JPH1068076A - Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance - Google Patents

Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance

Info

Publication number
JPH1068076A
JPH1068076A JP22398996A JP22398996A JPH1068076A JP H1068076 A JPH1068076 A JP H1068076A JP 22398996 A JP22398996 A JP 22398996A JP 22398996 A JP22398996 A JP 22398996A JP H1068076 A JPH1068076 A JP H1068076A
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
cutting tool
reaction gas
coated cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22398996A
Other languages
Japanese (ja)
Inventor
Akira Osada
晃 長田
Kenichi Unami
健一 宇納
Toshiaki Ueda
稔晃 植田
斉 ▲功▼刀
Hitoshi Kunugi
Takeki Hamaguchi
雄樹 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP22398996A priority Critical patent/JPH1068076A/en
Publication of JPH1068076A publication Critical patent/JPH1068076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a cutting tool made of surface-coated cemented carbide excellent in chipping resistance and showing excellent cuttability over a long period. SOLUTION: On the surface of the substrate of WC base cemented carbide, a hard coating layer contg. an Al2 O3 layer is formed by the average layer thickness of 3 to 20μm by using a chemical vapor deposition process and/or a physical vapor deposition process to produce a cutting tool made of the surface-coated cemented carbide. In the formation of the Al2 O3 layer, as a reaction gas, an inert gas series reaction gas composed of, by volume, 0.5 to 15% AlCl3 , 0.5 to 30% CO2 , 0.01 to 1% H2 S, and the balance inert gas is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、硬質被覆層を構
成する酸化アルミニウム(以下、Al23 で示す)層
が、これを厚膜化してもその層厚が均一化し、かつ他の
構成層に対してすぐれた層間密着性を示し、したがっ
て、例えば鋼や鋳鉄などの通常の条件での連続切削は勿
論のこと、特に高速で、かつ重切削条件で用いた場合に
も、チッピング(微小欠け)などの発生なく、すぐれた
切削性能を長期に亘って発揮する表面被覆超硬合金製切
削工具(以下、被覆超硬工具という)の製造法に関する
ものである。
BACKGROUND OF THE INVENTION The present invention, aluminum oxide (hereinafter, Al 2 O indicated by 3) that constitutes the hard coating layer layer, which the layer thickness be thickened is equalized, and other configurations It exhibits excellent interlayer adhesion to the layer, and therefore, is not only capable of continuous cutting under ordinary conditions such as steel or cast iron, but also chipping (microscopic) even when used at high speed and heavy cutting conditions. The present invention relates to a method for producing a surface-coated cemented carbide cutting tool (hereinafter, referred to as a coated cemented carbide tool) that exhibits excellent cutting performance over a long period of time without occurrence of chipping or the like.

【0002】[0002]

【従来の技術】従来、炭化タングステン基超硬合金基体
(以下、超硬基体という)の表面に、化学蒸着法および
/または物理蒸着法を用いて、Al2 3 層を含む硬質
被覆層、例えばTiの炭化物(以下、TiCで示す)
層、窒化物(以下、同じくTiNで示す)層、炭窒化物
(以下、TiCNで示す)層、酸化物(以下、TiO2
で示す)層、炭酸化物(以下、TiCOで示す)層、窒
酸化物(以下、TiNOで示す)層、および炭窒酸化物
(以下、TiCNOで示す)層のうちの1種または2種
以上と、Al23 層とからなる硬質被覆層を3〜20
μmの平均層厚で形成してなる被覆超硬工具が知られて
いる。また、特に上記被覆超硬工具の硬質被覆層を構成
するAl23 層の形成が、反応ガスとして、容量%
(以下、%の表示は容量%を示す)で、 三塩化アルミニウム(以下、AlCl3 で示す):1〜
20%、 二酸化炭素(以下、CO2 で示す):0.5〜30%、 [必要に応じて一酸化炭素(CO)または塩化水素(H
Cl):1〜30%]、 水素:残り、 からなる組成を有する水素系反応ガスを用い、 反応温度:950〜1100℃、 雰囲気圧力:20〜200torr、 の条件で行われていることも知られている。
2. Description of the Related Art Conventionally, a hard coating layer including an Al 2 O 3 layer is formed on a surface of a tungsten carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate) by using a chemical vapor deposition method and / or a physical vapor deposition method. For example, a carbide of Ti (hereinafter, referred to as TiC)
Layer, nitride (hereinafter also indicated as TiN) layer, carbonitride (hereinafter indicated as TiCN) layer, oxide (hereinafter referred to as TiO 2)
) Layer, a carbonate (hereinafter, shown as TiCO) layer, a nitrogen oxide (hereinafter, shown as TiNO) layer, and one or more of a carbon oxynitride (hereinafter, shown as TiCNO) layer When the hard coating layer consisting of the Al 2 O 3 layer 3-20
A coated carbide tool formed with an average layer thickness of μm is known. Further, in particular, the formation of the Al 2 O 3 layer constituting the hard coating layer of the coated cemented carbide tool is considered as a reaction gas,
(Hereinafter, the expression of% indicates volume%), aluminum trichloride (hereinafter, indicated by AlCl 3 ): 1 to 1
20%, carbon dioxide (hereinafter referred to as CO 2 ): 0.5 to 30%, [If necessary, carbon monoxide (CO) or hydrogen chloride (H
Cl): 1 to 30%], hydrogen: residual, and a hydrogen-based reaction gas having a composition of: reaction temperature: 950 to 1100 ° C., atmospheric pressure: 20 to 200 torr. Have been.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削加工
のFA化はめざましく、かつ省力化に対する要求も強
く、これに伴い、被覆超硬工具には使用寿命のさらなる
延命化が求められ、これに対応する手段として、これを
構成する硬質被覆層のうち、特に耐酸化性と熱的安定性
にすぐれ、さらに高硬度を有するAl23 層の厚膜化
が広く検討されているが、前記Al23 層は、これを
厚くすると、上記の従来Al23 層形成手段では層厚
が局部的に不均一になり、切刃の逃げ面、すくい面、お
よび前記逃げ面とすくい面の交わるエッジ部の間には層
厚に著しいバラツキが発生するようになるばかりでな
く、他の構成層との密着性(層間密着性)も低下し、こ
れらが原因で、例えば鋼や鋳鉄などの高速連続高送り切
削や高速連続高切込み切削などの苛酷な条件での切削に
は切刃にチッピングが発生し易く、比較的短時間で使用
寿命に至るのが現状である。
On the other hand, in recent years, the use of FA in cutting has been remarkable, and there has been a strong demand for labor saving. Accordingly, coated carbide tools have been required to have a longer service life. As means corresponding to the above, among the hard coating layers constituting the same, particularly, the oxidation resistance and thermal stability are excellent, and further thickening of an Al 2 O 3 layer having high hardness has been widely studied. When the thickness of the Al 2 O 3 layer is increased, the thickness of the Al 2 O 3 layer becomes locally non-uniform in the conventional Al 2 O 3 layer forming means, and the flank of the cutting edge, the rake face, and the rake face Not only does the layer thickness significantly vary between the edges where the surfaces intersect, but also the adhesion to other constituent layers (interlayer adhesion) is reduced, which results in, for example, steel or cast iron. High-speed continuous high-feed cutting and high-speed continuous high-depth cutting The cutting under severe conditions such as easy chipping occurs in the cutting edge, at present, leading to a relatively short time service life.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、被覆超硬工具の製造に際して、
特に硬質被覆層を構成するAl23 層の形成に着目
し、層厚を厚くした場合の層厚の局部的バラツキの減少
と、層間密着性の向上を図るべく研究を行った結果、以
下の(a)および(b)に示す研究結果を得たのであ
る。 (a) 従来の水素系反応ガスを用いて形成されるAl
23 層においては、反応雰囲気中で、反応ガスの構成
成分であるCO2 と水素(H2 )が、 CO2 +H2 →CO+H2 O (1) 上記反応式(1)にしたがって反応し、この結果生成し
たH2 Oと、AlCl3が、 AlCl3 +H2 O→Al23 +HCl (2) 上記反応式(2)にしたがって反応し、AlCl3 が加
水分解されてAl23を生成し、この場合上記(1)
式の反応に比して上記(2)式の反応がきわめて速く、
したがって上記(1)式で生成したH2 Oは、すばやく
反応雰囲気中に存在するAlCl3 と反応することか
ら、ほとんどのAl23 は反応雰囲気中での生成とな
り、これが反応表面に堆積することによりAl23
が形成される反応機構をとるものであるため、反応ガス
の流れや反応表面の形状にも影響されることと相まっ
て、例えば切削工具であるスローアウエイチップを反応
ガス流中にどのような状態で配置しても、切刃の逃げ
面、すくい面、および前記逃げ面とすくい面の交わるエ
ッジ部の相互間に均一な層厚のAl2 3 層を形成する
ことは困難で、大きな層厚のバラツキの発生は避けられ
ないこと。
Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoint, when manufacturing coated carbide tools,
In particular, focusing on the formation of the Al 2 O 3 layer constituting the hard coating layer, a study was conducted to reduce the local variation of the layer thickness when the layer thickness was increased and to improve the interlayer adhesion. (A) and (b) were obtained. (A) Al formed using a conventional hydrogen-based reaction gas
In the 2 O 3 layer, CO 2 and hydrogen (H 2 ), which are constituents of a reaction gas, react in a reaction atmosphere according to the above reaction formula (1), CO 2 + H 2 → CO + H 2 O. The resulting H 2 O and AlCl 3 react with AlCl 3 + H 2 O → Al 2 O 3 + HCl (2) according to the above reaction formula (2), whereby AlCl 3 is hydrolyzed to form Al 2 O 3 And in this case, the above (1)
The reaction of the above formula (2) is much faster than the reaction of the formula,
Therefore, the H 2 O generated by the above formula (1) quickly reacts with AlCl 3 present in the reaction atmosphere, and most of the Al 2 O 3 is generated in the reaction atmosphere, and this is deposited on the reaction surface. Thus, the reaction mechanism in which an Al 2 O 3 layer is formed is taken, so that the reaction gas flow and the shape of the reaction surface are affected. Regardless of the arrangement in any state, forming an Al 2 O 3 layer having a uniform thickness between the flank of the cutting edge, the rake face, and the edge where the flank intersects the rake face. Is difficult, and large thickness variations cannot be avoided.

【0005】(b) 上記(a)の検討結果から、でき
るだけ反応表面でのAl23 生成による層形成を行え
ば、層厚の均一化が可能になるという結論に達し、これ
を可能ならしめる反応ガスの開発に努めたところ、反応
ガスとして、 AlCl3 :0.5〜15%、 CO2 :0.5〜30%、 硫化水素(以下、H2 Sで示す):0.01〜1%、 不活性ガス:残り、 からなる組成を有する不活性ガス系反応ガスを用いる
と、反応表面上でCO2 がH2 Sの触媒作用により、 CO2 →CO+O (a) 上記(a)式にしたがって分解し、上記(a)式の反応
で生成したOは反応表面に吸着し、したがってこのOと
AlCl3 の反応が、 AlCl3 +O→Al23 +Cl2 (b) 上記(b)式の反応式にしたがって反応表面で行われる
ようになり、したがって、層形成は、生成Al2 3
反応表面への移動堆積がなく、かつ反応ガスの流れや反
応表面形状に全く影響されることなく行われることにな
ることから、この結果形成されたAl2 3 層は、その
層厚が厚くなっても局部的バラツキがきわめて少なく、
その上反応表面に対する密着性も一段と向上したものに
なること。
(B) From the results of the above-mentioned study (a), it was concluded that the layer thickness could be made uniform by forming Al 2 O 3 on the reaction surface as much as possible. When we tried to develop a reactive gas, AlCl 3 : 0.5 to 15%, CO 2 : 0.5 to 30%, hydrogen sulfide (hereinafter referred to as H 2 S): 0.01 to 1%, inert gas: the rest, the use of inert gas based reactive gas having a composition consisting of, CO 2 is by the catalytic action of H 2 S on the reaction surface, CO 2 → CO + O ( a) (a) above O decomposed according to the formula and O generated by the reaction of the above formula (a) is adsorbed on the reaction surface, and thus the reaction between O and AlCl 3 is expressed as AlCl 3 + O → Al 2 O 3 + Cl 2 (b) Is performed on the reaction surface according to the reaction formula Becomes, therefore, the layer forming the generated Al 2 O 3 without moving the deposition of the reactive surface of, and since it will be carried out without being affected at all flow and reaction surface shape of the reaction gas, as a result formation The Al 2 O 3 layer has very little local variation even when the layer thickness is increased,
In addition, the adhesion to the reaction surface is further improved.

【0006】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、化学蒸着法お
よび/または物理蒸着法を用いて、Al2 3 層を含む
硬質被覆層、例えばTiC層、TiN層、TiCN層、
TiO2 層、TiCO層、TiNO層、およびTiCN
O層のうちの1種または2種以上と、前記Al23
とからなる硬質被覆層を3〜20μmの平均層厚で形成
することにより被覆超硬工具を製造するに際して、前記
硬質被覆層を構成するAl23 層の形成を、反応ガス
として、 AlCl3 :0.5〜15%、 CO2 :0.5〜30%、 H2 S:0.01〜1%、 不活性ガス:残り、 からなる組成を有する不活性ガス系反応ガスを用いて行
うことにより、厚膜化層の層厚均一化および層間密着性
の向上をはかり、この結果としてすぐれた耐チッピング
性を示すようになる被覆超硬工具を製造する方法に特徴
を有するものである。
The present invention has been made on the basis of the above-mentioned research results, and a hard coating including an Al 2 O 3 layer on a surface of a superhard substrate by using a chemical vapor deposition method and / or a physical vapor deposition method. Layers such as TiC layer, TiN layer, TiCN layer,
TiO 2 layer, TiCO layer, TiNO layer, and TiCN
When producing a coated carbide tool by forming a hard coating layer composed of one or more of the O layers and the Al 2 O 3 layer with an average layer thickness of 3 to 20 μm, The formation of the Al 2 O 3 layer constituting the layer is performed by using, as a reaction gas, AlCl 3 : 0.5 to 15%, CO 2 : 0.5 to 30 %, H 2 S: 0.01 to 1%, and inert gas. Gas: remaining, by using an inert gas-based reaction gas having the composition of, to achieve uniform thickness of the thickened layer and to improve interlayer adhesion, and as a result, excellent chipping resistance is exhibited. The method is characterized by the method for producing a coated cemented carbide tool as described above.

【0007】つぎに、この発明の方法において、反応ガ
スの組成を上記の通りに限定した理由を説明する。 (a)AlCl3 その割合が0.5%未満では、Al23 のAl源が不
足してAl23 層の形成が遅くなり、実用的でなく、
一方その割合が15%を越えるとAl源が供給過剰とな
り、Al23 層の結晶性が低下するようになることか
ら、その割合を0.5〜15%、望ましくは3〜7%と
定めた。
Next, the reason why the composition of the reaction gas is limited as described above in the method of the present invention will be described. (A) When the proportion of AlCl 3 is less than 0.5%, the source of Al 2 O 3 is insufficient and the formation of the Al 2 O 3 layer becomes slow, which is not practical.
On the other hand, if the ratio exceeds 15%, the supply of the Al source becomes excessive, and the crystallinity of the Al 2 O 3 layer decreases, so that the ratio is 0.5 to 15%, preferably 3 to 7%. I decided.

【0008】(b)CO2 その割合が0.5%未満では、Al23 のO源に対し
てAl源が供給過剰となって結晶性が低下し、一方その
割合が30%を越えると逆にAl源に対して分解Oが過
剰に存在し、上記(b)式の反応に局部的不均一性が生
じ、層厚の均一性が低下するようになることから、その
割合を0.5〜30%、望ましくは10〜20%と定め
た。
(B) If the proportion of CO 2 is less than 0.5%, the supply of the Al source to the O source of Al 2 O 3 becomes excessive and the crystallinity decreases, while the proportion exceeds 30%. Conversely, decomposition O is excessively present relative to the Al source, causing local non-uniformity in the reaction of the above formula (b) and reducing the uniformity of the layer thickness. 0.5-30%, preferably 10-20%.

【0009】(c)H2 S その割合が0.01%未満では、上記(a)式の反応が
十分に行われず、Al 23 のO源の供給が不十分とな
って実用的速さでのAl23 層の形成が行えないばか
りでなく、その層厚均一性も損なわれるようになり、一
方その割合が1%を越えると反応雰囲気中に多量のS成
分が存在するようになり、これが形成層の結晶性低下の
原因となることから、その割合を0.01〜1%、望ま
しくは0.1〜0.5%と定めた。
(C) HTwo S If the ratio is less than 0.01%, the reaction of the above formula (a)
Not enough, Al Two OThree Supply of O source is insufficient
Al at a practical speedTwo OThree Fool to be able to form a layer
In addition, the uniformity of the layer thickness is impaired.
If the ratio exceeds 1%, a large amount of S
Is present, which reduces the crystallinity of the formation layer.
Because it causes a cause, the ratio is preferably 0.01 to 1%.
Or 0.1 to 0.5%.

【0010】なお、その他のAl23 層形成条件であ
る反応温度および雰囲気圧力は、反応温度:850〜1
100℃、望ましくは900〜1050℃、雰囲気圧
力:20〜500torr、望ましくは40〜150t
orrとするのがよい。これは、反応温度が850℃未
満ではAl23 層の結晶性が低下し、一方1100℃
を越えるとAl23 層が粗粒化し、耐摩耗性が低下す
るようになるという理由によるものであり、また雰囲気
圧力が20torr未満では反応が遅くなり、所定の速
さでの層形成が行われず、一方500torrを越える
と層の表面に凹凸が生じるようになって、層厚不均一化
の原因となるという理由によるものである。
The reaction temperature and atmospheric pressure, which are other conditions for forming the Al 2 O 3 layer, are as follows:
100 ° C., preferably 900 to 1050 ° C., ambient pressure: 20 to 500 torr, preferably 40 to 150 t
orr is recommended. When the reaction temperature is lower than 850 ° C., the crystallinity of the Al 2 O 3 layer is reduced, while the reaction temperature is lower than 1100 ° C.
If the pressure exceeds 20 Torr, the Al 2 O 3 layer becomes coarse and the abrasion resistance is reduced. If the atmospheric pressure is less than 20 torr, the reaction becomes slow, and the layer formation at a predetermined speed becomes impossible. On the other hand, if the pressure exceeds 500 torr, the surface of the layer becomes uneven, which causes the layer thickness to become non-uniform.

【0011】また、硬質被覆層の平均層厚を3〜20μ
mとしたのは、その層厚が3μm未満では所望のすぐれ
た耐摩耗性を確保することができず、一方その層厚が2
0μmを越えると、切刃に欠けやチッピングが発生し易
くなるという理由によるものである。
The average thickness of the hard coating layer is 3 to 20 μm.
When the thickness of the layer is less than 3 μm, the desired excellent wear resistance cannot be secured, while the thickness of the layer is 2 μm.
If the thickness exceeds 0 μm, chipping and chipping of the cutting edge are likely to occur.

【0012】[0012]

【発明の実施の形態】つぎに、この発明の方法を実施例
により具体的に説明する。原料粉末として、平均粒径:
1.5μmを有する細粒WC粉末、同3μmの中粒WC
粉末、同1.2μmの(Ti,W)CN(重量比で、以
下同じ、TiC/TiN/WC=24/20/56)粉
末、同1.3μmの(Ta,Nb)C(TaC/NbC
=90/10)粉末、同1.2μmのCo粉末、および
同1.0μmのCr粉末を用意し、これら原料粉末を表
1に示される配合組成に配合し、ボールミルで72時間
湿式混合し、乾燥した後、ISO・CNMG12040
8に定める形状の圧粉体にプレス成形し、この圧粉体を
同じく表1に示される条件で真空焼結することにより超
硬基体A〜Eをそれぞれ製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the method of the present invention will be specifically described with reference to embodiments. As raw material powder, average particle size:
Fine WC powder with 1.5 μm, medium WC with 3 μm
1.2 μm (Ti, W) CN (weight ratio, hereinafter the same, TiC / TiN / WC = 24/20/56) powder, 1.3 μm (Ta, Nb) C (TaC / NbC)
= 90/10) powder, the same 1.2 μm Co powder, and the same 1.0 μm Cr powder were prepared, and these raw material powders were blended in the blending composition shown in Table 1 and wet-mixed for 72 hours in a ball mill. After drying, ISO • CNMG12040
The compacts were press-molded into compacts having the shape specified in No. 8, and the compacts were vacuum-sintered under the conditions shown in Table 1 to produce super hard substrates A to E, respectively.

【0013】ついで、これらの超硬基体A〜Eの表面
に、ホーニングを施した状態で、通常の化学蒸着装置を
用い、表2(表中のl−TiCNは特開平6−8010
号公報に記載される縦長成長結晶組織をもつものであ
り、また同p−TiCNは通常の粒状結晶組織をもつも
のである)および表3[表中のAl2 3 (a)〜
(l)は反応ガスとして不活性ガス系反応ガスを用いて
形成したAl2 3 層、Al23 (m)は水素系反応
ガスを用いて形成したAl2 3 層を示す。以下、表
4、5も同じ]に示される条件にて、表4、5に示され
る組成および目標層厚(切刃の逃げ面)の硬質被覆層を
形成することにより本発明法1〜14および従来法1〜
14をそれぞれ実施し、被覆超硬工具(以下、それぞれ
の方法に対応する被覆超硬工具を本発明被覆超硬工具1
〜14および従来被覆超硬工具1〜14という)を製造
した。この結果得られた各種の被覆超硬工具の硬質被覆
層を構成するAl2 3 層について、切刃の逃げ面とす
くい面の交わるエッジ部の最大層厚を測定し、さらに前
記エッジ部からそれぞれ1mm内側の箇所の逃げ面とすく
い面における層厚を測定した。この測定結果を表6,7
に示した。なお、硬質被覆層を構成するAl23 層以
外のその他の層の層厚には、いずれも局部的バラツキが
ほとんどなく、目標層厚とほぼ同じ値を示すものであっ
た。
Next, with the surfaces of these superhard substrates A to E being honed, a conventional chemical vapor deposition apparatus was used to obtain Table 2 (1-TiCN in the table corresponds to JP-A-6-8010).
And p-TiCN has a normal granular crystal structure described in Japanese Unexamined Patent Application Publication No. H10-260, and Table 3 [Al 2 O 3 (a) to
(L) shows an Al 2 O 3 layer formed using an inert gas-based reaction gas as a reaction gas, and Al 2 O 3 (m) shows an Al 2 O 3 layer formed using a hydrogen-based reaction gas. Hereinafter, the same applies to Tables 4 and 5], by forming a hard coating layer having the composition and the target layer thickness (the flank of the cutting edge) shown in Tables 4 and 5 under the conditions shown in Tables 4 and 5. And conventional method 1
14 is carried out, and the coated carbide tool (hereinafter, the coated carbide tool corresponding to each method is coated with the coated carbide tool 1 of the present invention).
-14 and conventional coated carbide tools 1-14). For the resulting Al 2 O 3 layer constituting the hard coating layer of the various coated carbide tools obtained as a result, the maximum layer thickness at the edge where the flank and rake face of the cutting edge intersect was measured, and further from the edge. The layer thickness was measured on the flank and rake face of each 1 mm inside. Tables 6 and 7 show the measurement results.
It was shown to. The thicknesses of the other layers constituting the hard coating layer other than the Al 2 O 3 layer had almost no local variation, and showed almost the same value as the target layer thickness.

【0014】さらに、いずれも耐チッピング性を評価す
る目的で、上記本発明被覆超硬工具1〜8および従来被
覆超硬工具1〜8については、 被削材:FC300の丸棒(硬さ:HB180)、 切削速度:450m/min.、 切込み:1.5mm、 送り:0.45mm/rev.、 切削時間:15分、 の条件で鋳鉄の乾式高速連続高送り切削試験を行い、切
刃の逃げ面摩耗幅を測定した。
Further, for the purpose of evaluating chipping resistance, each of the coated carbide tools 1 to 8 of the present invention and the conventional coated carbide tools 1 to 8 was made of a round bar of work material: FC300 (hardness: HB180), Cutting speed: 450 m / min. Infeed: 1.5 mm Feed: 0.45 mm / rev. A dry high-speed continuous high-feed cutting test of cast iron was performed under the following conditions: cutting time: 15 minutes, and the flank wear width of the cutting edge was measured.

【0015】また上記本発明被覆超硬工具9〜14およ
び従来被覆超硬工具9〜14については、 被削材:SCM440の丸棒(硬さ:HB220)、 切削速度:380m/min.、 切込み:1.5mm.、 送り:0.42mm/rev.、 切削時間:10分、 の条件で鋼の乾式高速連続高送り切削試験を行い、同じ
く切刃の逃げ面摩耗幅をを測定した。これらの測定結果
を表6、7に示した。
The coated carbide tools 9 to 14 of the present invention and the conventionally coated carbide tools 9 to 14 are described below. Work material: round bar of SCM440 (hardness: HB220), cutting speed: 380 m / min. Infeed: 1.5 mm. Feed: 0.42 mm / rev. A dry high-speed continuous high-feed cutting test of steel was performed under the following conditions: cutting time: 10 minutes, and the flank wear width of the cutting edge was also measured. Tables 6 and 7 show the results of these measurements.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【表5】 [Table 5]

【0021】[0021]

【表6】 [Table 6]

【0022】[0022]

【表7】 [Table 7]

【0023】[0023]

【発明の効果】表6,7に示される結果から、いずれも
硬質被覆層を構成するAl2 3 層の形成に不活性ガス
系反応ガスを用いる本発明法1〜14で製造された本発
明被覆超硬工具1〜14は、いずれもこれを構成する硬
質被覆層のうちのAl23 層の層厚に、これを厚膜化
しても局部的バラツキがきわめて少なく、切刃の逃げ
面、すくい面、および逃げ面とすくい面の交わるエッジ
部の相互間の層厚が均一化しているのに対して、Al2
3 層の形成に水素系反応ガスを用いる従来法1〜14
で製造された従来被覆超硬工具1〜14においては、逃
げ面、すくい面、およびエッジ部における層厚の相互間
のバラツキが著しく、この結果として本発明被覆超硬工
具1〜14は、きわめて苛酷な切削条件である鋼および
鋳鉄の乾式高速連続高送り切削試験で、前記不活性ガス
系反応ガスを用いて形成されたAl23 層がすぐれた
層間密着性を有することと相まって、切刃に欠けやチッ
ピングの発生なく、すぐれた耐摩耗性を示すのに対し
て、従来被覆超硬工具1〜14は硬質被覆層の局部的バ
ラツキが原因でいずれも切刃にチッピングが発生し、比
較的短時間で使用寿命に至ることが明らかである。上述
のように、この発明の方法によれば、硬質被覆層を構成
するAl2 3 層の層厚を厚膜化しても、その層厚に局
部的バラツキがきわめて少なく、かつ層間密着性の良好
な被覆超硬工具を製造することができ、したがって、こ
の結果得られた被覆超硬工具は、例えば鋼や鋳鉄などの
通常条件での連続切削は勿論のこと、高速連続高送り切
削や高速連続高切込み切削などの苛酷な条件での切削に
おいてもすぐれた耐チッピング性を示し、長期に亘って
すぐれた切削性能を示すので、切削加工のFA化および
省力化に寄与するなど工業上有用な効果をもたらすもの
である。
From the results shown in Tables 6 and 7, it can be seen that all of the books produced by the present invention methods 1 to 14 using an inert gas-based reaction gas for forming the Al 2 O 3 layer constituting the hard coating layer. In each of the invention coated carbide tools 1 to 14, even if the thickness of the Al 2 O 3 layer among the hard coating layers constituting the tool is increased, the local variation is extremely small, and the escape of the cutting edge is achieved. The surface thickness, the rake face, and the layer thickness between the flank and the rake face intersecting edges are made uniform, while Al 2
Conventional methods 1 to 14 using a hydrogen-based reaction gas for forming the O 3 layer
In the conventional coated cemented carbide tools 1 to 14 manufactured by the above, the variation in the layer thickness between the flank face, the rake face and the edge portion is remarkable. In a dry high-speed continuous high-feed cutting test of steel and cast iron under severe cutting conditions, the cutting of the Al 2 O 3 layer formed by using the above-mentioned inert gas-based reaction gas has been demonstrated, because of the excellent interlayer adhesion. While the blade shows excellent wear resistance without chipping or chipping, the conventional coated carbide tools 1 to 14 cause chipping on the cutting blade due to local variation of the hard coating layer, It is clear that the service life can be reached in a relatively short time. As described above, according to the method of the present invention, even if the thickness of the Al 2 O 3 layer constituting the hard coating layer is increased, local variation in the layer thickness is extremely small, and Good coated cemented carbide tools can be manufactured, and thus the resulting coated cemented carbide tools can be used not only for continuous cutting under normal conditions such as steel or cast iron, but also for high-speed continuous high-feed cutting and high-speed cutting. It shows excellent chipping resistance even in cutting under severe conditions such as continuous high depth cutting, and shows excellent cutting performance over a long period, so it is industrially useful, such as contributing to FA and labor saving in cutting. It has an effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲功▼刀 斉 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 (72)発明者 濱口 雄樹 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor ▲ Isao Toshi 1511 Furimagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture Inside the Tsukuba Works, Mitsubishi Materials Corporation (72) Inventor Yuki Hamaguchi, Ijimo-machi, Ishishita-cho, Ibaraki Prefecture 1511 Thu Inside Mitsubishi Materials Corporation Tsukuba Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体の表面
に、化学蒸着法および/または物理蒸着法を用いて、酸
化アルミニウム層を含む硬質被覆層を3〜20μmの平
均層厚で形成することにより表面被覆超硬合金製切削工
具を製造するに際して、前記酸化アルミニウム層の形成
に、反応ガスとして、容量%で、 三塩化アルミニウム:0.5〜15%、 二酸化炭素:0.5〜30%、 硫化水素:0.01〜1%、 不活性ガス:残り、 からなる組成を有する不活性ガス系反応ガスを用いるこ
とを特徴とする耐チッピング性のすぐれた表面被覆超硬
合金製切削工具の製造法。
1. A hard coating layer including an aluminum oxide layer having an average thickness of 3 to 20 μm is formed on a surface of a tungsten carbide-based cemented carbide substrate using a chemical vapor deposition method and / or a physical vapor deposition method. When manufacturing a cutting tool made of a surface-coated cemented carbide, the formation of the aluminum oxide layer includes, as a reaction gas, 0.5% to 15% of aluminum trichloride, 0.5% to 30% of carbon dioxide, as a reaction gas. Manufacture of a cutting tool made of a surface-coated cemented carbide having excellent chipping resistance, characterized by using an inert gas-based reaction gas having a composition of hydrogen sulfide: 0.01 to 1%, inert gas: remaining, Law.
【請求項2】 炭化タングステン基超硬合金基体の表面
に、化学蒸着法および/または物理蒸着法を用いて、T
iの炭化物層、窒化物層、炭窒化物層、酸化物層、炭酸
化物層、窒酸化物層、および炭窒酸化物層のうちの1種
または2種以上と、酸化アルミニウム層とからなる硬質
被覆層を3〜20μmの平均層厚で形成することにより
表面被覆超硬合金製切削工具を製造するに際して、前記
酸化アルミニウム層の形成に、反応ガスとして、容量%
で、 三塩化アルミニウム:0.5〜10%、 二酸化炭素:0.5〜30%、 硫化水素:0.01〜1%、 不活性ガス:残り、 からなる組成を有する不活性ガス系反応ガスを用いるこ
とを特徴とする耐チッピング性のすぐれた表面被覆超硬
合金製切削工具の製造法。
2. The surface of a tungsten carbide-based cemented carbide substrate is subjected to chemical vapor deposition and / or physical vapor deposition to form a T
i or one or more of a carbide layer, a nitride layer, a carbonitride layer, an oxide layer, a carbonate layer, a nitride oxide layer, and a carbonitride layer, and an aluminum oxide layer In producing a surface-coated cemented carbide cutting tool by forming a hard coating layer with an average layer thickness of 3 to 20 μm, a volume% as a reaction gas is used as a reaction gas for forming the aluminum oxide layer.
An aluminum trichloride: 0.5 to 10%; a carbon dioxide: 0.5 to 30%; a hydrogen sulfide: 0.01 to 1%; an inert gas: the remainder; A method for producing a surface-coated cemented carbide cutting tool having excellent chipping resistance, characterized by using a cutting tool.
JP22398996A 1996-08-26 1996-08-26 Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance Pending JPH1068076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22398996A JPH1068076A (en) 1996-08-26 1996-08-26 Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22398996A JPH1068076A (en) 1996-08-26 1996-08-26 Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance

Publications (1)

Publication Number Publication Date
JPH1068076A true JPH1068076A (en) 1998-03-10

Family

ID=16806847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22398996A Pending JPH1068076A (en) 1996-08-26 1996-08-26 Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance

Country Status (1)

Country Link
JP (1) JPH1068076A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122334A1 (en) * 2000-02-04 2001-08-08 Seco Tools Ab Deposition of gamma-AL2O3 by means of CVD
EP1233310A2 (en) 2001-02-19 2002-08-21 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US7382997B2 (en) 2001-02-19 2008-06-03 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
JP2009279672A (en) * 2008-05-20 2009-12-03 Kyocera Corp Cutting tool

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767094B1 (en) * 2000-02-04 2007-10-15 세코 툴스 에이비 A METHOD OF FORMING A COATED BODY HAVING A LAYER OF ?-Al2O3
EP1122334A1 (en) * 2000-02-04 2001-08-08 Seco Tools Ab Deposition of gamma-AL2O3 by means of CVD
US6572991B1 (en) 2000-02-04 2003-06-03 Seco Tools Ab Deposition of γ-Al2O3 by means of CVD
EP2051145A1 (en) 2001-02-19 2009-04-22 Canon Kabushiki Kaisha Sealing member, toner accomodating container and image forming apparatus
US7647012B2 (en) 2001-02-19 2010-01-12 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US6879789B2 (en) 2001-02-19 2005-04-12 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US7382997B2 (en) 2001-02-19 2008-06-03 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US7430384B2 (en) 2001-02-19 2008-09-30 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
EP1993002A2 (en) 2001-02-19 2008-11-19 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US7469113B2 (en) 2001-02-19 2008-12-23 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
EP1233310A2 (en) 2001-02-19 2002-08-21 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US9046820B1 (en) 2001-02-19 2015-06-02 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US7127193B2 (en) 2001-02-19 2006-10-24 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
EP2216690A2 (en) 2001-02-19 2010-08-11 Canon Kabushiki Kaisha Sealing member, toner accomodating container and image forming apparatus
EP2270607A2 (en) 2001-02-19 2011-01-05 Canon Kabushiki Kaisha Sealing member, toner accomodating container and image forming apparatus
US7881645B2 (en) 2001-02-19 2011-02-01 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US7890027B2 (en) 2001-02-19 2011-02-15 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US7965963B2 (en) 2001-02-19 2011-06-21 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US7970321B2 (en) 2001-02-19 2011-06-28 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US8045901B2 (en) 2001-02-19 2011-10-25 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
US8909094B2 (en) 2001-02-19 2014-12-09 Canon Kabushiki Kaisha Sealing member, toner accommodating container and image forming apparatus
JP2009279672A (en) * 2008-05-20 2009-12-03 Kyocera Corp Cutting tool

Similar Documents

Publication Publication Date Title
JP3087465B2 (en) Manufacturing method of surface-coated titanium carbonitride-based cermet cutting tool with excellent wear and fracture resistance
JPH068008A (en) Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JP3236899B2 (en) Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance
JP2001009604A (en) Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting
JPH1068076A (en) Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance
JP2000158204A (en) Surface-covering cemented carbide alloy cutting tool having hard covering layer exhibiting excellent chipping resistance
JP3433686B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer that exhibits excellent chipping resistance
JPH1068077A (en) Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance
JP3265974B2 (en) Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JPH1076406A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP3353597B2 (en) Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance
JP3240918B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3304767B2 (en) Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance
JPH1076405A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP3304780B2 (en) Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance
JP3119414B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP2000158207A (en) Surface-covering tungsten carbide group cemented carbide alloy cutting tool having its hard covering layer exhibit excellent wear resistance
JPH09302472A (en) Manufacture of cutting tool made of surface coated cemented carbide, excellent in chipping resistance
JP3240914B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3240915B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JPH10130842A (en) Cutting tool made of surface coated cement, excellent in chipping resistance
JP3240916B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3255041B2 (en) Surface-coated cermet cutting tools with excellent fracture resistance
JP3367311B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent fracture resistance with hard coating layer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020806