JPH1070165A - Measuring method of semiconductor lifetime - Google Patents

Measuring method of semiconductor lifetime

Info

Publication number
JPH1070165A
JPH1070165A JP22480696A JP22480696A JPH1070165A JP H1070165 A JPH1070165 A JP H1070165A JP 22480696 A JP22480696 A JP 22480696A JP 22480696 A JP22480696 A JP 22480696A JP H1070165 A JPH1070165 A JP H1070165A
Authority
JP
Japan
Prior art keywords
lifetime
substrate
type
semiconductor region
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22480696A
Other languages
Japanese (ja)
Inventor
Katsumi Ishikawa
勝美 石川
Susumu Murakami
進 村上
Takeshi Yokota
武司 横田
Masanori Takada
正典 高田
Yutaka Sato
佐藤  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22480696A priority Critical patent/JPH1070165A/en
Publication of JPH1070165A publication Critical patent/JPH1070165A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avert the effect on the surface recoupling velocity of the photo- excited minor carriers, by a method wherein the second conductivity type second semiconductor region internally extending from the surface of the first semiconductor region having a pair of main surfaces to be the first conductivity type substrate is formed by diffusion. SOLUTION: A measuring system for measuring the lifetime is composed of laser beams in wavelength of about 906nm and probing μ wave 22. As for the measuring substrate of the lifetime, a specimen wherein a p type semiconductor region 12 as for the second conductivity type is formed in thickness t2 of about 100μm on an n type Si substrate 11 as for the first conductivity type in thickness t1 of about 1000μm by diffusion is used. Through these procedures, precise lifetime can be measured since the n type Si substrate 11 using the specimen formed of the p type semiconductor region 12 is not affected by the surface recoupling rate of photo-excited minor carriers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子のライフ
タイム計測方法に関する。
The present invention relates to a method for measuring the lifetime of a semiconductor device.

【0002】[0002]

【従来の技術】半導体ウエハの電気的特性は、ほとんど
の方法では、電極付けを必要とする接触測定によって得
られているが、この場合、結晶の破壊が不可避である。
当然のことながら、製造歩留りの向上等の目的で、非接
触測定への要求は高い。現状のライフタイム測定法は、
ac−PV(photovoltage)法,MOS C−t法,J
IS法等の方法がある。これらの測定法は、分解能,測
定精度等でそれぞれ優れた特徴を持っているが、殆どの
測定方法は電極付けを必要とするため、ウエハに新たな
欠陥を導入する恐れがある。このような新たな欠陥の導
入を防ぐために、特公昭52−36817 号公報に開示された
技術が知られている。この従来技術は、光照射で励起さ
れた少数キャリアにより低下した抵抗率の減衰をμ波に
よって検出し、反射μ波の減衰カーブより、非接触でラ
イフタイムが計測できるとされている。
2. Description of the Related Art In most cases, the electrical characteristics of a semiconductor wafer are obtained by contact measurement which requires electrode attachment. In this case, destruction of a crystal is inevitable.
Naturally, there is a high demand for non-contact measurement for the purpose of improving the production yield and the like. The current lifetime measurement method is
ac-PV (photovoltage) method, MOS Ct method, J
There are methods such as the IS method. These measurement methods have excellent characteristics in resolution, measurement accuracy, and the like, but most of the measurement methods require electrode attachment, and thus may introduce new defects into the wafer. In order to prevent the introduction of such new defects, a technique disclosed in Japanese Patent Publication No. Sho 52-36817 is known. According to this conventional technique, it is said that the attenuation of the resistivity reduced by the minority carriers excited by light irradiation is detected by a μ wave, and the lifetime can be measured in a non-contact manner from an attenuation curve of a reflected μ wave.

【0003】また、実効的なライフタイムを正確に計測
するために、J. Electrochem.Soc.,709(1958)におけるB
uck, T.M.,Mckim, F.Sの文献において、表面再結合速度
を低減すべく、半導体ウェハ表面に酸化膜を形成して測
定を行う方法を示している。
Further, in order to accurately measure the effective lifetime, B. in Electrochem. Soc., 709 (1958)
The literature of uck, TM, Mckim, FS shows a method of forming an oxide film on the surface of a semiconductor wafer for measurement in order to reduce the surface recombination speed.

【0004】[0004]

【発明が解決しようとする課題】しかし、前者の従来技
術では、励起されたキャリアの表面再結合とウエハ内の
より深い部分でバルク再結合の両者により実効的なライ
フタイムτeff が決定される。従って、基板の厚さがこ
の少数キャリアの拡散長の2〜3倍以下では、表面再結
合の影響が強く、バルクでの再結合による正確なライフ
タイムを計測するのが困難であった。また、上記の後者
の従来技術においても、基板の厚さが薄いと実効的なラ
イフタイムは基板の厚さに依存しているので、正確なラ
イフタイムを計測するのが困難であった。
However, in the former prior art, the effective lifetime τ eff is determined by both the surface recombination of the excited carriers and the bulk recombination at a deeper part in the wafer. . Therefore, when the thickness of the substrate is 2 to 3 times or less the diffusion length of the minority carrier, the influence of surface recombination is strong, and it has been difficult to accurately measure the lifetime due to recombination in bulk. Also, in the latter conventional technique, when the thickness of the substrate is small, the effective lifetime depends on the thickness of the substrate, so that it has been difficult to accurately measure the lifetime.

【0005】本発明の目的は、従来の少数キャリアのラ
イフタイム計測方法の問題点を解決した、正確なライフ
タイムを計測する方法を提供することにある。
An object of the present invention is to provide a method for accurately measuring the lifetime, which solves the problems of the conventional method for measuring the lifetime of a minority carrier.

【0006】本発明の目的を具体的に言えば、光で励起
された少数キャリアの表面再結合の影響を防止したライ
フタイムを計測する方法を提供することにある。
More specifically, an object of the present invention is to provide a method for measuring a lifetime in which the influence of surface recombination of minority carriers excited by light is prevented.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は光で励起されたキャリアの減衰をμ波をプ
ローブとして、ライフタイムを求めるライフタイム測定
装置を用いて、一対の主表面を有する第1導電型の半導
体基板となる第1半導体領域の表面から内部に延びる第
2導電型の第2半導体領域を拡散により形成して、表面
再結合速度の影響をなくし、第1半導体領域のライフタ
イムを計測するようにした。
In order to achieve the above-mentioned object, the present invention relates to a method for measuring the attenuation of carriers excited by light using a μ-wave as a probe and a lifetime measuring device for determining a lifetime. A second semiconductor region of a second conductivity type extending from the surface of the first semiconductor region serving as a semiconductor substrate of the first conductivity type having a surface is formed by diffusion to eliminate the influence of the surface recombination speed, and the first semiconductor is removed. Measured the lifetime of an area.

【0008】さらに、第2半導体領域の不純物濃度が、
1m3 当り1×1017以下となるようにして半導体のラ
イフタイムを計測するようにした。
Furthermore, the impurity concentration of the second semiconductor region is
The lifetime of the semiconductor was measured so as to be 1 × 10 17 or less per 1 m 3 .

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例を図面によ
り詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】(実施例1)図1は本発明によるライフタ
イムの計測方法を示す。同図において、ライフタイムを
計測する測定系は波長が906nmのレーザ光21とプ
ローブμ波22から構成されている。本発明の特徴とす
る測定基板の断面構造で、11は抵抗率が100〜60
0Ω・cm、厚さt1が200〜2000μmのn型半導
体領域、12は表面不純物濃度が1m3 当り1×1017
以下となる深さt2が5〜150μmのp型半導体領域
である。このような半導体ウェハを使用することによ
り、バルクのライフタイムを正確に求められる動作を以
下の図面を用いて説明する。図2は光パルスオフ後の抵
抗率の時間変化を示す。図2では厚さ1000μmのn
型Si基板11に本発明によるp型半導体領域12を1
00μm形成した試料と、p型半導体領域12を形成し
ていない試料について示している。p型半導体領域12
を形成していないn型Si基板の場合、基板厚さが薄く
なるにつれ、光で励起された少数キャリアの殆どが表面
で再結合するため、熱平衡時の抵抗率に回復する時間が
短く、実効的なライフタイムも短い値を示す。一方、本
発明によるp型半導体領域12を形成した試料のn型S
i基板では、表面再結合の影響が無いため、正確なライ
フタイムを計測することができる。
FIG. 1 shows a method for measuring a lifetime according to the present invention. In the figure, a measurement system for measuring a lifetime is composed of a laser beam 21 having a wavelength of 906 nm and a probe μ-wave 22. 11 is a cross-sectional structure of a measurement substrate which is a feature of the present invention.
An n-type semiconductor region having 0 Ω · cm and a thickness t1 of 200 to 2000 μm, 12 has a surface impurity concentration of 1 × 10 17 per m 3
This is a p-type semiconductor region having the following depth t2 of 5 to 150 μm. The operation for accurately determining the bulk lifetime by using such a semiconductor wafer will be described with reference to the following drawings. FIG. 2 shows the temporal change in resistivity after the light pulse is turned off. In FIG. 2, n having a thickness of 1000 μm
The p-type semiconductor region 12 according to the present invention is
A sample formed with a thickness of 00 μm and a sample not formed with the p-type semiconductor region 12 are shown. p-type semiconductor region 12
In the case of an n-type Si substrate in which is not formed, most of the minority carriers excited by light recombine at the surface as the substrate thickness becomes thinner, so that the time required to recover the resistivity at the time of thermal equilibrium is short, and the effective Typical lifetime also shows a short value. On the other hand, the n-type S of the sample in which the p-type semiconductor region 12 according to the present invention is formed.
Since the i-substrate is not affected by surface recombination, an accurate lifetime can be measured.

【0011】図3はさらに、本発明の動作を詳細に説明
するため、半導体内部の少数キャリアである正孔濃度分
布の経時変化を示した。図3(a)は、p型半導体領域
12を形成していないn型Si基板の場合について、光
パルスオフ後の少数キャリア濃度の時間変化を示す。光
パルスオフ後、励起されたキャリアは基板内に拡散して
いくが、表面再結合の影響を受け、特に半導体表面(位
置が0μm)と半導体裏面(位置が1000μm)では
キャリア濃度がバルクと比べて著しく低下しており、正
味の励起されたキャリア濃度はこの表面再結合によって
消滅するため、バルクでの減少が加速される。従って、
実効的なライフタイムが真の値より短く観測されてしま
う。一方、図3(b)に示したように、本発明によるp
型半導体領域12を形成したn型Si基板の場合では、
光パルスオフ後、励起されたキャリアは基板内に拡散し
ていくが、n型Si基板11はp型半導体領域12で挟
まれた構造となっているため、半導体表面(位置が0μ
m)と半導体裏面(位置が1000μm)における表面
再結合の影響を受けず、理想的なキャリア濃度の減衰を
示している。言い替えれば、光パルスオフ後、キャリア
は基板内に拡散していくが、n型基板内に拡散したキャ
リアは、pn接合部に生じる内蔵電位に相当する電位差
により、少数キャリアが閉じこめられるために、表面再
結合成分が小さくなり、実効的なライフタイムを正確に
求められる。
FIG. 3 shows a temporal change of the concentration distribution of holes, which are minority carriers in the semiconductor, in order to explain the operation of the present invention in detail. FIG. 3A shows a temporal change of the minority carrier concentration after the light pulse is turned off in the case of the n-type Si substrate in which the p-type semiconductor region 12 is not formed. After the light pulse is turned off, the excited carriers diffuse into the substrate, but are affected by surface recombination. In particular, the carrier concentration on the semiconductor surface (at a position of 0 μm) and the back surface of the semiconductor (at a position of 1000 μm) is lower than that of the bulk. Significantly, the net excited carrier concentration disappears due to this surface recombination, thus accelerating the reduction in bulk. Therefore,
The effective lifetime is observed shorter than the true value. On the other hand, as shown in FIG.
In the case of an n-type Si substrate on which the type semiconductor region 12 is formed,
After the light pulse is turned off, the excited carriers diffuse into the substrate. However, since the n-type Si substrate 11 has a structure sandwiched by the p-type semiconductor regions 12, the semiconductor surface (position is 0 μm)
m) and the back surface of the semiconductor (at a position of 1000 μm) are not affected by surface recombination, and the ideal carrier concentration attenuation is shown. In other words, after the light pulse is turned off, the carriers diffuse into the substrate, but the carriers diffused into the n-type substrate are trapped by the potential difference corresponding to the built-in potential generated at the pn junction, so that the minority carriers are confined. The recombination component is reduced, and the effective lifetime can be accurately determined.

【0012】このように、本発明によれば、光パルスオ
フ後の少数キャリア濃度が表面再結合の影響を防止でき
るので、正確なライフタイムの計測が可能であることが
理解できる。
As described above, according to the present invention, the minority carrier concentration after the light pulse is turned off can prevent the influence of the surface recombination, and it can be understood that accurate measurement of the lifetime is possible.

【0013】図4は本発明の効果を説明するための実効
的なライフタイムの基板厚さ依存性を示す。曲線(a)
が示すように、p型半導体領域12を形成していないn
型Si基板の場合では、基板厚さが3000μmを越え
ると、実効的なライフタイムは基板厚さに依存しない
が、基板厚さが3000μm以下では、実効的なライフ
タイムは基板厚さが薄くなるにつれ、低下している。基
板厚さに依存しないキャリアのライフタイムが約100
μsであり、この値を仮に、真のライフタイム値とする
と、キャリアの拡散長は約500μm程度となるが、基
板の厚さがこの拡散長の数倍以下では、表面再結合の割
合が大きくなるため、実効的なライフタイムは基板厚さ
依存性を有しているからである。従って、基板厚さ30
00μm以下では、実効的なライフタイムは基板の厚さ
に依存しているので、正確なライフタイムを計測できな
いといった欠点がある。
FIG. 4 shows the dependency of the effective lifetime on the substrate thickness for explaining the effect of the present invention. Curve (a)
Indicates that the p-type semiconductor region 12 is not formed
In the case of the type Si substrate, when the substrate thickness exceeds 3000 μm, the effective lifetime does not depend on the substrate thickness, but when the substrate thickness is 3000 μm or less, the effective lifetime becomes thinner. It is declining. Lifetime of carrier independent of substrate thickness is about 100
Assuming that this value is a true lifetime value, the diffusion length of the carrier is about 500 μm. However, when the thickness of the substrate is several times less than this diffusion length, the rate of surface recombination is large. This is because the effective lifetime depends on the substrate thickness. Therefore, the substrate thickness 30
If the thickness is less than 00 μm, the effective lifetime depends on the thickness of the substrate.

【0014】本発明では、曲線(b)が示すように、p
型半導体領域12を形成したn型基板では、基板厚さ4
00μm以上で、実効的なライフタイムは表面再結合の
影響を受けず、基板の厚さに依存しなくなり、正確なラ
イフタイムを計測することができた。
In the present invention, as shown by the curve (b), p
In the n-type substrate on which the type semiconductor region 12 is formed, the substrate thickness 4
With a thickness of 00 μm or more, the effective lifetime was not affected by surface recombination and became independent of the thickness of the substrate, so that an accurate lifetime could be measured.

【0015】また、p型拡散層は5μmよりも厚くする
ことで、この効果を確認できた。尚、p型拡散層の不純
物濃度は、μ波が基板内に進入できる深さを制限する。
その為、1000μm程度の厚さの基板を計測するため
には、拡散層の不純物濃度が、1m3 当り1×1017
下であることが望ましい。
This effect was confirmed by making the p-type diffusion layer thicker than 5 μm. Note that the impurity concentration of the p-type diffusion layer limits the depth at which the microwave can enter the substrate.
Therefore, in order to measure a substrate having a thickness of about 1000 μm, the impurity concentration of the diffusion layer is desirably 1 × 10 17 or less per 1 m 3 .

【0016】以上本発明では、実施例の図面のうち第1
導電型をn型、第2導電型をp型として説明したが、本
発明の効果はなにもこれに限らず、第1導電型をp型、
第2導電型をn型としてもよい。
As described above, according to the present invention, the first
Although the conductivity type is described as n-type and the second conductivity type as p-type, the effect of the present invention is not limited to this, and the first conductivity type is p-type.
The second conductivity type may be an n-type.

【0017】[0017]

【発明の効果】本発明によれば、第1導電型の基板に、
第2導電型の拡散層を形成して、表面再結合速度をなく
すことにより、第1導電型の層のライフタイムを正確に
計測することができる。
According to the present invention, the substrate of the first conductivity type includes:
By forming the second conductivity type diffusion layer and eliminating the surface recombination speed, the lifetime of the first conductivity type layer can be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるライフタイムを計測する測定系と
測定素子の断面形状を示す説明図。
FIG. 1 is an explanatory view showing a measuring system for measuring a lifetime according to the present invention and a sectional shape of a measuring element.

【図2】本発明による光パルスオフ後の抵抗率の時間変
化を示す特性図。
FIG. 2 is a characteristic diagram showing a temporal change in resistivity after an optical pulse is turned off according to the present invention.

【図3】本発明による光パルスオフ後の少数キャリア濃
度の時間変化を示す特性図。
FIG. 3 is a characteristic diagram showing a temporal change of a minority carrier concentration after an optical pulse is turned off according to the present invention.

【図4】本発明による実効的なライフタイムτeff の基
板厚さ依存性を示す特性図。
FIG. 4 is a characteristic diagram showing the substrate thickness dependence of the effective lifetime τ eff according to the present invention.

【符号の説明】[Explanation of symbols]

11…n型基板、12…p型拡散層、21…レーザ光、
22…プローブμ波。
11 n-type substrate, 12 p-type diffusion layer, 21 laser light,
22: Probe microwave.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 正典 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 佐藤 裕 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masanori Takada 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yutaka Sato 7-2, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 In the Power & Electric Equipment Development Division, Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光で励起されたキャリアの減衰をμ波をプ
ローブとして、ライフタイムを求めるライフタイム測定
装置を用いて、一対の主表面を有する第1導電型の半導
体基板となる第1半導体領域の表面から内部に延びる第
2導電型の第2半導体領域を拡散により形成して、表面
再結合速度の影響をなくし、上記第1半導体領域のライ
フタイムを計測することを特徴とする半導体のライフタ
イムの計測方法。
1. A first semiconductor, which is a first conductivity type semiconductor substrate having a pair of main surfaces, using a lifetime measuring device for determining a lifetime using a microwave as a probe for attenuation of carriers excited by light. Forming a second semiconductor region of a second conductivity type extending from the surface of the region to the inside by diffusion to eliminate the influence of the surface recombination speed and measuring the lifetime of the first semiconductor region; Lifetime measurement method.
【請求項2】請求項1の上記第2半導体領域の不純物濃
度が、1m3 当り1×1017以下である半導体のライフ
タイムの計測方法。
2. The method according to claim 1, wherein the impurity concentration of the second semiconductor region is 1 × 10 17 per m 3 or less.
JP22480696A 1996-08-27 1996-08-27 Measuring method of semiconductor lifetime Pending JPH1070165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22480696A JPH1070165A (en) 1996-08-27 1996-08-27 Measuring method of semiconductor lifetime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22480696A JPH1070165A (en) 1996-08-27 1996-08-27 Measuring method of semiconductor lifetime

Publications (1)

Publication Number Publication Date
JPH1070165A true JPH1070165A (en) 1998-03-10

Family

ID=16819504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22480696A Pending JPH1070165A (en) 1996-08-27 1996-08-27 Measuring method of semiconductor lifetime

Country Status (1)

Country Link
JP (1) JPH1070165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518785B2 (en) 1998-07-09 2003-02-11 Nec Corporation Method for monitoring an amount of heavy metal contamination in a wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518785B2 (en) 1998-07-09 2003-02-11 Nec Corporation Method for monitoring an amount of heavy metal contamination in a wafer

Similar Documents

Publication Publication Date Title
JP3811964B2 (en) Infrared detector and manufacturing method thereof
JPH1070165A (en) Measuring method of semiconductor lifetime
US5010294A (en) Method for topically-resolved determination of the diffusion length of minority charge carriers in a semiconductor crystal body with the assistance of an electrolytic cell
JP3043364B2 (en) A method for determining the interface recombination rate of minority carriers
JPH0697252A (en) Method and apparatus for decision of thickness of polysilicon/silicon interface oxide film
JP2963104B2 (en) Method and apparatus for measuring localized level density
JPH07240450A (en) Method for measuring carrier life
Ašmontas et al. Photovoltage formation across GaAs p–n junction under illumination of intense laser radiation
JPS56150888A (en) Semiconductor laser device
JPH113923A (en) Method for detecting metallic contaminant in sub-micron silicon surface layer of semiconductor
JP2016157931A (en) Photoinduction carrier lifetime measuring method and photoinduction carrier lifetime measuring device
Irace et al. Transverse probe optical lifetime measurement as a tool for in-line characterization of the fabrication process of a silicon solar cell
Schindler et al. Improvements and Limits of the Open Circuit Voltage of mc‐Silicon Solar Cells
JP3661334B2 (en) Minority carrier lifetime measurement method and semiconductor device manufacturing method
Ostendorf et al. Non-destructive method for simultaneous mapping of diffusion length and surface recombination velocity
Carstensen et al. ELYMAT technique on multicrystalline silicon for solar cell application
Gilboa et al. Determination of energy band and surface‐state locations in GaAs using the separated‐medium surface‐acoustoelectric effect
JPS59970B2 (en) How to use the handbook
Misiakos et al. Lifetime and diffusivity determination from frequency-domain transient analysis
JPS59143339A (en) Method for analyzing impurity in semiconductor crystal
JPH04289442A (en) Lifetime measuring method
JPH07162017A (en) Manufacture of semiconductor acceleration sensor
JPH02216844A (en) Measurement of photoelectric characteristic of semiconductor
JP2001119060A (en) Photodiode
Genoe et al. Numerical calculation of the evolution of the carrier distribution in the spatially modulated light CMOS detector