JPH1067557A - Production of dielectric porcelain composition - Google Patents

Production of dielectric porcelain composition

Info

Publication number
JPH1067557A
JPH1067557A JP8225480A JP22548096A JPH1067557A JP H1067557 A JPH1067557 A JP H1067557A JP 8225480 A JP8225480 A JP 8225480A JP 22548096 A JP22548096 A JP 22548096A JP H1067557 A JPH1067557 A JP H1067557A
Authority
JP
Japan
Prior art keywords
dielectric
glass powder
producing
component
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8225480A
Other languages
Japanese (ja)
Inventor
Atsushi Mitani
敦志 三谷
Masataka Fujinaga
昌孝 藤永
Masatoshi Takeda
将利 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP8225480A priority Critical patent/JPH1067557A/en
Publication of JPH1067557A publication Critical patent/JPH1067557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a dielectric porcelain composition, enabling to suitably produce a laminated dielectric porcelain by a wet molding method, by using a powdery raw material low in surface activity and obtained by thermally treating a powdery main dielectric porcelain material such as a Ba-Ti-Nb-O system material and glass powder at a sintering temperature or below. SOLUTION: This method for producing a dielectric porcelain composition comprises mixing a main powdery component comprising a dielectric porcelain material with a powdery auxiliary component containing glass powder, and subsequently thermally treating the mixture at a temperature from the melting point of the glass powder to its sintering temperature to produce the powdery material in which the auxiliary component is adhered to the main component particles. The powdery material is useful as a material suitable for producing dielectric materials, especially laminated dielectric porcelain devices having Ag or Cu electrodes and produced by simultaneously sintering at low temperatures, such as laminated chip capacitors and laminated dielectric resonators. The content of the main component is 1.5-39wt.% based on the content of the auxiliary component. The main component includes a Ba-Ti-rare earth element system dielectric material, an Al-titania-Ba-Ti system dielectric material and a Ba-Mg-Ta system dielectric material. The glass powder includes PbO-ZnO-B2 O3 glass powder and PbO-B2 O3 -ZnO-GeO glass powder. The material powder is molded by a wet type method and subsequently laminated to electrodes to form various kinds of laminated elements.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体共振器等の
材料として好適な誘電体磁器組成物の製造方法に関す
る。
The present invention relates to a method for producing a dielectric ceramic composition suitable as a material for a dielectric resonator or the like.

【0002】[0002]

【従来の技術】最近、誘電体磁器組成物を積層した積層
チップコンデンサ、積層誘電体共振器等が開発されてお
り、磁器組成物と内部電極との同時焼成による積層化が
行われている。この電極材料として安価な銀(Ag)、
銀−パラジウム(Ag−Pd)、銅(Cu)を用いるた
めに、1200℃以下の低温で同時焼成可能な、種々の
誘電体磁器組成物が提案されている。
2. Description of the Related Art Recently, multilayer chip capacitors, multilayer dielectric resonators and the like in which a dielectric ceramic composition is laminated have been developed, and lamination by simultaneous firing of the ceramic composition and internal electrodes has been performed. Inexpensive silver (Ag) as this electrode material,
In order to use silver-palladium (Ag-Pd) and copper (Cu), various dielectric ceramic compositions that can be co-fired at a low temperature of 1200 ° C. or less have been proposed.

【0003】[0003]

【発明が解決しようとする課題】これらの磁器組成物で
は低温での焼結を可能とするために、低融点のガラス粉
末を副成分として加えることや、磁器組成物の材料粉末
を微粉砕すること等が行われている。しかしながら、こ
れらの材料粉末は、粒子表面の活性が高く水分等の吸着
が生じ易いため、非水系湿式成形における工程管理が非
常に困難となる。また比表面積が大きいと、成形時に有
機バインダ成分が多量に必要となり、脱バインダ工程が
煩雑となる。このため、粒子の表面活性が低く、比表面
積が小さい、低温焼結可能な磁器組成物の材料粉末が求
められている。
In these porcelain compositions, in order to enable sintering at a low temperature, a glass powder having a low melting point is added as an auxiliary component, or the material powder of the porcelain composition is finely pulverized. Things have been done. However, these material powders have a high activity on the particle surface and easily adsorb moisture and the like, so that the process control in the non-aqueous wet molding is very difficult. On the other hand, if the specific surface area is large, a large amount of the organic binder component is required at the time of molding, and the binder removal step becomes complicated. For this reason, there is a demand for a material powder of a porcelain composition having low surface activity and a small specific surface area of the particles and capable of being sintered at a low temperature.

【0004】また、さらにこれらの誘電体磁器組成物に
は、比誘電率εr が大きいこと、無負荷Qが大きいこ
と、共振周波数の温度係数τf が小さいこと等の特性も
要求されている。
Further, these dielectric ceramic compositions are required to have characteristics such as a large relative permittivity ε r , a large unloaded Q, and a small temperature coefficient τ f of the resonance frequency. .

【0005】本発明の目的は、誘電体共振器等の材料と
して優れた特性を有し、内部電極と同時に低温焼成可能
な誘電体磁器組成物の製造に用いられる、粒子の表面活
性が低く、比表面積が小さい材料粉末を提供することで
ある。
[0005] An object of the present invention is to provide a dielectric resonator or the like which has excellent properties, has low surface activity of particles, and is used for producing a dielectric ceramic composition which can be fired at a low temperature simultaneously with an internal electrode. It is to provide a material powder having a small specific surface area.

【0006】[0006]

【課題を解決するための手段】本発明は、主成分とガラ
ス粉末を含む副成分とからなる誘電体磁器組成物の製造
方法において、該誘電体磁器組成物の材料粉末として、
主成分の粒子と副成分とを混合後、副成分中のガラス粉
末の軟化点より高く、かつ焼結温度より低い温度におい
て熱処理することにより得られる、主成分の粒子に副成
分を付着させた材料粉末を用いることを特徴とする誘電
体磁器組成物の製造方法に関する。
According to the present invention, there is provided a method for producing a dielectric ceramic composition comprising a main component and a subcomponent including glass powder, wherein the material powder of the dielectric ceramic composition is
After mixing the main component particles and the subcomponent, the subcomponent was attached to the main component particles obtained by heat treatment at a temperature higher than the softening point of the glass powder in the subcomponent and lower than the sintering temperature. The present invention relates to a method for producing a dielectric porcelain composition, characterized by using a material powder.

【0007】[0007]

【発明の実施の形態】本発明における前記誘電体磁器組
成物において、主成分に対する副成分の含有量a(重量
%)は、副成分中のガラス粉末の割合にもよるが、副成
分の含有量aが過度に少ない場合には主成分の粒子を副
成分により均一に被着させることが困難になったり、1
200℃以下での低温焼結が困難になったり、また過度
に多い場合には無負荷Qの低下をもたらすことがあるた
め、含有量aは1.5≦a≦39の範囲であることが好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the dielectric ceramic composition according to the present invention, the content a (% by weight) of the subcomponent with respect to the main component depends on the ratio of the glass powder in the subcomponent. If the amount a is excessively small, it becomes difficult to uniformly coat the main component particles with the subcomponents,
Since low-temperature sintering at a temperature of 200 ° C. or less becomes difficult, and if the amount is excessively large, the unloaded Q may be reduced, the content a may be in the range of 1.5 ≦ a ≦ 39. preferable.

【0008】また本発明における前記誘電体磁器組成物
の主成分としては、特に限定されないが、例えばバリウ
ム−チタン−希土類系のような高い比誘電率εr を有す
る誘電体磁器組成物を挙げることができ、またアルミ
ナ、チタニア、バリウム−チタン系、バリウム−マグネ
シウム−タンタル系の如きペロブスカイトのような各種
誘電体磁器組成物等を挙げることができる。
[0008] As the main component of the dielectric ceramic composition of the present invention is not particularly limited, for example, barium - titanium - include a dielectric ceramic composition having a high dielectric constant epsilon r as rare earth And various dielectric ceramic compositions such as perovskites such as alumina, titania, barium-titanium, and barium-magnesium-tantalum.

【0009】これら誘電体磁器組成物の主成分の代表例
としてバリウム、チタン、ネオジムおよび酸素からなる
誘電体磁器組成物を挙げることができる。また、前記誘
電体磁器組成物の主成分におけるネオジムの0〜75モ
ル%をサマリウム等の他の希土類元素で置換することが
できる。
Representative examples of the main components of these dielectric ceramic compositions include dielectric ceramic compositions comprising barium, titanium, neodymium and oxygen. Further, 0 to 75 mol% of neodymium in the main component of the dielectric ceramic composition can be replaced with another rare earth element such as samarium.

【0010】さらに、所望の電気的特性の誘電体磁器組
成物を得るために、あるいは焼結温度を低くするためや
焼結性を向上させるためにビスマス、バナジウム、アン
チモン、マンガン、ランタン、鉛、ジルコニア、スズ、
イットリウム等を添加することもできる。主成分を構成
する原料としては、構成元素を含む酸化物等の原料をそ
のまま使用することができ、また仮焼粉を使用すること
もできる。主成分の粒子の粒子径が過度に大きいと焼結
温度が高くなり、電極との同時焼成が難しくなることが
あり、また過度に小さいと比表面積が大きくなり、成形
時に有機バインダ成分が多量に必要となり、脱バインダ
工程が煩雑となることがある。したがって、主成分粒子
の平均粒子径は0.1〜30μm程度であることが好ま
しい。
Further, in order to obtain a dielectric ceramic composition having desired electric characteristics, or to lower the sintering temperature or to improve the sinterability, bismuth, vanadium, antimony, manganese, lanthanum, lead, Zirconia, tin,
Yttrium or the like can be added. As the raw material constituting the main component, a raw material such as an oxide containing the constituent element can be used as it is, or calcined powder can also be used. If the particle diameter of the main component particles is excessively large, the sintering temperature becomes high, and simultaneous sintering with the electrode may become difficult.If the particle diameter is excessively small, the specific surface area increases, and a large amount of the organic binder component is formed during molding. This is necessary, and the binder removal step may be complicated. Therefore, the average particle size of the main component particles is preferably about 0.1 to 30 μm.

【0011】前記主成分に対し、ガラス粉末を含む副成
分を含有させることにより電気的特性が良好で低温焼成
可能な誘電体磁器組成物を提供することができる。前記
副成分に含有されるガラス粉末としては、通常軟化点が
150〜1000℃であるガラス粉末が使用され、例え
ばPbO、ZnOおよびB2 3 から構成されるガラス
粉末、SiO2 およびB2 3 から構成されるガラス粉
末、PbO、B2 3 、ZnOおよびGeO2 から構成
されるガラス粉末、あるいは上記の系にアルカリ金属元
素の酸化物および/またはアルカリ土類金属の酸化物を
加えたような系等を挙げることができる。
[0011] A dielectric ceramic composition having good electrical characteristics and capable of being fired at a low temperature can be provided by adding a sub-component including glass powder to the main component. As the glass powder contained in the subcomponent, a glass powder having a softening point of usually 150 to 1000 ° C. is used. For example, a glass powder composed of PbO, ZnO and B 2 O 3 , SiO 2 and B 2 O glass powder composed of 3, was added PbO, B 2 O 3, ZnO and glass powder composed of GeO 2, or oxides and / or alkaline earth metal oxides of the alkali metal element to the system Such systems can be mentioned.

【0012】また副成分としては、例えばGeO2 、L
2 O等を挙げることができる。さらに、その他の副成
分としてAg、SiO2 、Al2 3 、Ga2 3 、C
aCO3 、BaCO3 、MgO、ZnO、CuO等を含
有させることもできる。
Further, as the sub-component, for example, GeO 2 , L
i 2 O and the like can be mentioned. Further, Ag, SiO 2 , Al 2 O 3 , Ga 2 O 3 , C
aCO 3 , BaCO 3 , MgO, ZnO, CuO and the like can be contained.

【0013】なお、PbO、ZnOおよびB2 3 から
構成されるガラス粉末が副成分として使用される場合、
使用量が過度に多いと無負荷Qが小さくなることがある
ので、前記主成分に対するガラス粉末の含有量b(重量
%)は、1≦b≦25であることが好ましい。この場
合、PbO、ZnOおよびB2 3 の構成割合は特に限
定されないが、ZnOの含有量が過度に大きい場合には
ガラスの軟化点が上昇し、低温焼成が困難になることが
あるので、ガラス粉末中のZnOの含有量は50重量%
以下が好ましい。
When a glass powder composed of PbO, ZnO and B 2 O 3 is used as an auxiliary component,
If the amount used is excessively large, the no-load Q may decrease, so that the content b (% by weight) of the glass powder with respect to the main component is preferably 1 ≦ b ≦ 25. In this case, the composition ratios of PbO, ZnO and B 2 O 3 are not particularly limited. However, if the content of ZnO is excessively large, the softening point of the glass increases, and low-temperature firing may become difficult. The content of ZnO in the glass powder is 50% by weight
The following is preferred.

【0014】また、副成分としてGeO2 が使用される
場合、使用量が過度に多いと無負荷Qが小さくなること
があるので、前記主成分に対する副成分GeO2 の含有
量c(重量%)は、0.5≦c≦10であることが好ま
しい。さらに、副成分としてLi2 Oが使用される場
合、前記主成分に対する副成分Li2 Oの含有量d(重
量%)は、0.04≦d≦4であることが好ましい。な
お副成分として、Agを含有させた場合には、主成分に
対するAgの含有量e(重量%)は5重量%以下である
ことが好ましい。
When GeO 2 is used as a sub-component, if the amount is excessively large, the no-load Q may be reduced. Therefore, the content c (% by weight) of the sub-component GeO 2 with respect to the main component. Is preferably 0.5 ≦ c ≦ 10. Further, when Li 2 O is used as a sub-component, the content d (% by weight) of the sub-component Li 2 O with respect to the main component is preferably 0.04 ≦ d ≦ 4. When Ag is contained as a sub-component, the content e (% by weight) of Ag with respect to the main component is preferably 5% by weight or less.

【0015】熱処理温度は、副成分に含有されるガラス
粉末の種類や誘電体磁器組成物の種類にもよるが、使用
されるガラス粉末の軟化点より高い温度で、かつ誘電体
磁器組成物の原料粉末の焼結温度より低い温度であれば
特に限定されないが、通常150〜900℃の範囲が好
ましい。
The heat treatment temperature depends on the type of glass powder and the type of dielectric ceramic composition contained in the auxiliary component, but is higher than the softening point of the glass powder to be used and the temperature of the dielectric ceramic composition. The temperature is not particularly limited as long as it is lower than the sintering temperature of the raw material powder.

【0016】熱処理温度が副成分中のガラス粉末の軟化
点よりも低い場合には、主成分の原料粉末の粒子表面へ
の付着が起こらず、粒子の表面活性が高く、比表面積が
大きくなり、また、焼結温度よりも高い場合には、焼結
性が悪くなる。熱処理は前記温度で0.1〜20時間行
うことが好ましい。前記熱処理を行ってガラス粉末を融
解させることにより、誘電体磁器組成物の原料粉末の粒
子表面に副成分を均一に付着させた材料粉末を得ること
ができる。
When the heat treatment temperature is lower than the softening point of the glass powder in the subcomponent, the raw material powder of the main component does not adhere to the particle surface, the surface activity of the particle is high, and the specific surface area is large. On the other hand, when the temperature is higher than the sintering temperature, the sinterability deteriorates. The heat treatment is preferably performed at the above temperature for 0.1 to 20 hours. By melting the glass powder by performing the heat treatment, it is possible to obtain a material powder in which the subcomponent is uniformly adhered to the particle surface of the raw material powder of the dielectric ceramic composition.

【0017】特に、主成分にバリウム、チタン、ネオジ
ムおよび酸素からなる仮焼粉、副成分にPbO、ZnO
およびB2 3 から構成されるガラス粉末ならびにGe
2およびLi2 Oを用い、300〜800℃、好まし
くは400〜600℃で熱処理して得られる、主成分の
粒子に副成分を付着させた材料粉末を用いて誘電体磁器
組成物を製造することにより、比誘電率εr と無負荷Q
とが大きく、共振周波数の温度係数τf が小さい優れた
誘電特性を得ることができる。
In particular, a calcined powder composed mainly of barium, titanium, neodymium and oxygen, and PbO and ZnO as subcomponents
Powder comprising Ge and B 2 O 3 and Ge
Manufacture of dielectric porcelain composition using material powder obtained by heat-treating O 2 and Li 2 O at 300 to 800 ° C., preferably 400 to 600 ° C., obtained by attaching subcomponents to main component particles The relative permittivity ε r and the unloaded Q
Is excellent, and excellent dielectric characteristics with a small temperature coefficient τ f of the resonance frequency can be obtained.

【0018】前記主成分がバリウム、チタン、ネオジム
および酸素からなる誘電体磁器組成物の場合、組成式、
xBaO−yTiO2 −zNd2 3 と表したとき、
x、yおよびzはそれぞれ、0.1≦x≦0.2、0.
5≦y≦0.8、0.1≦z≦0.3(ただし、x+y
+z=1である。)であることが望ましい。
In the case of a dielectric porcelain composition whose main component is composed of barium, titanium, neodymium and oxygen, the composition formula:
When expressed as xBaO-yTiO 2 -zNd 2 O 3 ,
x, y and z are respectively 0.1 ≦ x ≦ 0.2, 0.
5 ≦ y ≦ 0.8, 0.1 ≦ z ≦ 0.3 (x + y
+ Z = 1. ) Is desirable.

【0019】この時、主成分xBaO−yTiO2 −z
Nd2 3 におけるBaOのモル分率xが過度に大きい
場合には、共振しなくなり、過度に小さい場合には、誘
電率、無負荷Qが小さくなる。TiO2 のモル分率yが
過度に大きい場合には、共振周波数の温度係数が大きく
なり、過度に小さい場合には、誘電率が小さくなる。N
2 3 のモル分率zが過度に大きい場合には、比誘電
率εr と無負荷Qとが小さくなり、過度に小さい場合に
は、共振周波数の温度係数が大きくなる。
At this time, the main component xBaO-yTiO 2 -z
When the molar fraction x of BaO in Nd 2 O 3 is excessively large, resonance does not occur. When the molar fraction x is excessively small, the dielectric constant and the no-load Q decrease. If the molar fraction y of TiO 2 is excessively large, the temperature coefficient of the resonance frequency increases, and if it is excessively small, the dielectric constant decreases. N
If the molar fraction z of d 2 O 3 is too large, the relative permittivity ε r and the unloaded Q will be small, and if it is too small, the temperature coefficient of the resonance frequency will be large.

【0020】本発明の誘電体磁器組成物の製造方法の一
例を次に説明する。炭酸バリウム、酸化チタン、酸化ネ
オジムの出発原料を各所定量ずつ水、アルコール等の溶
媒と共に湿式混合する。続いて、水、アルコール等を除
去した後、粉砕し、酸素含有ガス雰囲気(例えば空気雰
囲気)下に1000〜1300℃で約1〜10時間程度
仮焼する。得られた主成分の仮焼紛と副成分PbO、Z
nOおよびB2 3 から構成されるガラス粉末(軟化点
300℃)とをアルコール等の溶媒と共に湿式混合、粉
砕する。続いて、アルコール等を除去した後、酸素含有
ガス雰囲気(例えば空気雰囲気)下に350℃〜500
℃で約1〜10時間程度熱処理する。得られた材料粉末
は、ポリビニルブチラールの如き有機バインダ、フタル
酸ジブチラールの如き可塑剤と共に混合し、ドクターブ
レード法等による湿式成形を行い、誘電体磁器組成物成
形体を得る。
An example of the method for producing the dielectric ceramic composition of the present invention will be described below. The starting materials of barium carbonate, titanium oxide, and neodymium oxide are wet-mixed in predetermined amounts with a solvent such as water or alcohol. Subsequently, after removing water, alcohol and the like, the mixture is pulverized and calcined in an oxygen-containing gas atmosphere (for example, an air atmosphere) at 1000 to 1300 ° C. for about 1 to 10 hours. Obtained calcined powder of main component and subcomponents PbO, Z
Glass powder (softening point: 300 ° C.) composed of nO and B 2 O 3 is wet-mixed and pulverized with a solvent such as alcohol. Subsequently, after removing alcohol or the like, the temperature is set to 350 ° C. to 500 ° C. in an oxygen-containing gas atmosphere (for example, an air atmosphere).
Heat treatment at about 1 to 10 hours. The obtained material powder is mixed with an organic binder such as polyvinyl butyral and a plasticizer such as dibutyral phthalate, and wet-molded by a doctor blade method or the like to obtain a dielectric ceramic composition molded body.

【0021】このようにして得られた誘電体磁器組成物
成形体は、電極との積層化により、誘電体共振器、誘電
体基板、積層素子等の材料として利用できる。なお、バ
リウム、チタン、ネオジムの原料としてはBaCO3
TiO2 、Nd2 3 の他に焼成時に酸化物となる硝酸
塩、水酸化物等を使用することができる
The dielectric ceramic composition molded body thus obtained can be used as a material for a dielectric resonator, a dielectric substrate, a laminated element, and the like by laminating with an electrode. In addition, as a raw material of barium, titanium, and neodymium, BaCO 3 ,
In addition to TiO 2 and Nd 2 O 3 , nitrates and hydroxides that become oxides during firing can be used.

【0022】[0022]

【実施例】以下に実施例を示し、本発明をさらに具体的
に説明する。 実施例1 炭酸バリウム(BaCO3 )0.17モル、酸化チタン
(TiO2 )0.66モル、酸化ネオジム(Nd
2 3 )0.17モルをエタノールと共にボールミルに
入れ、12時間湿式混合した。溶液を脱媒後、粉砕し、
空気雰囲気下に1250℃で仮焼した。得られた主成分
仮焼紛に副成分PbO、ZnOおよびB2 3から構成
されるガラス粉末(軟化点:300℃)25重量%、酸
化ゲルマニウム(GeO2 )3重量%および炭酸リチウ
ム(Li2 CO3 )1重量%(Li2 O換算で0.4重
量%)を添加し、エタノールと共にボールミルに入れ、
48時間湿式混合した。脱媒後、粉砕し、空気雰囲気下
に400℃で1時間熱処理を行った。得られた材料粉末
に、ポリビニルブチラール(以下、PVBと略記す
る。)、フタル酸ジブチラール(以下、DBPと略記す
る。)を加え、トルエンとイソプロピルアルコール溶媒
中で混合してスラリーを得た。このスラリーをドクター
ブレード法により湿式成形を行い、Agを内部電極とし
て内径12mmφ、厚み4mmtのペレットに積層し、
空気雰囲気下875℃で焼成を行い、焼結性の良好な積
層体が得られた。
The present invention will be described more specifically with reference to the following examples. Example 1 Barium carbonate (BaCO 3 ) 0.17 mol, titanium oxide (TiO 2 ) 0.66 mol, neodymium oxide (Nd
2 O 3) 0.17 mol were placed in a ball mill together with ethanol and mixed for 12 hours wet. After desolvating the solution, pulverize,
It was calcined at 1250 ° C. in an air atmosphere. 25% by weight of glass powder (softening point: 300 ° C.) composed of sub-components PbO, ZnO and B 2 O 3, 3 % by weight of germanium oxide (GeO 2 ) and lithium carbonate (Li) 2 CO 3 ) 1% by weight (0.4% by weight in terms of Li 2 O) was added, and put into a ball mill together with ethanol.
Wet mixed for 48 hours. After removing the medium, the resultant was pulverized and heat-treated at 400 ° C. for 1 hour in an air atmosphere. Polyvinyl butyral (hereinafter abbreviated as PVB) and dibutyral phthalate (hereinafter abbreviated as DBP) were added to the obtained material powder, and mixed in a toluene and isopropyl alcohol solvent to obtain a slurry. This slurry is subjected to wet molding by a doctor blade method, and is laminated on pellets having an inner diameter of 12 mmφ and a thickness of 4 mmt using Ag as an internal electrode,
Sintering was performed at 875 ° C. in an air atmosphere to obtain a laminate having good sinterability.

【0023】実施例2〜5 熱処理温度を表1記載のようにかえた他は、実施例1と
同様にして積層し、最適な焼結温度を求めた。表1に熱
処理温度と最適な焼結温度とを示す。熱処理温度が90
0℃と熱処理する前の焼結温度(825〜875℃)よ
りも高い温度で熱処理した場合、最適な焼結温度が97
5℃と高くなり内部電極である銀の変質が生じていた。
また、熱処理を行わなかった場合には、粒子の表面活性
が高いため吸水性が高く、非水系湿式成形時の工程管理
が煩雑であり、かつ、成形時に有機バインダ成分が多量
に必要であった。
Examples 2 to 5 Laminates were made in the same manner as in Example 1 except that the heat treatment temperature was changed as shown in Table 1, and the optimum sintering temperature was determined. Table 1 shows the heat treatment temperature and the optimum sintering temperature. Heat treatment temperature is 90
When the heat treatment is performed at 0 ° C., which is higher than the sintering temperature before the heat treatment (825 to 875 ° C.), the optimum sintering temperature is 97 ° C.
The temperature was raised to 5 ° C., and the silver as the internal electrode was altered.
In addition, when the heat treatment was not performed, the surface activity of the particles was high, the water absorption was high, the process control during non-aqueous wet molding was complicated, and a large amount of the organic binder component was required during molding. .

【0024】実施例6〜12 熱処理温度および得られた材料粉末に対するPVB、D
BPの使用量(重量%)を表2記載のようにかえた他
は、実施例1と同様にして材料粉末を調製し、吸水率、
比表面積の測定を行った。さらに表2記載のPVB、D
BPの量で湿式成形を行い、成形性の判定を行った。結
果を表2に示す。表2の湿式成形性の欄における、○は
良好な成形体が得られることを示し、△は成形可能であ
るが成形時の工程管理が困難であることを示し、×は成
形不能であることを示す。
Examples 6-12 PVB, D for heat treatment temperature and obtained material powder
A material powder was prepared in the same manner as in Example 1 except that the amount (% by weight) of BP was changed as shown in Table 2, and the water absorption and
The specific surface area was measured. Further, PVB and D shown in Table 2
Wet molding was performed with the amount of BP, and the moldability was determined. Table 2 shows the results. In the column of wet moldability in Table 2, ○ indicates that a good molded body can be obtained, △ indicates that molding is possible, but process control during molding is difficult, and × indicates that molding is impossible. Is shown.

【0025】表2から熱処理を行わなかった場合や軟化
点(300℃)以下の温度で熱処理を行った場合と比較
して、600℃で熱処理を行った場合には、吸水率(2
5℃、湿度65%の雰囲気中に1時間放置時の吸着量)
が0.04%と小さくなり、粒子表面の活性が低下し、
また、比表面積割合(熱処理無しの場合の比表面積を1
とした時の値)が0.3と小さくなり、湿式成形時に必
要となるバインダ量も減少し、湿式成形性が向上するこ
とがわかる。
As shown in Table 2, when the heat treatment was performed at 600 ° C. as compared with the case where the heat treatment was not performed or the case where the heat treatment was performed at a temperature equal to or lower than the softening point (300 ° C.).
(Adsorption amount when left for 1 hour in an atmosphere of 5 ° C and 65% humidity)
Is reduced to 0.04%, the activity of the particle surface is reduced,
The specific surface area ratio (the specific surface area without heat treatment is 1
), The binder amount required during the wet molding is reduced, and the wet moldability is improved.

【0026】実施例13〜23 実施例1の炭酸バリウム、酸化チタン、酸化ネオジムの
混合割合と、副成分であるPbO、ZnOおよびB2
3 から構成されるガラス粉末、GeO2 およびLi2
の添加量とを表3記載のようにかえた他は、実施例1と
同様(熱処理温度:400℃)にして誘電体磁器組成物
を製造し、得られた磁器組成物を直径7mmφ、厚み3
mmtの大きさに加工した後、誘電共振法によって測定
し、共振周波数(3〜6GHz)における比誘電率
εr 、無負荷Q、および共振周波数の温度係数τf を求
めた。表3に湿式成形性を示すが、熱処理を行うことに
より良好な成形体が得られることがわかる。
Examples 13 to 23 The mixing ratios of barium carbonate, titanium oxide and neodymium oxide in Example 1 and PbO, ZnO and B 2 O
Glass powder composed of 3 , GeO 2 and Li 2 O
A dielectric ceramic composition was produced in the same manner as in Example 1 (heat treatment temperature: 400 ° C.) except that the amount of addition was changed as shown in Table 3 and the obtained ceramic composition was 7 mm in diameter and 7 mm in thickness. 3
After processing to the size of mmt, the dielectric constant was measured by the dielectric resonance method, and the relative permittivity ε r at the resonance frequency (3 to 6 GHz), the no-load Q, and the temperature coefficient τ f of the resonance frequency were obtained. Table 3 shows the wet moldability. It can be seen that a good molded body can be obtained by performing the heat treatment.

【0027】[0027]

【発明の効果】本発明によれば、Ag、Ag−Pd、C
u等の内部電極と同時に低温で焼結でき、かつ誘電体磁
器組成物を製造する際に使用される材料粉末の粒子の表
面活性が低く、かつ比表面積が小さいため、湿式成形性
に優れており、誘電体磁器組成物の積層体を好適に製造
することができる。
According to the present invention, Ag, Ag-Pd, C
It can be sintered at a low temperature at the same time as the internal electrodes such as u, and the surface activity of the particles of the material powder used in producing the dielectric ceramic composition is low, and the specific surface area is small, so that the wet formability is excellent. Thus, a laminate of the dielectric ceramic composition can be suitably manufactured.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 主成分とガラス粉末を含む副成分とか
らなる誘電体磁器組成物の製造方法において、該誘電体
磁器組成物の材料粉末として、主成分の粒子と副成分と
を混合後、副成分中のガラス粉末の軟化点より高く、か
つ焼結温度より低い温度において熱処理することにより
得られる、主成分の粒子に副成分を付着させた材料粉末
を用いることを特徴とする誘電体磁器組成物の製造方
法。
1. A method for producing a dielectric porcelain composition comprising a main component and a sub-component containing glass powder, wherein the main component particles and the sub-component are mixed as a material powder of the dielectric porcelain composition. Dielectric porcelain characterized by using a material powder obtained by heat-treating at a temperature higher than the softening point of the glass powder in the sub-component and lower than the sintering temperature, wherein the sub-component is attached to the main component particles. A method for producing the composition.
【請求項2】 前記誘電体磁器組成物において、主成
分に対する副成分の含有量a(重量%)が1.5≦a≦
39である請求項1記載の誘電体磁器組成物の製造方
法。
2. The dielectric ceramic composition according to claim 1, wherein the content a (% by weight) of the subcomponent with respect to the main component is 1.5 ≦ a ≦.
The method for producing a dielectric ceramic composition according to claim 1, wherein the composition is 39.
【請求項3】 前記誘電体磁器組成物において、主成
分がバリウム、チタン、ネオジムおよび酸素からなる請
求項1記載の誘電体磁器組成物の製造方法。
3. The method for producing a dielectric ceramic composition according to claim 1, wherein the main component of the dielectric ceramic composition comprises barium, titanium, neodymium, and oxygen.
【請求項4】 前記誘電体磁器組成物において、主成
分が組成式、xBaO−yTiO2 −zNd2 3 (式
中、0.1≦x≦0.2、0.5≦y≦0.8、0.1
≦z≦0.3、x+y+z=1である。)で表される請
求項1記載の誘電体磁器組成物の製造方法。
4. The dielectric ceramic composition, wherein the main component is a composition formula, xBaO-yTiO 2 -zNd 2 O 3 (where 0.1 ≦ x ≦ 0.2, 0.5 ≦ y ≦ 0. 8, 0.1
≦ z ≦ 0.3, x + y + z = 1. The method for producing a dielectric ceramic composition according to claim 1, wherein
【請求項5】 前記副成分に含有されるガラス粉末が
PbO、ZnOおよびB2 3 からなるガラス粉末であ
る請求項1記載の誘電体磁器組成物の製造方法。
5. The method for producing a dielectric ceramic composition according to claim 1, wherein the glass powder contained in the auxiliary component is a glass powder composed of PbO, ZnO and B 2 O 3 .
【請求項6】 前記副成分がガラス粉末ならびにGe
2 およびLi2 Oからなることを特徴とする請求項1
記載の誘電体磁器組成物の製造方法。
6. The method according to claim 1, wherein the auxiliary component is glass powder or Ge.
2. The method according to claim 1, wherein the material comprises O 2 and Li 2 O.
A method for producing the dielectric ceramic composition according to the above.
【請求項7】 前記副成分がPbO、ZnOおよびB
2 3 からなるガラス粉末並びにGeO2 およびLi2
Oからなる請求項1記載の誘電体磁器組成物の製造方
法。
7. The method according to claim 1, wherein the sub-components are PbO, ZnO and B
Glass powder consisting of 2 O 3 and GeO 2 and Li 2
The method for producing a dielectric ceramic composition according to claim 1, comprising O.
【請求項8】 前記主成分に対する副成分の含有量に
おいて、PbO、ZnOおよびB2 3 から構成される
ガラス粉末の含有量b(重量%)が1≦b≦25、Ge
2 の含有量c(重量%)が0.5≦c≦10、Li2
Oの含有量d(重量%)が0.04≦d≦4である請求
項7記載の誘電体磁器組成物の製造方法。
8. The content b (% by weight) of the glass powder composed of PbO, ZnO and B 2 O 3 is 1 ≦ b ≦ 25, and
O 2 content c (weight%) is 0.5 ≦ c ≦ 10, Li 2
8. The method for producing a dielectric ceramic composition according to claim 7, wherein the O content d (% by weight) satisfies 0.04 ≦ d ≦ 4.
JP8225480A 1996-08-27 1996-08-27 Production of dielectric porcelain composition Pending JPH1067557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8225480A JPH1067557A (en) 1996-08-27 1996-08-27 Production of dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8225480A JPH1067557A (en) 1996-08-27 1996-08-27 Production of dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH1067557A true JPH1067557A (en) 1998-03-10

Family

ID=16829990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8225480A Pending JPH1067557A (en) 1996-08-27 1996-08-27 Production of dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH1067557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036777A1 (en) * 1999-03-16 2000-09-20 TDK Corporation Composition of dielectric ceramics and producing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036777A1 (en) * 1999-03-16 2000-09-20 TDK Corporation Composition of dielectric ceramics and producing method therefor
US6340649B1 (en) 1999-03-16 2002-01-22 Tdk Corporation Composition of dielectric ceramics and producing method thereof

Similar Documents

Publication Publication Date Title
WO2004094338A1 (en) Lead-free glass for forming dielectric, glass ceramics composition for forming dielectric, dielectric and method for producing laminated dielectric
CN1287366A (en) Dielectric ceramic composition and single-chip ceramic capacitor
JP4267438B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP4482939B2 (en) Dielectric ceramic composition, dielectric ceramic, and multilayer ceramic component using the same
JP4098224B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JPH0873239A (en) Glass-ceramic dielectric material
JP4052032B2 (en) Dielectric composition and multilayer ceramic component using the same
JPH1067557A (en) Production of dielectric porcelain composition
JPH0676627A (en) Dielectric ceramic composition
JPH0855519A (en) Dielectric ceramic composition
JPH0855518A (en) Dielectric ceramic composition
JP3467874B2 (en) Dielectric porcelain composition
JP3624406B2 (en) Glass ceramic dielectric material
JP3467876B2 (en) Dielectric porcelain composition
WO2022244479A1 (en) Ceramic material and capacitor
JPH0737427A (en) Dielectric ceramic composition
JPH0971462A (en) Dielectric porcelain composition
JP4052031B2 (en) Dielectric composition and multilayer ceramic component using the same
EP1315231A2 (en) Dielectric ceramic composition and laminated ceramic parts using the same
JPH0845348A (en) Dielectric porcelain composition
JP3858395B2 (en) Dielectric porcelain composition
JP2003160377A (en) Dielectric ceramic composition and laminated ceramic part using the same
JPH08167322A (en) Dielectric porcelain composition
JPH09188561A (en) Dielectric ceramic composition
JP2003221274A (en) Dielectric porcelain composition and integrated ceramic parts using it