JPH1068898A - Multibeam scanner - Google Patents

Multibeam scanner

Info

Publication number
JPH1068898A
JPH1068898A JP22378796A JP22378796A JPH1068898A JP H1068898 A JPH1068898 A JP H1068898A JP 22378796 A JP22378796 A JP 22378796A JP 22378796 A JP22378796 A JP 22378796A JP H1068898 A JPH1068898 A JP H1068898A
Authority
JP
Japan
Prior art keywords
scanning
light
scanned
scanning lines
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22378796A
Other languages
Japanese (ja)
Other versions
JP3527366B2 (en
Inventor
Masakane Aoki
真金 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22378796A priority Critical patent/JP3527366B2/en
Priority to US08/916,959 priority patent/US6069723A/en
Priority to KR1019970041279A priority patent/KR100283194B1/en
Publication of JPH1068898A publication Critical patent/JPH1068898A/en
Priority to US09/552,730 priority patent/US6266174B1/en
Application granted granted Critical
Publication of JP3527366B2 publication Critical patent/JP3527366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to lessen pitch deviation by setting the bends of plural scanning lines by the simultaneously scanning of plural light spots at the same direction. SOLUTION: Four luminous fluxes which are made into parallel luminous fluxes and are radiated from a light source device 10 are converted only in the direction corresponding to the sub-scanning by a cylinder lens 20 which is a line image forming optical system and are formed as the line image long in the direction corresponding to the main-scanning near the polarizing reflection surface of a polygon mirror 30. The four luminous fluxes are polarized and are made incident on an fθ lens 40 and are condensed as the four light spots separated from each other in the sub-scanning direction onto a surface 50 to be scanned to simultaneously scan the four scanning lines. A photoconductive photoreceptor is disposed in the position of the surface 50 to be scanned and the four spots simultaneously scan the photoreceptor in actuality. The main rays of the four luminous fluxes exist always on the same side with respect to the optical axis in the optical path from the light source device 10 to the surface 50 to be scanned and the four scanning lines S1 to S4 to be simultaneously scanned by the four light spots have the bends of the scanning lines in the same direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はマルチビーム走査
装置に関する。
The present invention relates to a multi-beam scanning device.

【0002】[0002]

【従来の技術】光プリンタ等の画像形成装置に関連して
従来から広く知られた光走査装置は、単一の光束の偏向
により光走査で画像書込みを行なうシングルビーム方式
であるが、近来、画像書込み速度の向上を目して、複数
の光束により一度に複数の走査線を走査する「マルチビ
ーム走査装置」の実現が意図されている。
2. Description of the Related Art An optical scanning device, which has been widely known in connection with an image forming apparatus such as an optical printer, is a single beam type in which an image is written by optical scanning by deflecting a single light beam. In order to improve the image writing speed, it is intended to realize a “multi-beam scanning device” that scans a plurality of scanning lines at a time with a plurality of light beams.

【0003】上記シングルビーム走査方式では、光源か
ら放射された光束は、その主光線が光学系の光軸に合致
するようにして光偏向器に導かれ、光偏向器で偏向され
た光束の主光線は、fθレンズ等の走査結像光学系の光
軸を含む面内で偏向する。このようなシングルビーム走
査方式では、光スポットの移動軌跡である走査線には
「曲がり」は殆ど生じない。
In the single beam scanning system, a light beam emitted from a light source is guided to an optical deflector so that its principal ray coincides with the optical axis of the optical system, and the main beam of the light beam deflected by the optical deflector is changed. The light beam is deflected in a plane including the optical axis of a scanning imaging optical system such as an fθ lens. In such a single-beam scanning method, “bending” hardly occurs on a scanning line that is a movement locus of a light spot.

【0004】しかるにマルチビーム走査装置では、光源
からの複数の光束のうちの一部は、光源から被走査面に
到る光路が、光学系の光軸に対して副走査対応方向(光
源から被走査面に到る光路を直線的に展開した仮想的な
光路上で副走査方向に平行的に対応する方向、上記仮想
的な光路上で主走査方向に平行的に対応する方向を主走
査対応方向という)へずれるため、このように光軸に対
してずれた光束による光スポットの走査する走査線は直
線にならず、僅かながら湾曲する。
However, in the multi-beam scanning device, a part of a plurality of light beams from the light source is transmitted in a sub-scanning direction (from the light source to the scanning direction) with respect to the optical axis of the optical system. The main scanning direction corresponds to the direction corresponding to the sub-scanning direction on the virtual optical path obtained by linearly expanding the optical path reaching the scanning surface, and the direction corresponding to the main scanning direction on the virtual optical path. The scanning line for scanning the light spot by the light beam shifted from the optical axis is not straight but slightly curved.

【0005】図2(a),(b)は、4つの光源からの
4本の光束により4つの光スポットを得、4本の走査線
を同時に走査する場合が例示されている。S1〜S4が
それぞれ走査線を示している。破線で示す線Aは「偏向
光束の主光線が走査結像光学系の光軸を含み、主走査対
応方向に平行な面内で偏向して走査を行なった場合の理
想的な走査線(シングルビーム走査方式の場合の走査線
に相当し、曲がりがない)」を示し、これを基準線Aと
称する。
FIGS. 2A and 2B illustrate a case where four light spots are obtained by four light beams from four light sources and four scanning lines are simultaneously scanned. S1 to S4 indicate scanning lines, respectively. A line A indicated by a broken line is an ideal scanning line (single line in the case where scanning is performed while the principal ray of the deflected light beam is deflected in a plane parallel to the main scanning corresponding direction, including the optical axis of the scanning imaging optical system. (This corresponds to a scanning line in the case of the beam scanning method and has no bending.) ", And is referred to as a reference line A.

【0006】図2(a)に示す例では、走査線S1,S
2はそれぞれ、基準線Aに対し、副走査方向(図の上下
方向)において走査線S3,S4と対称的である。走査
線S1,S2は図の上方へ向かって単純に凸に湾曲して
おり、走査線S3,S4は、図の下方に向かって単純に
凸に湾曲している。図2(a)は「4つの光スポットに
よる同時の走査」が、相続いて2回行なわれた状態の走
査を示している。これら2回の走査のうち先に行なわれ
たのが走査B1であり、後に行なわれたのが走査B2で
ある。従って、光書込みは、上記走査B1,B2のよう
な走査が、交互に繰り返されることにより行なわれる。
In the example shown in FIG. 2A, scanning lines S1, S
2 are symmetrical with respect to the reference line A with respect to the scanning lines S3 and S4 in the sub-scanning direction (vertical direction in the drawing). The scanning lines S1 and S2 are simply convexly curved upward in the figure, and the scanning lines S3 and S4 are simply convexly curved downward in the figure. FIG. 2A shows a state where “simultaneous scanning by four light spots” is performed twice consecutively. Of these two scans, the scan B1 is performed earlier, and the scan B2 is performed later. Therefore, optical writing is performed by alternately repeating the scans such as the scans B1 and B2.

【0007】すると、走査線S1〜S4の湾曲のため
に、図に「イ」で示す部分では、走査B1における走査
線S4と、走査B2における走査線S1との間隔(走査
線のピッチ)が狭くなり、「ロ」で示す部分では、走査
線S2とS3とのピッチが広くなる。換言すれば、走査
により書き込まれる記録画像の、主走査方向中央部近傍
の画像密度が、副走査方向に周期的に変動し、記録画像
の像質を低下させる原因になる。
[0007] Then, due to the curvature of the scanning lines S1 to S4, the interval (scanning line pitch) between the scanning line S4 in the scanning B1 and the scanning line S1 in the scanning B2 in the portion indicated by "A" in the figure. The pitch between the scanning lines S2 and S3 becomes wider at the portion indicated by "b". In other words, the image density of the recorded image written by scanning in the vicinity of the central portion in the main scanning direction periodically fluctuates in the sub-scanning direction, causing deterioration in the image quality of the recorded image.

【0008】図2(b)には、4つの光スポットによる
同時の走査C1とこれに続く走査C2が描かれている。
走査線S1とS4、走査線S2とS3は、それぞれ基準
線Aに対して副走査方向に対称的である。走査線S1,
S2は、主走査方向(図の左右方向)において、なだら
かな山が2つあり、中央部に緩やかな谷があるような湾
曲であり、湾曲の程度は走査線S1のほうが走査線S2
より大きい。走査線S3,S4は、主走査方向におい
て、緩やかな谷が2つあり、中央部になだらかな山があ
るような湾曲であり、湾曲の程度は走査線S4のほうが
走査線S3より大きい。
FIG. 2B shows a simultaneous scan C1 by four light spots and a subsequent scan C2.
The scanning lines S1 and S4 and the scanning lines S2 and S3 are respectively symmetrical with respect to the reference line A in the sub-scanning direction. Scanning line S1,
S2 is a curve having two gentle peaks and a gentle valley in the center in the main scanning direction (the left-right direction in the figure), and the degree of curvature is higher for the scanning line S1 than for the scanning line S2.
Greater than. The scanning lines S3 and S4 have two gentle valleys in the main scanning direction and a curved shape with a gentle peak at the center, and the degree of the curvature is larger in the scanning line S4 than in the scanning line S3.

【0009】この場合には、走査C1における走査線S
4と、走査C2における走査線S1の「湾曲の向き」が
逆になるため、「ハ」で示す部分では走査線間のピッチ
が大きく、「ニ」で示す部分ではピッチが小さくなる。
従って、記録画像における画像密度が、連続する2走査
C1,C2の境界部で主走査方向に変動して画質を低下
させる原因となる。
In this case, the scan line S in the scan C1
4 and the "curvature direction" of the scanning line S1 in the scanning C2 are opposite, so that the pitch between the scanning lines is large in the portion indicated by "c" and small in the portion indicated by "d".
Therefore, the image density of the recorded image fluctuates in the main scanning direction at the boundary between the two continuous scans C1 and C2, which causes deterioration in image quality.

【0010】このように、マルチビーム走査装置におい
て、走査線の湾曲に起因して生じる走査線間のピッチの
変動を「ピッチ偏差」とよぶ。ピッチ偏差は上記のよう
に、記録画像の像質を低下させる原因となる。
[0010] As described above, in the multi-beam scanning apparatus, the fluctuation of the pitch between the scanning lines caused by the curvature of the scanning lines is called "pitch deviation". As described above, the pitch deviation causes the image quality of a recorded image to deteriorate.

【0011】上記の如き「ピッチ偏差」を軽減させる方
法として、特開平7−199109号公報に記載された
ように、走査結像光学系により「像面湾曲を意図的に発
生させる方法」が知られている。この方法ではピッチ偏
差自体は軽減されるものの、像面湾曲を発生させたこと
に伴い、被走査面上における光スポットのスポット径が
像高とともに大きく変動し、特に像高の大きいところで
スポット径が大きくなりやすく、やはり、記録画像の像
質を低下させる原因になる。
As a method of reducing the "pitch deviation" as described above, there is known a "method of intentionally generating a field curvature" by a scanning image forming optical system, as described in JP-A-7-199109. Have been. Although the pitch deviation itself is reduced by this method, the spot diameter of the light spot on the surface to be scanned fluctuates greatly with the image height due to the generation of the field curvature. This tends to increase the size of the recorded image, which again deteriorates the image quality of the recorded image.

【0012】[0012]

【発明が解決しようとする課題】この発明は、光スポッ
トのスポット径の大きな変動を伴うこと無く、ピッチ偏
差を有効に軽減したマルチビーム走査装置の実現を課題
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-beam scanning apparatus in which a pitch deviation is effectively reduced without a large change in the spot diameter of a light spot.

【0013】[0013]

【課題を解決するための手段】この発明のマルチビーム
走査装置は「複数の光源からの複数の光束を共通の光偏
向器で偏向させ、複数の偏向光束を共通の走査結像光学
系により被走査面上に、副走査方向に互いに分離した複
数の光スポットとして集光させ、複数走査線を同時に走
査するマルチビーム走査装置」であって「複数の光スポ
ットの同時の走査による複数の走査線の曲がりが、同じ
向きとなるようにした」ことを特徴とする(請求項
1)。「複数の走査線の曲がりが同じ向きとなる」と
は、例えば、図2(a)の走査線S1とS2や、図2
(b)の走査線S1とS2のように、各光スポットの像
高が同じ部分では、走査線が同じ向きに曲がっているこ
とを意味する。この意味からすると、例えば、図2
(a)の走査線S2とS3とは、走査線の曲がりが互い
に逆向きである。即ち、図2(a)の例では、4本の走
査線S1〜S4のうち、走査線S1,S2の曲がりが同
じ向きであり、走査線S3,S4の曲がりが同じ向きで
あるが、走査線S1,S2における曲がりの向きと、走
査線S3,S4における曲がりの向きは互いに逆であ
る。
According to the multi-beam scanning apparatus of the present invention, "a plurality of light beams from a plurality of light sources are deflected by a common optical deflector, and a plurality of deflected light beams are received by a common scanning image forming optical system. A multi-beam scanning device that converges on a scanning surface as a plurality of light spots separated from each other in the sub-scanning direction and simultaneously scans a plurality of scanning lines. Are made to have the same direction "(claim 1). "A plurality of scanning lines are bent in the same direction" means, for example, the scanning lines S1 and S2 in FIG.
As in the scanning lines S1 and S2 in (b), in a portion where the image height of each light spot is the same, it means that the scanning line is bent in the same direction. In this sense, for example, FIG.
The scanning lines S2 and S3 in (a) have the scanning lines bent in opposite directions. That is, in the example of FIG. 2A, among the four scanning lines S1 to S4, the scanning lines S1 and S2 have the same curvature and the scanning lines S3 and S4 have the same curvature. The directions of the bends in the lines S1 and S2 are opposite to the directions of the bends in the scanning lines S3 and S4.

【0014】この発明においては、同時に走査される走
査線の本数がn(>1)本であるとすれば、これらn本
の走査線の曲がりが「全て同じ向きになる」ようにする
のである。
In the present invention, assuming that the number of scanning lines scanned simultaneously is n (> 1), the curvatures of these n scanning lines are made to be "all in the same direction". .

【0015】図2に即して説明したように、走査線のピ
ッチ偏差は「隣接する走査線における曲がりの向きが逆
になる」ことにより発生するから、この発明におけるよ
うに「一度に走査されるn本の走査線の曲がりの向きを
揃える」ことにより、走査線のピッチ偏差を有効に軽減
させることができる。
As described with reference to FIG. 2, since the pitch deviation of the scanning line is caused by "the direction of the bend in the adjacent scanning line is reversed", as described in the present invention, "the scanning is performed at one time." By aligning the bending directions of the n scanning lines, the pitch deviation of the scanning lines can be effectively reduced.

【0016】そして、この発明においては、走査線のピ
ッチ偏差を軽減させるのに、意図的に像面湾曲を発生さ
せることがないから、光スポットのスポット径が像高に
より大きく変動することもない。
In the present invention, since the curvature of field is not intentionally generated in order to reduce the pitch deviation of the scanning line, the spot diameter of the light spot does not greatly vary with the image height. .

【0017】「走査結像光学系」は、fθレンズ等のレ
ンズ系により構成することができる(請求項2)。この
ような場合に、複数の光スポットで同時に走査される複
数の走査線の曲がりが同じ向きになるようにするには、
光源から放射される全ての光束の主光線が、光源から被
走査面に到る光路上において、光軸に対して常に同じ側
にあるようにすればよい。
The "scanning optical system" can be constituted by a lens system such as an fθ lens. In such a case, to make the bends of a plurality of scanning lines scanned simultaneously by a plurality of light spots have the same direction,
It is sufficient that the principal rays of all the light beams emitted from the light source are always on the same side with respect to the optical axis on the optical path from the light source to the surface to be scanned.

【0018】走査結像光学系はまた「結像機能を持つ反
射型結像素子を有する」ように構成でき、この場合、反
射型結像素子は「共通の光偏向器により偏向された複数
の偏向光束が反射型結像素子に入射して反射されるよう
に、且つ、反射型結像素子による反射光束の光路が入射
光束の光路と重ならないよう」に配備態位を定められる
(請求項3)。
The scanning imaging optics can also be configured to "have a reflective imaging element with an imaging function", where the reflective imaging element is "a plurality of reflective imaging elements deflected by a common optical deflector. The arrangement is determined such that the deflected light beam enters and is reflected by the reflective imaging element, and that the optical path of the reflected light beam from the reflective imaging element does not overlap the optical path of the incident light beam. 3).

【0019】このような配備態位は、例えば、反射型結
像素子を主走査対応方向に平行な軸の回りに回転させ
て、反射面を入射光束の入射方向に対して副走査対応方
向に傾けたり(所謂「ティルト」)、反射型結像素子を
副走査対応方向へ平行移動させたり(所謂「シフト」)
することであり、このように反射型結像素子を、ティル
トやシフトを持たせて配備することにより同時に、複数
の走査線の曲がりを「同じ向き」に揃えることが可能に
なる。
Such a deployed configuration is achieved, for example, by rotating the reflection type imaging element around an axis parallel to the main scanning corresponding direction, and setting the reflecting surface in the sub-scanning corresponding direction with respect to the incident direction of the incident light beam. Tilting (so-called “tilt”) or moving the reflective imaging element in the sub-scanning corresponding direction (so-called “shift”)
In this manner, by arranging the reflection type imaging element with a tilt and a shift, it is possible to simultaneously align the curvatures of a plurality of scanning lines in the “same direction”.

【0020】上記請求項3記載のマルチビーム走査装置
においては「反射型結像素子と被走査面との間に、少な
くとも副走査対応方向にパワーを持つ光学素子を有す
る」ことができる(請求項4)。「少なくとも副走査対
応方向にパワーを持つ光学素子」は、例えば、副走査対
応方向にパワーを有するシリンダレンズ、あるいはトー
リックレンズやその変形(樽型の面を持つ変形トーリッ
クレンズ等)である。
In the multi-beam scanning device according to the third aspect, it is possible to have "an optical element having power at least in the sub-scanning direction" between the reflection type imaging element and the surface to be scanned. 4). The “optical element having power at least in the sub-scanning corresponding direction” is, for example, a cylinder lens having power in the sub-scanning corresponding direction, or a toric lens or a deformation thereof (a deformed toric lens having a barrel-shaped surface).

【0021】上記請求項1または2または3または4記
載のマルチビーム走査装置において、走査結像光学系に
より被走査面上に集光された複数の光スポットが、互い
に隣接する走査線を同時に走査するようにすることがで
きる(請求項5)。
In the multi-beam scanning apparatus according to claim 1, the plurality of light spots converged on the surface to be scanned by the scanning image forming optical system simultaneously scan adjacent scanning lines. (Claim 5).

【0022】[0022]

【発明の実施の形態】図1(a)は、請求項1,2記載
の発明の実施の1形態を示している。光源装置10から
は平行光束化された4本の光束が放射される。これら4
本の光束は、線像結像光学系であるシリンダレンズ20
により副走査対応方向にのみ集束され、「共通の光偏向
器」であるポリゴンミラー30の偏向反射面近傍に主走
査対応方向に長い線像として結像される。
FIG. 1A shows a first embodiment of the present invention. The light source device 10 emits four parallel light beams. These four
The luminous flux of the book is transferred to a cylinder lens 20 which is a line image forming optical system.
Thus, the light is focused only in the sub-scanning corresponding direction, and is formed as a line image long in the main scanning corresponding direction near the deflecting reflection surface of the polygon mirror 30 which is a “common optical deflector”.

【0023】上記4本の光束はポリゴンミラー30によ
り偏向され、「共通の走査結像光学系」であるfθレン
ズ40に入射し、被走査面50上に「副走査方向に互い
に分離した4つの光スポット」として集光し、4本の走
査線を同時に走査する。被走査面50の位置には、光導
電性の感光体が配備されるので、4つの光スポットは実
体的には感光体を同時走査することになる。
The four light beams are deflected by the polygon mirror 30 and are incident on the fθ lens 40 which is a “common scanning image forming optical system”. The light is condensed as a “light spot” and four scanning lines are simultaneously scanned. Since a photoconductive photoconductor is provided at the position of the surface to be scanned 50, the four light spots actually scan the photoconductor at the same time.

【0024】光源装置10から被走査面50に到る光路
において、4本の光束の主光線は、光軸に対して常に同
じ側にあり、このため、4つの光スポットが同時に走査
する4本の走査線S1〜S4は「走査線の曲がりが同じ
向き」となっている。
In the optical path from the light source device 10 to the surface 50 to be scanned, the principal rays of the four light beams are always on the same side with respect to the optical axis, so that four light spots scan simultaneously. Of the scanning lines S1 to S4 are “the scanning lines have the same bending direction”.

【0025】図1(b)に示す、これら4つの光スポッ
トによる同時の走査A1と、これに続く同時の走査A2
において、走査線S1〜S4の曲がりの向きが揃ってい
るため、走査線のピッチ偏差は有効に低減される。従っ
て、同時の走査A1,A2を交互に繰り返して形成され
る記録画像において、ピッチ偏差に起因する像質低下は
有効に防止される。
FIG. 1B shows a simultaneous scanning A1 by these four light spots and a subsequent simultaneous scanning A2.
In the above, since the scanning lines S1 to S4 have the same bending direction, the pitch deviation of the scanning lines is effectively reduced. Therefore, in a recorded image formed by alternately repeating the simultaneous scans A1 and A2, image quality deterioration due to pitch deviation is effectively prevented.

【0026】なお、図1(a)のマルチビーム走査装置
は、いわゆる「面倒れ」を補正する機能を有している。
また、光源装置10から放射される光束は、走査結像光
学系の設計如何により、弱い発散性の光束とすることも
できるし、弱い集束性の光束とすることもできる。
The multi-beam scanning device shown in FIG. 1A has a function of correcting so-called "face tilt".
Further, the light beam emitted from the light source device 10 can be a weakly divergent light beam or a weakly convergent light beam depending on the design of the scanning imaging optical system.

【0027】図3は請求項1,3記載の発明の実施の1
形態を示す図である。図3(a)に示すように、光源部
100から放射された4本の光束は共通のコリメートレ
ンズ200により平行光束化され、共通の光偏向器であ
るポリゴンミラー30により同時に偏向され、「走査結
像光学系」をなす結像機能を持つ反射型結像素子である
凹面鏡41(少なくとも主走査を等速化する機能を有す
るので、以下、fθミラー41と呼ぶが、主走査対応方
向と副走査対応方向とで結像パワーが異なるアナモフィ
ックな結像系である)に反射され、fθミラー41の作
用により被走査面に周面を合致させた光導電性の感光体
500上に「副走査方向に互いに分離した4つの光スポ
ット」として集光し、4本の走査線S1,S2,S3,
S4を同時に走査する。
FIG. 3 shows the first embodiment of the present invention.
It is a figure showing a form. As shown in FIG. 3A, the four light beams emitted from the light source unit 100 are converted into parallel light beams by a common collimating lens 200, and are simultaneously deflected by a polygon mirror 30 which is a common light deflector. The concave mirror 41 which is a reflection type imaging element having an imaging function that forms an “imaging optical system” (at least has a function of making the main scanning at a constant speed, and is hereinafter referred to as an fθ mirror 41. (This is an anamorphic imaging system in which the imaging power is different in the scanning corresponding direction.) The “sub-scanning” is performed on the photoconductive photoconductor 500 whose peripheral surface matches the surface to be scanned by the action of the fθ mirror 41. As four light spots separated from one another in four directions, and the four scanning lines S1, S2, S3,
Scan S4 simultaneously.

【0028】図3(b)は、ポリゴンミラー30から感
光体500に到る光路状態を、主走査対応方向から見た
状態を示している。この図に示すように、反射型結像素
子であるfθミラー41は、反射光束Cの光路が入射光
束Bの光路と重ならないように、ティルト角:βとシフ
ト量:ΔZを与えられており、この配備態位により、4
本の走査線S1〜S4の曲がりを同じ向きに揃え、ピッ
チ偏差を有効に軽減させている。
FIG. 3B shows the state of the optical path from the polygon mirror 30 to the photosensitive member 500 as viewed from the main scanning corresponding direction. As shown in this figure, the fθ mirror 41, which is a reflective imaging element, is given a tilt angle: β and a shift amount: ΔZ so that the optical path of the reflected light flux C does not overlap with the optical path of the incident light flux B. , With this deployment
The curvatures of the scanning lines S1 to S4 are aligned in the same direction to effectively reduce the pitch deviation.

【0029】図4は請求項1,4記載の発明の実施の1
形態を示す図である。図4(a)に示すように、光源部
100から放射された4本の光束は共通のコリメートレ
ンズ200により平行光束化され、共通の光偏向器であ
るポリゴンミラー30により同時に偏向され、fθミラ
ー41に反射され、面倒れ補正用の長尺トロイダルレン
ズ45(請求項4記載の発明における「少なくとも副走
査対応方向にパワーを持つ光学素子」)を介して感光体
500上に集光する。集光作用はfθミラー41と長尺
トロイダルレンズ45により行なわれる。集光された4
光束は感光体500上に「副走査方向に互いに分離した
4つの光スポット」を形成し、4本の走査線S1,S
2,S3,S4を同時に走査する。
FIG. 4 shows a first embodiment of the present invention.
It is a figure showing a form. As shown in FIG. 4A, the four light beams emitted from the light source unit 100 are converted into parallel light beams by a common collimating lens 200, and are simultaneously deflected by a polygon mirror 30, which is a common light deflector. The light is reflected by 41, and is condensed on the photoconductor 500 via a long toroidal lens 45 for correcting surface tilt ("an optical element having power at least in the direction corresponding to the sub-scanning" in the fourth aspect of the present invention). The light condensing action is performed by the fθ mirror 41 and the long toroidal lens 45. Focused 4
The light beam forms “four light spots separated from each other in the sub-scanning direction” on the photoconductor 500, and the four scanning lines S1, S
2, S3 and S4 are simultaneously scanned.

【0030】図3(b)に倣って図4(b)に示すよう
に、fθミラー41は、反射光束Cの光路が入射光束B
の光路と重ならないように、ティルト角:βとシフト
量:ΔZを与えられており、この配備態位により、4本
の走査線S1〜S4の曲がりを同じ向きに揃え、ピッチ
偏差を有効に軽減させている。
As shown in FIG. 4B, as in FIG. 3B, the fθ mirror 41 is configured such that the optical path of the reflected light beam C is
The tilt angle: β and the shift amount: ΔZ are given so as not to overlap with the optical paths of the four scan lines S1, S2, S3, and S4. Reduced.

【0031】図3に示した実施の形態では、走査線S1
〜S4の曲がりは、図4(c−1)に示すように「副走
査方向の一方に凸の単純な湾曲」であるが、図4(a)
に示す実施の形態では、長尺トロイダルレンズ45の作
用により、走査線S1〜S4のまがりの形態は、図4
(c−2)に示す如く「主走査中央部が谷状」になり、
湾曲量も、(c−1)の湾曲量:W1から(c−2)の
湾曲量:W2に減少する。
In the embodiment shown in FIG. 3, the scanning line S1
The bends of S4 to S4 are “simple curves that are convex in one of the sub-scanning directions” as shown in FIG.
In the embodiment shown in FIG. 4, the shape of the scanning lines S1 to S4 is changed by the action of the long toroidal lens 45 in FIG.
As shown in (c-2), “the central portion in the main scanning direction becomes a valley shape”
Bending amount also, (c-1) of the bending amount: reduced to W 2: bending amount from W 1 (c-2).

【0032】図4(d)に示すように、上記4つの光ス
ポットによる同時の走査D1と、これに続く同時の走査
D2において、走査線S1〜S4の曲がりが同じ向きに
揃っており、従って走査線の「ピッチ偏差」は有効に低
減され、同時の走査D1,D2を交互に繰り返して形成
される記録画像において、ピッチ偏差に起因する像質低
下は有効に防止される。
As shown in FIG. 4D, in the simultaneous scanning D1 by the four light spots and the subsequent simultaneous scanning D2, the curvatures of the scanning lines S1 to S4 are aligned in the same direction. The "pitch deviation" of the scanning line is effectively reduced, and in a recorded image formed by alternately repeating the simultaneous scans D1 and D2, image quality deterioration due to the pitch deviation is effectively prevented.

【0033】上記図3、図4の実施の形態においても、
コリメートレンズ200に代えてカップリングレンズを
用い、光源装置100からの4光束をそれぞれ、弱い発
散性の光束や、弱い集束性の光束にカップリングするこ
ともできる。
In the embodiment shown in FIGS. 3 and 4,
By using a coupling lens instead of the collimating lens 200, the four light beams from the light source device 100 can be respectively coupled to a weakly divergent light beam or a weakly convergent light beam.

【0034】図1,図3,図4に即して説明した上記実
施の形態において、同時に走査される走査線S1〜S4
は「記録画像において互いに隣接する走査線」となって
いる(請求項5)。しかし、マルチビームにより同時に
走査される複数の走査線は、記録画像上において必ずし
も隣接しなくてもよい。例えば、走査線S1とS2の
間、走査線S2とS3の間、走査線S3とS4の間が、
記録画像を形成する走査線ピッチの整数倍となっていて
もよい。しかし、同時に走査される走査線の間隔が大き
くなると、複数の走査線の曲がりの向きが同じ向きに揃
っていても、記録画像の像質低下の問題が生じる。
In the embodiment described with reference to FIGS. 1, 3 and 4, the scanning lines S1 to S4 which are simultaneously scanned
Are "scan lines adjacent to each other in a recorded image" (claim 5). However, a plurality of scanning lines that are simultaneously scanned by the multi-beam need not necessarily be adjacent on the recorded image. For example, between the scanning lines S1 and S2, between the scanning lines S2 and S3, between the scanning lines S3 and S4,
It may be an integral multiple of the scanning line pitch for forming a recorded image. However, when the interval between the scanning lines that are simultaneously scanned becomes large, the problem of deteriorating the image quality of the recorded image occurs even if the bending directions of the plurality of scanning lines are aligned in the same direction.

【0035】図5は、4つの光スポットにより同時に走
査される4本の走査線S1〜S4において、走査線S1
とS2の間、S2とS3の間、S3とS4の間が共に
「記録画像を形成する走査線ピッチ」の3ピッチ分に設
定されている。このため、走査線S1,S4間が上記走
査線ピッチにして9ピッチ分開いており、走査線の曲が
りは、走査線S1〜S4に就いて同じ向きであるが、走
査線の曲がりの程度は、走査結像光学系の光軸近傍を通
る光束の走査線S4から、上記光軸を最も離れた位置を
走査する光束による走査線S1に向かって次第に増加し
ている。
FIG. 5 shows a scanning line S1 among four scanning lines S1 to S4 which are simultaneously scanned by four light spots.
And between S2 and S2, between S2 and S3, and between S3 and S4 are set to three pitches of "scanning line pitch for forming a recorded image". Therefore, the interval between the scanning lines S1 and S4 is nine pitches apart from the scanning line pitch, and the scanning lines have the same direction with respect to the scanning lines S1 to S4. The light beam gradually increases from the scanning line S4 of the light beam passing near the optical axis of the scanning image forming optical system to the scanning line S1 of the light beam scanning the position farthest from the optical axis.

【0036】このような走査線S1〜S4により記録ピ
ッチの「3ピッチ分とび」に走査を行なう場合を考えて
みると、上記走査線S1を走査する光スポットの走査
は、最初の走査で実線の走査線S1を走査し、次の走査
で破線の走査線S1’を走査し、その次の走査では鎖線
の走査線S1’’を走査する。この場合、例えば、走査
線S1’’と、これに隣接することになる走査線S4と
の間では、前述した「ピッチ偏差」がかなり顕著に現れ
ることになる。
Considering the case where scanning is performed by "3 pitch steps" of the recording pitch by using such scanning lines S1 to S4, the scanning of the light spot for scanning the scanning line S1 is a solid line in the first scanning. , The next scan scans the dashed scan line S1 ′, and scans the next scan scans the dashed scan line S1 ″. In this case, for example, between the scanning line S1 ″ and the scanning line S4 that is adjacent to the scanning line S1 ″, the above-mentioned “pitch deviation” appears significantly.

【0037】このような現象を考慮すると、複数の光ス
ポットが「記録画像上における互いに隣接する走査線を
同時に走査する(請求項5)」ことにより、ピッチ偏差
を有効に抑えられることが理解されるであろう。
Considering such a phenomenon, it is understood that a plurality of light spots simultaneously scan adjacent scanning lines on a recorded image (claim 5), thereby effectively suppressing the pitch deviation. Will be.

【0038】[0038]

【発明の効果】以上に説明したように、この発明によれ
ば新規なマルチビーム走査装置を実現できる。この発明
においては、上記のように、複数の光スポットにより同
時に走査される走査線の曲がりが同じ向きに揃っている
ので、ピッチ偏差を有効に軽減して「見た目に良好」な
記録画像を形成することが可能である。
As described above, according to the present invention, a novel multi-beam scanning device can be realized. In the present invention, as described above, since the curvatures of the scanning lines scanned simultaneously by a plurality of light spots are aligned in the same direction, the pitch deviation is effectively reduced to form a “good-looking” recorded image. It is possible to

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の1形態を説明するための図で
ある。
FIG. 1 is a diagram for describing one embodiment of the present invention.

【図2】この発明の解決課題であるマルチビーム走査に
特有のピッチ偏差を説明するための図である。
FIG. 2 is a diagram for explaining pitch deviation peculiar to multi-beam scanning, which is a problem to be solved by the present invention.

【図3】この発明の実施の別の形態を説明するための図
である。
FIG. 3 is a diagram for explaining another embodiment of the present invention.

【図4】この発明の実施の他の形態を説明するための図
である。
FIG. 4 is a diagram for explaining another embodiment of the present invention.

【図5】請求項5記載の発明の効果を説明するための図
である。
FIG. 5 is a diagram for explaining an effect of the invention described in claim 5;

【符号の説明】[Explanation of symbols]

S1,S2,S3,S4 4つの光スポットにより
同時に走査される走査線 50 被走査面
S1, S2, S3, S4 Scan lines scanned simultaneously by four light spots 50 Scanned surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数の光源からの複数の光束を共通の光偏
向器で偏向させ、複数の偏向光束を共通の走査結像光学
系により被走査面上に、副走査方向に互いに分離した複
数の光スポットとして集光させ、複数走査線を同時に走
査するマルチビーム走査装置において、 複数の光スポットの同時の走査による複数の走査線の曲
がりが、同じ向きとなるようにしたことを特徴とするマ
ルチビーム走査装置。
A plurality of light beams from a plurality of light sources are deflected by a common optical deflector, and the plurality of deflected light beams are separated from each other in a sub-scanning direction on a surface to be scanned by a common scanning image forming optical system. In a multi-beam scanning apparatus that converges as a light spot and simultaneously scans a plurality of scanning lines, the bending of a plurality of scanning lines due to the simultaneous scanning of a plurality of light spots is directed in the same direction. Multi-beam scanning device.
【請求項2】請求項1記載のマルチビーム走査装置にお
いて、 走査結像光学系がレンズ系であることを特徴とするマル
チビーム走査装置。
2. The multi-beam scanning device according to claim 1, wherein the scanning image forming optical system is a lens system.
【請求項3】請求項1記載のマルチビーム走査装置にお
いて、 走査結像光学系が、結像機能を持つ反射型結像素子を有
し、 共通の光偏向器により偏向された複数の偏向光束が、上
記反射型結像素子に入射して反射され、 上記反射型結像素子は、反射光束の光路が入射光束の光
路と重ならないように配備態位を定められていることを
特徴とするマルチビーム走査装置。
3. The multi-beam scanning apparatus according to claim 1, wherein the scanning image forming optical system has a reflection type image forming element having an image forming function, and a plurality of deflected light beams deflected by a common optical deflector. However, the incident light is incident on the reflection type imaging element and is reflected, and the reflection type imaging element is characterized in that the arrangement is determined so that the optical path of the reflected light flux does not overlap with the optical path of the incident light flux. Multi-beam scanning device.
【請求項4】請求項3記載のマルチビーム走査装置にお
いて、 反射型結像素子と被走査面との間に、少なくとも副走査
対応方向にパワーを持つ光学素子を有することを特徴と
するマルチビーム走査装置。
4. A multi-beam scanning apparatus according to claim 3, further comprising an optical element having power at least in a sub-scanning corresponding direction between the reflection type imaging element and the surface to be scanned. Scanning device.
【請求項5】請求項1または2または3または4記載の
マルチビーム走査装置において、 走査結像光学系により被走査面上に集光された複数の光
スポットは、互いに隣接する走査線を同時に走査するこ
とを特徴とするマルチビーム走査装置。
5. The multi-beam scanning apparatus according to claim 1, wherein the plurality of light spots converged on the surface to be scanned by the scanning image forming optical system simultaneously scan adjacent scanning lines. A multi-beam scanning device for scanning.
JP22378796A 1996-08-26 1996-08-26 Multi-beam scanner Expired - Lifetime JP3527366B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22378796A JP3527366B2 (en) 1996-08-26 1996-08-26 Multi-beam scanner
US08/916,959 US6069723A (en) 1996-08-26 1997-08-25 Multi-beam scanning apparatus with controlled scan line bow
KR1019970041279A KR100283194B1 (en) 1996-08-26 1997-08-26 Multi-beam scanning apparatus with controlled scan line bow
US09/552,730 US6266174B1 (en) 1996-08-26 2000-04-19 Multi-beam scanning apparatus with controlled scan line bow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22378796A JP3527366B2 (en) 1996-08-26 1996-08-26 Multi-beam scanner

Publications (2)

Publication Number Publication Date
JPH1068898A true JPH1068898A (en) 1998-03-10
JP3527366B2 JP3527366B2 (en) 2004-05-17

Family

ID=16803712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22378796A Expired - Lifetime JP3527366B2 (en) 1996-08-26 1996-08-26 Multi-beam scanner

Country Status (1)

Country Link
JP (1) JP3527366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833939B1 (en) 2000-02-04 2004-12-21 Fuji Xerox Co., Ltd. Light scanning method and light scanning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833939B1 (en) 2000-02-04 2004-12-21 Fuji Xerox Co., Ltd. Light scanning method and light scanning device

Also Published As

Publication number Publication date
JP3527366B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
JP4505134B2 (en) Raster output scanning (ROS) image forming system
KR101120487B1 (en) Multibeam scanning device
JPH1073778A (en) Scanning optical device and laser beam printer device
JPH07199109A (en) Raster scanning system
JP5566068B2 (en) Optical scanning device and image forming apparatus having the same
US4805974A (en) Polycone™ scanning system with multiple beams
US6266174B1 (en) Multi-beam scanning apparatus with controlled scan line bow
JPH0364727A (en) Light beam scanning optical system
US5028103A (en) Optical scanning apparatus
JP2000267031A (en) Optical scanner
JP3197804B2 (en) Multi-beam scanner
JP5269169B2 (en) Scanning optical device and laser beam printer having the same
JPH07111509B2 (en) Optical scanning device
JP3527366B2 (en) Multi-beam scanner
US5337182A (en) Optical Scanner
JPH09197308A (en) Optical scanner
JP3527385B2 (en) Multi-beam scanner
JP2811988B2 (en) Optical scanning device in image forming apparatus
JP2003131154A (en) Optical scanner and image forming device using the same
JP3542481B2 (en) Multi-beam scanning optical system and image forming apparatus using the same
JPH10253915A (en) Optical scanner
JP2001147388A (en) Multibeam scanning optical system and image-forming device using the same
JPH01200220A (en) Light beam scanning optical system
JPH0899436A (en) Led array head
JP2000241729A (en) Multibeam scanner and image forming device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

EXPY Cancellation because of completion of term