JPH1068038A - Aluminum-lithium series alloy ingot for rolling and its continuous casting method - Google Patents

Aluminum-lithium series alloy ingot for rolling and its continuous casting method

Info

Publication number
JPH1068038A
JPH1068038A JP24570796A JP24570796A JPH1068038A JP H1068038 A JPH1068038 A JP H1068038A JP 24570796 A JP24570796 A JP 24570796A JP 24570796 A JP24570796 A JP 24570796A JP H1068038 A JPH1068038 A JP H1068038A
Authority
JP
Japan
Prior art keywords
ingot
rolling
alloy
mold
casting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24570796A
Other languages
Japanese (ja)
Inventor
Toshimasa Sakamoto
敏正 坂本
Takuzo Hagiwara
卓三 萩原
Kazunori Kobayashi
一徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALITHIUM KK
Original Assignee
ALITHIUM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALITHIUM KK filed Critical ALITHIUM KK
Priority to JP24570796A priority Critical patent/JPH1068038A/en
Publication of JPH1068038A publication Critical patent/JPH1068038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an ingot for rolling for producing an Al-Li series alloy sheet material small in ear cracking at the time of hot rolling and having excellent fracture toughness and to provide a continuous casting method therefor. SOLUTION: This Al-Li series alloy ingot for rolling is the one having a compsn. contg., by weight, 0.5 to 3.0% Li, 1.0 to 3.0% Cu and 0.5 to 2.0% Mg, contg. one or >= two kinds among suitably amounts of Zr, V, Mn, Cr and Ti as structure refining agents, contg., at need, 0.2 to 0.6% Ag and/or 0.2 to 0.7% Zn, and the balance Al with inevitable impurities, and in which the area ratio of the dendrite cell structure in the cross section in the perpendicular direction to the rolling direction of the ingot 7 is regulated to <=80%. The ingot 7 is produced by a semiconductor casting method under the following conditions. Namely, the temp. 11 of the molten metal is regulated to 680 to 850 deg.C, as for the quantity 11 of cooling water, it is equivalent in the case of that W1 for a water cooled mold and that W2 for the outer circumference of the ingot, and it is regulated to 500 to 2000ml/cm/min per unit ambient length of the cross section in the horizontal direction of the ingot and per unit time, and the discharging rate of the ingot from a mold 1 is regulated to 35 to 110mm/min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、圧延用Al−Li系合
金鋳塊およびその連続鋳造方法に係り、特にLi0.5
〜3.0%、Cu1.0〜5.5%、Mg0.5〜2.
0%を必須成分とし、さらに組織改良元素等を選択的に
含有するAl−Li系合金の、熱間圧延時に耳割れを起
こさない圧延性、および破壊靭性の優れた圧延板が得ら
れる圧延用鋳塊およびその連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Li alloy ingot for rolling and a continuous casting method thereof, and more particularly to a method for producing an ingot of Li 0.5
~ 3.0%, Cu 1.0 ~ 5.5%, Mg 0.5 ~ 2.
For rolling, an Al-Li-based alloy containing 0% as an essential component and selectively containing a structure improving element, etc., is capable of obtaining a rolled sheet excellent in rollability that does not cause ear cracks during hot rolling and fracture toughness. The present invention relates to an ingot and a continuous casting method thereof.

【0002】[0002]

【従来の技術】Al−Li系合金、特にLi1.0〜
3.0%、Cu1.0〜4.0%、Mg0.5〜2.0
%を必須成分とし、さらにZrを0.04〜0.16%
を含み残部不純物とAlよりなる展伸用合金は、従来よ
り2090,2091、8090、8091等の国際規
格合金が知られ、低密度、高強度、高弾性率等優れた特
性を有するため、宇宙機器、航空機等の構造材として重
用され、さらに自動車、軌道車両等輸送機器の軽量構造
用材料として実用化が期待されている。
2. Description of the Related Art Al-Li alloys, especially Li1.0-
3.0%, Cu 1.0-4.0%, Mg 0.5-2.0
% As an essential component, and further, 0.04 to 0.16% of Zr.
As the wrought alloy comprising Al and the balance of impurities and Al, there are conventionally known international standard alloys such as 2090, 2091, 8090, and 8091, which have excellent properties such as low density, high strength, and high elastic modulus. It is widely used as a structural material for equipment and aircraft, and is expected to be put to practical use as a lightweight structural material for transportation equipment such as automobiles and rail vehicles.

【0003】このような卓越した特性を有することが知
られながら、この種合金の実用化には種々の困難が内在
している。すなわち上記したAl−Li系合金は、その
熱間圧延時において耳割れを起こしやすく、また圧延製
品板の機械的特性特に破壊靭性が安定して得難い。
[0003] Despite being known to have such excellent properties, there are various difficulties in putting this kind of alloy to practical use. That is, the Al-Li-based alloy described above tends to cause edge cracking during hot rolling, and it is difficult to stably obtain mechanical properties, particularly fracture toughness, of a rolled product sheet.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の現状
にかんがみてなされたもので、Al−Li系合金板製造
用鋳塊およびその製造方法に係り、特に熱間圧延時にお
ける耳割れ性が少なく、かつ優れた破壊靭性を有する製
品板材を製造するための圧延用Al−Li系合金鋳塊お
よびその連続鋳造方法を提供することを目的とするもの
である。なお、本発明において、優れた破壊靭性とは、
航空機材料等において要求される製品板材の破壊靭性値
25MPa√m以上であり、これを目標値とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and relates to an ingot for producing an Al-Li alloy sheet and a method for producing the same, and particularly to an edge cracking property during hot rolling. An object of the present invention is to provide an Al-Li alloy ingot for rolling and a continuous casting method thereof for producing a product sheet material having less fracture and excellent fracture toughness. In the present invention, excellent fracture toughness means
The fracture toughness value of the product sheet material required for aircraft materials and the like is 25 MPa√m or more, and this is set as the target value.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意研究の結果、熱間圧延時における耳割
れ及び製品板材の破壊靭性が、いずれも合金鋳塊の組織
に密接な影響を受けていることを見出し、最適な組織要
件を具備する鋳塊およびその連続鋳造方法を発明するに
至ったものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, the edge cracks and the fracture toughness of the product sheet during hot rolling are all closely related to the structure of the alloy ingot. The present inventors have found that the ingots have been greatly affected, and have invented an ingot having an optimum structure requirement and a continuous casting method thereof.

【0006】すなわち具体的には、請求項1の発明の圧
延用Al−Li系合金鋳塊は、Li0.5〜3.0%、
Cu1.0〜3.0%、Mg0.5〜2.0%と、Zr
0.06〜0.3%、V0.06〜0.3%,Mn0.
06〜0.3%、Cr0.06〜0.3%、Ti0.0
2〜0.3%のうちの1種もしくは2種以上と、必要に
応じてAg0.2〜0.6%および/またはZn0.2
〜0.7%を含み、残部不可避的不純物とAlよりなる
合金鋳塊で、その圧延方向に直角方向の断面のデンドラ
イトセル組織面積率が80%以下であることを特徴とす
る。
That is, specifically, the Al-Li alloy ingot for rolling according to the first aspect of the present invention has a Li of 0.5 to 3.0%,
Cu 1.0-3.0%, Mg 0.5-2.0%, Zr
0.06-0.3%, V 0.06-0.3%, Mn0.
06-0.3%, Cr 0.06-0.3%, Ti0.0
One or two or more of 2 to 0.3% and, if necessary, 0.2 to 0.6% of Ag and / or Zn 0.2
An alloy ingot containing about 0.7%, the balance being unavoidable impurities and Al, characterized in that the dendrite cell structure area ratio of a cross section in a direction perpendicular to the rolling direction is 80% or less.

【0007】また、請求項2の発明の圧延用Al−Li
系合金鋳塊の連続鋳造方法は、Li0.5〜3.0%、
Cu1.0〜3.0%、Mg0.5〜2.0%と、Zr
0.06〜0.3%、V0.06〜0.3%,Mn0.
06〜0.3%、Cr0.06〜0.3%、Ti0.0
2〜0.3%のうちの1種もしくは2種以上と、必要に
応じてAg0.2〜0.6%および/またはZn0.2
〜0.7%を含み、残部不可避的不純物とAlよりなる
合金溶湯を、水冷筒状鋳型に注湯し、鋳塊形成過程を経
て前記鋳型の直下において該鋳塊外周に直接冷却水を撒
布しつつ、該鋳塊を鋳型から引抜く半連続鋳造方法にお
いて、前記合金溶湯が680〜850℃の範囲であり、
前記水冷鋳型向け冷却水量W1 及び前記鋳塊に直接撒布
される冷却水W2 (ml)は、鋳塊の水平断面の単位周
囲長L(cm)及び単位時間(min.)当たり、W1
=W2 =500〜2000ml/cm/min.、前記
鋳塊の引抜速度は、35〜110mm/min.に調整
されることを特徴とするものである。
[0007] The Al-Li for rolling according to the second aspect of the present invention.
The continuous casting method of the system alloy ingot is Li 0.5-3.0%,
Cu 1.0-3.0%, Mg 0.5-2.0%, Zr
0.06-0.3%, V 0.06-0.3%, Mn0.
06-0.3%, Cr 0.06-0.3%, Ti0.0
One or two or more of 2 to 0.3% and, if necessary, 0.2 to 0.6% of Ag and / or Zn 0.2
A molten alloy containing about 0.7% and the balance of unavoidable impurities and Al is poured into a water-cooled cylindrical mold, and cooling water is sprayed directly on the periphery of the ingot immediately below the mold through an ingot forming process. In the semi-continuous casting method of drawing the ingot from the mold, the molten alloy is in the range of 680 to 850 ° C,
The water-cooled mold for cooling water W 1 and the cooling water W 2 that is sprayed directly to the ingot (ml), the unit circumferential length of the horizontal cross section of the ingot L (cm) and the unit time (min.) Per, W 1
= W 2 = 500-2000 ml / cm / min. , The drawing speed of the ingot is 35 to 110 mm / min. It is characterized by being adjusted to.

【0008】本発明の合金における化学成分の限定理由
について説明する。 Li:Liは、軽量化元素であると共に、準安定相δ´
が析出し、強度向上、高剛性化に寄与する。Li含有量
が1.0%未満では軽量化及び強度向上の効果が不十分
であり、また3.0%を超えるえると鋳造割れ感受性が
増大すると共に粗大な準安定相δ´を生成するなどして
合金の伸び値及び靭性を低下させるのでLi量の上限は
3.0%とする。
The reasons for limiting the chemical components in the alloy of the present invention will be described. Li: Li is a lightening element and a metastable phase δ ′.
Precipitates, contributing to strength improvement and high rigidity. If the Li content is less than 1.0%, the effects of weight reduction and strength improvement are insufficient, and if it exceeds 3.0%, casting crack susceptibility increases and a coarse metastable phase δ 'is formed. As a result, the elongation value and the toughness of the alloy are reduced, so the upper limit of the amount of Li is set to 3.0%.

【0009】Cu:Cuは、Al−Cu系の板状析出物
(Al2 Cu)や、Al−Cu−Li系の板状の析出物
Al2 Cuや、Al−Cu−Li系の析出相(T1 相)
を生成して強度及び靭性の向上に寄与する。しかしその
含有量が1.0%未満では効果が十分で無く、また3.
0%を超えると前記効果が飽和すると同時に軽量化効果
を減殺する。なおMg含有量が1.0%未満の場合は、
Cu含有量は1.5〜3.0%が望ましく、またMg含
有量が1.0%を超える場合はMgによる強度向上の効
果も期待できるので、Cuは1.0〜2.5%程度でも
良い。
Cu: Cu is an Al-Cu-based plate-like precipitate (Al 2 Cu), an Al-Cu-Li-based plate-like precipitate Al 2 Cu, or an Al-Cu-Li-based precipitate phase. (T 1 phase)
To contribute to the improvement of strength and toughness. However, if the content is less than 1.0%, the effect is not sufficient.
If it exceeds 0%, the effect is saturated and at the same time, the lightening effect is reduced. When the Mg content is less than 1.0%,
The Cu content is desirably 1.5 to 3.0%, and when the Mg content exceeds 1.0%, the effect of improving the strength by Mg can be expected. Therefore, the Cu content is about 1.0 to 2.5%. But it is good.

【0010】Mg:Mgは固溶効果により、伸び値及び
靭性を低下することなく合金を強化すると同時にAl−
Cu−Mg系の準安定相の板状析出物S´相(Al−C
uMg)を生成し、これによりさらに強度向上に寄与す
る。Mg含有量が0.5%未満では強度向上の効果が十
分でなく、また2.0%を超えると強度は向上するもの
の靭性及び伸び値が低下する。従ってMgは0.5〜
2.0%の範囲が望ましい。
Mg: Mg strengthens the alloy without lowering the elongation value and the toughness due to the solid solution effect, and at the same time, Al-
Cu-Mg based metastable phase plate-like precipitate S 'phase (Al-C
uMg), thereby further contributing to strength improvement. If the Mg content is less than 0.5%, the effect of improving strength is not sufficient, and if it exceeds 2.0%, the strength is improved but the toughness and elongation value are reduced. Therefore, Mg is 0.5 to
A range of 2.0% is desirable.

【0011】Zr、V、Mn、CrおよびTi:これら
の元素は、合金組織を微細化すると共に、再結晶を抑制
する効果があり、合金組織が微細で未再結晶状態の組織
とするために有効で、好ましい含有範囲は、Zr、V、
MnおよびCrは、0.06〜0.3%である。その含
有量が上限を超えるとAlとこれら元素との粗大金属間
化合物を生成して強度、靭性及び伸び値を低下する。ま
た含有量が下限未満であれば十分な効果は得られない。
Zr, V, Mn, Cr and Ti: These elements have the effect of refining the alloy structure and suppressing recrystallization, and are required to make the alloy structure fine and unrecrystallized. Effective and preferred ranges are Zr, V,
Mn and Cr are 0.06 to 0.3%. If the content exceeds the upper limit, a coarse intermetallic compound of Al and these elements is formed, and the strength, toughness and elongation value are reduced. If the content is less than the lower limit, a sufficient effect cannot be obtained.

【0012】Tiの適量は、0.02〜0.06%であ
り、鋳塊のミクロ組織を微細化し、また本発明者等の実
験によれば、図4に示したようにTi等の組織微細化元
素の含有は、デンドライトセル組織面積率を高める作用
がある。上限を超える量では晶出物が増加して靭性およ
び延性が低下し、下限未満の量では十分な微細化効果が
得られない。
The proper amount of Ti is 0.02 to 0.06%, which makes the microstructure of the ingot finer, and according to experiments by the present inventors, according to experiments by the present inventors, as shown in FIG. The inclusion of the refinement element has the effect of increasing the dendrite cell structure area ratio. If the amount exceeds the upper limit, crystallized substances increase and toughness and ductility decrease. If the amount is less than the lower limit, a sufficient refining effect cannot be obtained.

【0013】Ag:必要に応じてAg0.2〜0.6%
および/またはZn0.2〜0.7%の含有が有効であ
る。Agは、Al−Cu系の板状析出物θ´(Al2
u)やAl−Cu−Li系の板状析出物T1 相(Al2
CuLi)の析出を促進し、Al−Li−Cu−X(X
はMg等)の合金の強度を格段と向上する。Ag含有範
囲の上限を超えると、比重の増大、比強度の低下が大き
く、下限未満では、十分な効果が得られない。Zn0.
2〜0.7%の含有は、Al−Li系合金の耐食性を向
上する。上限を超えると、結晶粒界に粗大な化合物を発
生させ、合金の靭性を損ない、下限未満では効果が微弱
である。
Ag: 0.2 to 0.6% of Ag as required
And / or Zn content of 0.2 to 0.7% is effective. Ag is an Al—Cu-based plate-like precipitate θ ′ (Al 2 C
u) or Al-Cu-Li-based plate-like precipitate T 1 phase (Al 2
Promotes the precipitation of CuLi) to form Al-Li-Cu-X (X
The strength of an alloy such as Mg is remarkably improved. If it exceeds the upper limit of the Ag content range, the specific gravity increases and the specific strength decreases greatly, and if it is below the lower limit, a sufficient effect cannot be obtained. Zn0.
The content of 2 to 0.7% improves the corrosion resistance of the Al-Li alloy. If it exceeds the upper limit, coarse compounds are generated at the crystal grain boundaries, and the toughness of the alloy is impaired. If it is less than the lower limit, the effect is weak.

【0014】不純物: Fe0.3%以下、Si0.2
%以下の含有は、本発明の効果を損なうことがなく許容
不純物であるが、化合物の生成、粒界への偏析などによ
り靭性低下を一層厳格に防ぐには、Fe0.10%以
下、Si0.10%以下が好ましい。また、Na,C
a,Kなどのアルカリおよびアルカリ土類元素は、合金
の熱間加工時の割れ発生の原因となるため、各10pp
m以下に制限される。
Impurities: Fe 0.3% or less, Si 0.2
% Is an acceptable impurity without impairing the effects of the present invention, but in order to more strictly prevent a decrease in toughness due to the formation of compounds, segregation at grain boundaries, etc., Fe 0.10% or less, Si 0. 10% or less is preferable. Na, C
Since alkali and alkaline earth elements such as a and K cause cracking at the time of hot working of the alloy, each 10 pp
m or less.

【0015】図2は、鋳造時の溶湯温度が比較的低い
か、Ti等の結晶粒微細化剤を適量添加した場合に形成
される網目状のデンドライトセル組織であり、図の右側
にはデンドライトセルサイズ(以下DCSと言う)のデ
イメンションを模式的に示す。また図3は、溶湯温度が
比較的高い場合等に形成される網目状組織の内部に突起
があるデンドライト組織であり、図の右側にはデンドラ
イトアームスペーシング(以下DASと言う)のデイメ
ンションを示す。
FIG. 2 shows a network dendrite cell structure formed when the temperature of the molten metal at the time of casting is relatively low or when an appropriate amount of a crystal grain refiner such as Ti is added. FIG. 4 schematically shows a dimension of a cell size (hereinafter, referred to as DCS). FIG. 3 shows a dendrite structure having protrusions inside a network structure formed when the temperature of the molten metal is relatively high, and the dimension of dendrite arm spacing (hereinafter referred to as DAS) is shown on the right side of the figure. .

【0016】代表的鋳塊は一般に両組織が併存している
が、本発明者等は、製品板材の破壊靭性の目標値が得ら
れる鋳塊は、圧延方向に直角方向の断面のデンドライト
セル組織面積率が80%以下の範囲のものであることを
見出した。この面積率が80%を超えると、DCS値に
かかわらず上記目標値を得ることは出来ない。
In a typical ingot, both structures generally coexist. However, the present inventors have found that an ingot capable of obtaining a target value of fracture toughness of a product sheet material has a dendrite cell structure having a cross section perpendicular to the rolling direction. It was found that the area ratio was in the range of 80% or less. If the area ratio exceeds 80%, the target value cannot be obtained regardless of the DCS value.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0017】本発明による鋳塊の製造は半連続鋳造法に
より行われ、合金溶湯の温度は、鋳型への注湯時におい
て680〜850℃の範囲に選定される。680℃未満
では上記デンドライトセル面積率は、80%を超えるこ
とが認められた。また850℃を超えると、溶湯注のL
i成分が雰囲気中の酸素、水素、窒素と反応が活発化
し、Li成分の喪失および非金属介在物の増加等によ
り、鋳塊品質が低下するので適当ではない。
The production of the ingot according to the present invention is carried out by a semi-continuous casting method, and the temperature of the molten alloy is selected in the range of 680 to 850 ° C. at the time of pouring into the mold. When the temperature is lower than 680 ° C., it is recognized that the area ratio of the dendrite cell exceeds 80%. If the temperature exceeds 850 ° C., L
The reaction of the i component with oxygen, hydrogen, and nitrogen in the atmosphere is activated, and the quality of the ingot is deteriorated due to the loss of the Li component and an increase in nonmetallic inclusions.

【0018】溶湯を水冷筒状鋳型に注湯し、鋳塊形成過
程を経て前記鋳型の直下において該鋳塊外周に直接冷却
水を撒布しつつ、該鋳塊を降下する。その際前記水冷鋳
型向け冷却水量W1 及び前記鋳塊に直接撒布される冷却
水W2 (ml)は、鋳塊の水平断面の単位周囲長L(c
m)及び単位時間(min.)当たり、W1 =W2 =5
00〜2000ml/cm/min.の範囲であれば、
デンドライトセル組織面積率を上限以下に制御すること
ができ、冷却水量が下限未満では、鋳型下縁からの湯漏
れが発生しやすくなり、上限を超えると冷却水が鋳型内
溶湯面上に溢出して溶湯爆発の危険が生ずる。
The molten metal is poured into a water-cooled cylindrical mold, and the ingot is lowered while the cooling water is sprayed directly on the periphery of the ingot immediately below the mold through the ingot forming process. At this time, the cooling water amount W 1 for the water-cooled mold and the cooling water W 2 (ml) directly sprayed on the ingot are the unit circumferential length L (c) of the horizontal section of the ingot.
m) and per unit time (min.), W 1 = W 2 = 5
00 to 2000 ml / cm / min. Within the range
The dendrite cell structure area ratio can be controlled to the upper limit or less.If the cooling water amount is less than the lower limit, the molten metal leaks easily from the lower edge of the mold, and if it exceeds the upper limit, the cooling water overflows onto the molten metal surface in the mold. There is a danger of molten metal explosion.

【0019】鋳塊の鋳型からの引抜速度すなわち降下速
度は、35〜110mm/min.に調整される。この
範囲がデンドライトセル組織の面積率を80%以下に制
限しやすく、またこの下限未満では鋳型内溶湯の深さが
不足し、鋳塊表面の発汗、湯境等表層欠陥が大きくなり
切削量の増大を余儀なくされて良くない。さらに注湯分
配器が円滑に作動し難いなどの困難を招来する。また、
上限を超えると鋳塊の割れが発生しやすくなる。
The speed of drawing out the ingot from the mold, that is, the speed of descent, is 35 to 110 mm / min. It is adjusted to. This range tends to limit the area ratio of the dendrite cell structure to 80% or less, and if it is less than the lower limit, the depth of the molten metal in the mold is insufficient, and the surface defects such as perspiration on the surface of the ingot and the hot water boundary become large, and the cutting amount is reduced. It is not good to be forced to increase. Further, it causes difficulties such as difficulty in operating the pouring distributor. Also,
If the upper limit is exceeded, cracks in the ingot tend to occur.

【0020】[0020]

【実施例】図1は、本発明の実施例に使用した鋳造装置
の模式的竪断面図であり、一般的な圧延用アルミニウム
合金鋳塊の製造に使用される連続鋳造装置である。合金
溶湯2は図示してない溶解保持炉からAr等の不活性気
圏に保護されて樋3、分配器4を介して、一次冷却水5
によって冷却される横方向断面が相対的に矩形の筒状鋳
型(1)に注入され、溶湯本体の外周には凝固殻が形成
され、該鋳型直下において鋳型下端周囲のスリットまた
はスプレー孔より二次冷却水(6)が凝固殻に直接撒布
されて冷却し、形成された柱状鋳塊7は昇降可能の受台
(8)に保持され下方に降下し、鋳型(1)から引抜か
れる。
FIG. 1 is a schematic vertical sectional view of a casting apparatus used in an embodiment of the present invention, which is a continuous casting apparatus used for producing a general aluminum alloy ingot for rolling. The molten alloy 2 is protected from a melting and holding furnace (not shown) in an inert gas atmosphere such as Ar, and the primary cooling water 5 is passed through a gutter 3 and a distributor 4.
The molten metal is injected into a relatively rectangular tubular mold (1) having a transverse cross section, and a solidified shell is formed on the outer periphery of the molten metal body. Cooling water (6) is directly sprayed on the solidified shell to cool, and the formed columnar ingot 7 is held by a vertically movable pedestal (8), descends downward, and is pulled out of the mold (1).

【0021】溶湯温度は、鋳型(1)へ注入する直前の
位置において温度計(11)により、また鋳型(1)の
冷却ジャケットに供給される一次冷却水(5)は、水量
計(10)により、そして鋳塊の引抜速度は、速度計
(9)によりそれぞれ計測される。該鋳塊に直接撒布さ
れる冷却水である二次冷却水(6)は、上記冷却ジャケ
ットの内側下端のスリット又はスプレー孔より撒布され
鋳塊表面を経て下方へ流下する。
The temperature of the molten metal is measured by a thermometer (11) at a position immediately before injection into the mold (1), and the primary cooling water (5) supplied to the cooling jacket of the mold (1) is measured by a water meter (10). And the drawing speed of the ingot is measured by a speedometer (9), respectively. Secondary cooling water (6), which is cooling water directly sprayed on the ingot, is sprayed from a slit or a spray hole at an inner lower end of the cooling jacket and flows down through the surface of the ingot.

【0022】表1は、本実施例に供試したAl−Li系
合金3種の成分である。なお、A合金にTi量を変化し
た2種(A1,A2)を追加した。上記装置により種々
なる条件下において半連続鋳造して得られた鋳塊は、常
法により面削、均質化加熱処理、熱間圧延、さらに調質
処理(溶体化処理、冷間圧延、時効処理)して製品板材
を製造した。
Table 1 shows the three components of the Al-Li alloy tested in this example. In addition, two types (A1, A2) in which the amount of Ti was changed were added to the A alloy. The ingot obtained by semi-continuous casting under the above-mentioned conditions under various conditions is chamfered, homogenized, heat-treated, hot-rolled, and further tempered (solution treatment, cold-rolling, aging treatment) by a conventional method. ) To produce a product plate.

【0023】[0023]

【表1】 《表注》A1:A+0.02%Ti A2:A+0.07%Ti[Table 1] << Table Note >> A1: A + 0.02% Ti A2: A + 0.07% Ti

【0024】表2は、鋳塊およびその製造条件と製品板
材の特性を評価した結果で、表2の最上欄の表示は、溶
湯温:鋳型への注湯時の溶湯温度℃、冷却水:冷却水量
(ml/cm/min.)、引抜速:鋳型からの鋳塊の
降下速度(mm/min.)、DAS :DAS(μm)、
DCS :DCS(μm)、面積:デンドライトセル組織の
面積率(%)、圧延:熱間圧延時の耳割れ程度の評
価、、靭性:製品板材の破壊靭性の目標値達成の評価で
ある。
Table 2 shows the results of evaluating the characteristics of the ingot, the production conditions thereof, and the product sheet material. The top column of Table 2 shows the melt temperature: the melt temperature at the time of pouring into the mold, and the cooling water: Cooling water amount (ml / cm / min.), Drawing speed: descending speed of ingot from the mold (mm / min.), DAS: DAS (μm),
DCS: DCS (μm), area: area ratio of dendrite cell structure (%), rolling: evaluation of edge cracking degree during hot rolling, and toughness: evaluation of achievement of target value of fracture toughness of product sheet material.

【0025】[0025]

【表2】 [Table 2]

【0026】表2の最上欄の右欄の評価において、○印
は、いずれも本発明の実施に相当する条件下での結果で
あり、熱間圧延時の耳割れが無く、製品板材の破壊靭性
が目標値を達成し、良好と評価できたものである。また
×印は、目標値に達せず不良と評価したものである。
In the evaluation of the right column in the uppermost column of Table 2, the circles indicate the results under the conditions corresponding to the implementation of the present invention. The toughness achieved the target value and could be evaluated as good. In addition, the mark “x” indicates that the target value was not reached and the product was evaluated as defective.

【0027】[0027]

【発明の効果】以上説明したように、本発明の圧延用A
l−Li系合金鋳塊は、熱間圧延時の耳割れがなく、し
かも最終製品板材の破壊靭性が優れるため、宇宙機器、
航空機、自動車、軌道車両等輸送機器の軽量構造用材等
の製造用原料に適している。
As described above, the rolling A according to the present invention is used.
Since the l-Li alloy ingot does not have edge cracks during hot rolling and has excellent fracture toughness of the final product sheet material,
It is suitable as a raw material for manufacturing lightweight structural materials for transportation equipment such as aircraft, automobiles and rail vehicles.

【0028】また本発明の上記圧延用Al−Li系合金
鋳塊の連続鋳造方法は、従来の汎用設備に変更を加える
ことなく、溶湯温度、冷却水量、鋳塊の引抜速度を特定
値に制御することによって確実に一定品質の圧延用鋳塊
が得られるため、工業的量産において高い製品歩留まり
が達成出来、コストダウンと品質安定によりこの種合金
板の用途拡大に貢献するところ大である。
Further, in the method for continuously casting an Al-Li alloy ingot for rolling according to the present invention, the molten metal temperature, the amount of cooling water, and the ingot drawing speed are controlled to specific values without changing conventional general-purpose equipment. By doing so, a high quality ingot for rolling can be reliably obtained, so that a high product yield can be achieved in industrial mass production, and the cost reduction and quality stabilization greatly contribute to the expansion of applications of this kind of alloy sheet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に使用した連続鋳造装置の模式
的竪断面図である。
FIG. 1 is a schematic vertical sectional view of a continuous casting apparatus used in an embodiment of the present invention.

【図2】鋳塊中の網目状のデンドライトセル組織であ
り、図の右側にはデンドライトセルサイズ(DCS)の
デイメンションを模式的に示した図である。
FIG. 2 is a diagram showing a reticulated dendrite cell structure in an ingot, and the right side of the figure schematically shows the dimension of dendrite cell size (DCS).

【図3】鋳塊中の網目状組織の内部に突起があるデンド
ライト組織であり、図の右側にはデンドライトアームス
ペーシング(DAS)のデイメンションを示した図であ
る。
FIG. 3 is a diagram showing a dendrite structure having projections inside a network structure in an ingot, and the right side of the figure shows a dimension of dendrite arm spacing (DAS).

【図4】Al−Li系合金鋳塊における、デンドライト
セル組織面積率に及ぼすTi等微細化剤添加の影響を示
す図である。
FIG. 4 is a view showing the effect of the addition of a finer such as Ti on the area ratio of the dendrite cell structure in an Al-Li alloy ingot.

【符号の説明】[Explanation of symbols]

1 冷却鋳型 2 合金溶湯 3 樋 5 冷却水配管 6 二次冷却水 7 鋳塊 9 鋳塊降下(引抜)速度計測手段 10 冷却水量計測手段 11 溶湯温度計測手段 REFERENCE SIGNS LIST 1 cooling mold 2 molten alloy 3 gutter 5 cooling water pipe 6 secondary cooling water 7 ingot 9 ingot ingot (drawing) speed measuring means 10 cooling water amount measuring means 11 molten metal temperature measuring means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下、同じ)、Li0.5〜
3.0%、Cu1.0〜3.0%、Mg0.5〜2.0
%と、Zr0.06〜0.3%、V0.06〜0.3
%、Mn0.06〜0.3%、Cr0.06〜0.3
%、Ti0.02〜0.3%のうちの1種もしくは2種
以上と、必要に応じてAg0.2〜0.6%、および/
またはZn0.2〜0.7%を含み、残部不可避的不純
物とAlよりなる合金鋳塊で、その圧延方向に直角方向
の断面のデンドライトセル組織面積率が80%以下であ
ることを特徴とする圧延用Al−Li系合金鋳塊。
1. Li 0.5% by weight (hereinafter the same)
3.0%, Cu 1.0-3.0%, Mg 0.5-2.0
%, Zr 0.06-0.3%, V0.06-0.3
%, Mn 0.06-0.3%, Cr 0.06-0.3
%, 0.02 to 0.3% of Ti, one or more of Ti and, if necessary, 0.2 to 0.6% of Ag, and / or
Alternatively, it is an alloy ingot containing 0.2 to 0.7% of Zn, the balance being inevitable impurities and Al, and the area ratio of the dendrite cell structure in a cross section perpendicular to the rolling direction is 80% or less. Al-Li alloy ingot for rolling.
【請求項2】 Li0.5〜3.0%、Cu1.0〜
3.0%、Mg0.5〜2.0%と、Zr0.06〜
0.3%、V0.06〜0.3%、Mn0.06〜0.
3%、Cr0.06〜0.3%、Ti0.02〜0.3
%のうちの1種もしくは2種以上と、必要に応じてAg
0.2〜0.6%および/またはZn0.2〜0.7%
を含み、残部不可避的不純物とAlよりなる合金溶湯
を、水冷筒状鋳型に注湯し、鋳塊形成過程を経て前記鋳
型の直下において該鋳塊外周に直接冷却水を撒布しつ
つ、該鋳塊を鋳型から引抜く半連続鋳造方法において、
前記合金溶湯が680〜850℃の範囲であり、前記水
冷鋳型向け冷却水量W1 及び前記鋳塊に直接撒布される
冷却水量W2 (ml) は、鋳塊の水平断面の単位周囲長
(cm)及び単位時間(min.)当たり、W1 =W2
=500〜2000ml/cm/min.、前記鋳塊の
引抜速度は、35〜110mm/min.に調整される
てなることを特徴とする圧延用Al−Li系合金鋳塊の
連続鋳造方法。
2. Li 0.5-3.0%, Cu 1.0-
3.0%, Mg 0.5-2.0%, Zr 0.06-
0.3%, V 0.06-0.3%, Mn 0.06-0.0.
3%, Cr 0.06-0.3%, Ti 0.02-0.3
% Or more, and if necessary, Ag
0.2-0.6% and / or Zn 0.2-0.7%
The molten alloy comprising Al and inevitable impurities and Al is poured into a water-cooled cylindrical mold, and cooling water is sprayed directly to the outer periphery of the ingot immediately below the mold through an ingot forming process. In a semi-continuous casting method of drawing a lump from a mold,
The temperature of the alloy melt is in the range of 680 to 850 ° C., and the amount of cooling water W 1 for the water-cooled mold and the amount of cooling water W 2 (ml) directly sprayed on the ingot are the unit perimeter (cm) of the horizontal section of the ingot. ) And per unit time (min.), W 1 = W 2
= 500-2000 ml / cm / min. , The drawing speed of the ingot is 35 to 110 mm / min. A continuous casting method for an Al-Li alloy ingot for rolling, characterized by being adjusted to:
JP24570796A 1996-08-28 1996-08-28 Aluminum-lithium series alloy ingot for rolling and its continuous casting method Pending JPH1068038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24570796A JPH1068038A (en) 1996-08-28 1996-08-28 Aluminum-lithium series alloy ingot for rolling and its continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24570796A JPH1068038A (en) 1996-08-28 1996-08-28 Aluminum-lithium series alloy ingot for rolling and its continuous casting method

Publications (1)

Publication Number Publication Date
JPH1068038A true JPH1068038A (en) 1998-03-10

Family

ID=17137617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24570796A Pending JPH1068038A (en) 1996-08-28 1996-08-28 Aluminum-lithium series alloy ingot for rolling and its continuous casting method

Country Status (1)

Country Link
JP (1) JPH1068038A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648283A (en) * 2016-03-31 2016-06-08 上海交通大学 Low-density and high-rigidity cast aluminum-lithium alloy and method for preparing same
CN110193588A (en) * 2019-07-10 2019-09-03 东北大学 A kind of aluminium lithium alloy low-frequency square-wave electromagnetic continuous casting machine and method
CN110576162A (en) * 2019-10-14 2019-12-17 北京理工大学 lithium element adding method in aluminum-lithium alloy semi-continuous casting
CN110883319A (en) * 2019-10-14 2020-03-17 北京理工大学 Casting method of aluminum-lithium alloy composite ingot
CN112805397A (en) * 2018-10-10 2021-05-14 伊苏瓦尔肯联铝业 High performance 2XXX alloy plates for aircraft fuselages
CN112981198A (en) * 2021-02-05 2021-06-18 太原理工大学 Short-process preparation method of high-strength and high-toughness aluminum-lithium alloy sheet
CN115418534A (en) * 2022-09-19 2022-12-02 郑州轻研合金科技有限公司 8090 aluminum lithium alloy fine-grain plate and preparation method thereof
CN115747590A (en) * 2022-12-08 2023-03-07 中南大学 Damage-resistant aluminum-lithium alloy and preparation method and application thereof
CN115747590B (en) * 2022-12-08 2024-05-03 中南大学 Damage-resistant aluminum lithium alloy and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648283A (en) * 2016-03-31 2016-06-08 上海交通大学 Low-density and high-rigidity cast aluminum-lithium alloy and method for preparing same
CN112805397A (en) * 2018-10-10 2021-05-14 伊苏瓦尔肯联铝业 High performance 2XXX alloy plates for aircraft fuselages
CN110193588A (en) * 2019-07-10 2019-09-03 东北大学 A kind of aluminium lithium alloy low-frequency square-wave electromagnetic continuous casting machine and method
CN110576162A (en) * 2019-10-14 2019-12-17 北京理工大学 lithium element adding method in aluminum-lithium alloy semi-continuous casting
CN110883319A (en) * 2019-10-14 2020-03-17 北京理工大学 Casting method of aluminum-lithium alloy composite ingot
CN112981198A (en) * 2021-02-05 2021-06-18 太原理工大学 Short-process preparation method of high-strength and high-toughness aluminum-lithium alloy sheet
CN115418534A (en) * 2022-09-19 2022-12-02 郑州轻研合金科技有限公司 8090 aluminum lithium alloy fine-grain plate and preparation method thereof
CN115747590A (en) * 2022-12-08 2023-03-07 中南大学 Damage-resistant aluminum-lithium alloy and preparation method and application thereof
CN115747590B (en) * 2022-12-08 2024-05-03 中南大学 Damage-resistant aluminum lithium alloy and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP3722446B1 (en) Aluminum alloy sheet for battery lids for molding integrated explosion-prevention valve, and method for producing same
EP2644727B1 (en) Aluminum alloy forged material for automotive vehicles and production method for the material
KR20130122651A (en) Aluminum alloy sheet for battery case having good moldability and weldability
JP6780679B2 (en) Aluminum alloy plate for battery lid for integrated explosion-proof valve molding and its manufacturing method
CN109439976A (en) A kind of composite inoculating method of composite modifier and cast Al-Si alloy
US20210238720A1 (en) Aluminum alloy sheet for battery lid use for forming integrated explosion-proof valve and method of production of same
CN104694797A (en) Al-Mg-Zn alloy
US11401584B2 (en) Aluminum alloy sheet for battery lid use for forming integrated explosion-proof valve and method of production of same
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JP6780680B2 (en) Aluminum alloy plate for battery lid for integrated explosion-proof valve molding and its manufacturing method
WO2019111422A1 (en) Aluminum alloy plate for battery cover for forming integrated round explosion-proof valve and method for manufacturing same
US20210062316A1 (en) Aluminum alloy sheet for battery lid use for forming integrated explosion-proof valve and production of same
JPH1068038A (en) Aluminum-lithium series alloy ingot for rolling and its continuous casting method
JP2002348625A (en) Aluminum alloy sheet with superior warm formability, and manufacturing method therefor
JPH05125474A (en) Aluminum-base alloy combining high strength with high toughness
EP0564815A2 (en) High-strength rolled sheet of aluminum alloy and process for producing the same
JPS6150141B2 (en)
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
CN112159917A (en) Large-size high-purity homogeneous fine-grain aluminum alloy ingot and casting method
US20210238714A1 (en) Aluminum alloy sheet for battery lid use for forming integrated explosion-proof valve and method of production of same
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP6780685B2 (en) Aluminum alloy plate for battery lid for integrated explosion-proof valve molding and its manufacturing method
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JP4164206B2 (en) High-strength, high-formability aluminum alloy sheet with excellent recrystallization grain refinement during high-temperature annealing
US4588019A (en) Methods of controlling solidification of metal baths