multiplex method.
JP8225276A 1996-08-27 1996-08-27 Wavelength division multiplexing transmission system using surface emitting devices Expired - Fee Related JP2953392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8225276A JP2953392B2 (en) 1996-08-27 1996-08-27 Wavelength division multiplexing transmission system using surface emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8225276A JP2953392B2 (en) 1996-08-27 1996-08-27 Wavelength division multiplexing transmission system using surface emitting devices

Publications (2)

Publication Number Publication Date
JPH1070331A true JPH1070331A (en) 1998-03-10
JP2953392B2 JP2953392B2 (en) 1999-09-27

Family

ID=16826798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8225276A Expired - Fee Related JP2953392B2 (en) 1996-08-27 1996-08-27 Wavelength division multiplexing transmission system using surface emitting devices

Country Status (1)

Country Link
JP (1) JP2953392B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501514A (en) * 2000-05-29 2004-01-15 フランス テレコム Single photon light source with selective distribution frequency emission source
WO2010044129A1 (en) * 2008-10-17 2010-04-22 国立大学法人北海道大学 Semiconductor light-emitting element array and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501514A (en) * 2000-05-29 2004-01-15 フランス テレコム Single photon light source with selective distribution frequency emission source
WO2010044129A1 (en) * 2008-10-17 2010-04-22 国立大学法人北海道大学 Semiconductor light-emitting element array and manufacturing method thereof
EP2357676A1 (en) * 2008-10-17 2011-08-17 National University Corporation Hokkaido University Semiconductor light-emitting element array and manufacturing method thereof
EP2357676A4 (en) * 2008-10-17 2013-05-29 Univ Hokkaido Nat Univ Corp Semiconductor light-emitting element array and manufacturing method thereof
US8519378B2 (en) 2008-10-17 2013-08-27 National University Corporation Hokkaido University Semiconductor light-emitting element array including a semiconductor rod

Also Published As

Publication number Publication date
JP2953392B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
US6088376A (en) Vertical-cavity-surface-emitting semiconductor devices with fiber-coupled optical cavity
US6148016A (en) Integrated semiconductor lasers and photodetectors
US5233187A (en) Multi-wavelength light detecting and/or emitting apparatuses having serially arranged grating directional couplers
EP1670105B1 (en) Surface emitting laser device including optical sensor and optical waveguide device employing the same
KR101344477B1 (en) Semiconductor optical device and method for manufacturing the same
US20020163688A1 (en) Optical communications system and vertical cavity surface emitting laser therefor
JP2008543077A (en) Integrated chip
JP3111957B2 (en) Surface emitting device
CN108603980A (en) Photonic integrated device with dielectric structure
EP0641053A1 (en) Method and apparatus for control of lasing wavelength in distributed feedback lasers
US20040032647A1 (en) Folded cavity semiconductor optical amplifier (FCSOA)
US20020186730A1 (en) Integrated multiple wavelength pump laser module
JP2000012952A (en) Manufacture of semiconductor optical waveguide array and array-structured semiconductor optical element
JP3257260B2 (en) WDM light-emitting device and WDM transmission system
JPH08111559A (en) Semiconductor light emitting/receiving element and device
JP4439199B2 (en) Vertical cavity surface emitting semiconductor laser device, optical logic operation device, wavelength converter, optical pulse waveform shaping device, and optical transmission system using the same
JP2953392B2 (en) Wavelength division multiplexing transmission system using surface emitting devices
JP2002164615A (en) Optical semiconductor device and optical semiconductor module
US20020159491A1 (en) Surface emitting laser
WO2001099248A1 (en) Multi-wavelength semiconductor lasers
JP2002141603A (en) Semiconductor laser and semiconductor laser array, and method for fabricating the same, transmission module, local area network system, optical data link system and optical interconnection system
JP3149979B2 (en) Photodetector and light emitting device
EP0496348B1 (en) Multi-wavelength light detecting apparatuses having serially arranged grating directional couplers
JP2004063972A (en) Semiconductor laser, and manufacturing method thereof
JP4671672B2 (en) Light receiving / emitting device, optical transmission / reception module, optical transmission module, and optical communication system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees