JPH1066845A - Reverse osmosis composite membrane - Google Patents

Reverse osmosis composite membrane

Info

Publication number
JPH1066845A
JPH1066845A JP22413996A JP22413996A JPH1066845A JP H1066845 A JPH1066845 A JP H1066845A JP 22413996 A JP22413996 A JP 22413996A JP 22413996 A JP22413996 A JP 22413996A JP H1066845 A JPH1066845 A JP H1066845A
Authority
JP
Japan
Prior art keywords
reverse osmosis
membrane
osmosis composite
composite membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22413996A
Other languages
Japanese (ja)
Inventor
Hisao Hachisuga
久雄 蜂須賀
Kenichi Ikeda
健一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP22413996A priority Critical patent/JPH1066845A/en
Publication of JPH1066845A publication Critical patent/JPH1066845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reverse osmosis composite membrane having a high salt rejection rate, high water permeability and high contamination resistance and enabling practical desalting under relatively low pressure, in a reverse osmosis composite membrane wherein a separation active layer is provided on the surface of a porous support membrane, by setting the surface zeta poten tial of a separation active layer at a time of pH 6.0 to a range of -15 to 5mV. SOLUTION: Polyvinyl alcohol(PVA) with a saponification value of 99% is dissolved in a 3:7 soln. of isopropyl alcohol(IPA) and water to prepare a 0.13wt.% PVA soln. which is, in turn, applied to the surface of a reverse osmosis membrane being an aromatic polyamide membrane obtained by the interfacial polycondecsation of a m-phenylenediamine and trimesyl chloride by a dipping method and the coated membrane is dried at 130 deg.C for 5 min to form a membrane to obtain a reverse osmosis composite membrance of which the separation active layer had surface zeta potential of -15 to 5mV.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超純水の製造、か
ん水の脱塩、食品の精製、染色排水や電着塗料排水等の
公害発生原因である汚れ等から、その中に含まれる汚染
源または有効物質を除去回収して排水のクローズドシス
テム等に使用される逆浸透複合膜の改良に関する。さら
に詳しくは、逆浸透複合膜上に特定構造を有する親水性
の有機重合体薄膜を備え、高塩阻止率、高耐塩素殺菌剤
性、及び高耐汚染性等を有する逆浸透複合膜に関する。
The present invention relates to the production of ultrapure water, the desalination of brine, the purification of foods, the pollution sources such as dyeing wastewater and electrodeposition paint wastewater, and other sources of pollution contained therein. Alternatively, the present invention relates to an improvement of a reverse osmosis composite membrane used for a closed system of waste water by removing and recovering an effective substance. More specifically, the present invention relates to a reverse osmosis composite membrane having a hydrophilic organic polymer thin film having a specific structure on a reverse osmosis composite membrane, and having a high salt rejection rate, a high resistance to chlorine disinfectants, a high resistance to contamination and the like.

【0002】[0002]

【従来の技術】従来から工業的に利用されている逆浸透
膜には、酢酸セルロースから作った非対称膜として、例
えば、米国特許第3133132号及び米国特許第3133137号に
記載されたロブ型の膜がある。一方、非対称逆浸透膜と
は構造の異なる逆浸透膜として、微孔性支持膜上に実質
的に選択分離性を有する活性な薄膜を形成してなる逆浸
透複合膜が提案されている。
2. Description of the Related Art Conventionally, reverse osmosis membranes which are industrially used include, as asymmetric membranes made of cellulose acetate, for example, lob type membranes described in US Pat. No. 3,133,132 and US Pat. No. 3,133,137. There is. On the other hand, as a reverse osmosis membrane having a structure different from that of an asymmetric reverse osmosis membrane, a reverse osmosis composite membrane in which an active thin film having substantially selective separation properties is formed on a microporous support membrane has been proposed.

【0003】現在、かかる逆浸透複合膜として、多官能
芳香族アミンと多官能芳香族酸ハロゲン化物との界面重
合によって得られるポリアミドからなる薄膜が支持膜上
に形成されたものが多く知られている(例えば、特開昭
55−147106号公報、特開昭62−121603
号公報、特開昭63−218208号公報、特開平2−
187135号等公報)。
At present, many of such reverse osmosis composite membranes are known in which a thin film made of polyamide obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional aromatic acid halide is formed on a support membrane. (For example, JP-A-55-147106, JP-A-62-121603).
JP, JP-A-63-218208, JP-A-2-
187135, etc.).

【0004】また、多官能芳香族アミンと多官能脂環式
酸ハロゲン化物との界面重合によって得られるポリアミ
ドからなる薄膜が、支持膜上に形成されたものも知られ
ている(例えば、特開昭61−42308号等公報)。
Further, a thin film made of a polyamide obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional alicyclic acid halide is formed on a support film (for example, see Japanese Patent Application Laid-Open No. H11-163873). JP-A-61-42308, etc.).

【0005】上記逆浸透複合膜は、高い脱塩性能及び水
透過性能を有するが、最近の水処理システムではさらに
高い膜性能が求められ、下記性能を必ずしも満足してい
ない。例えば、超純水製造の分野では超低圧での運転や
高塩除去率等が、かん水の脱塩用途などではその原水中
に多種のイオンが含まれるために、各種混合イオンでの
高い脱塩性能が求められている。またこのようなシステ
ムの長期運転に際しては、雑菌などの繁殖による水質低
下を防ぐために、次亜塩素酸ナトリウムなどの雑菌剤を
使用するが、その雑菌剤により膜自身が劣化することを
防ぐために、さらに高い耐殺菌剤性が求められている。
更に、システムの長期運転において汚染物質による透過
水量や塩阻止率の低下を防ぐために、高い耐汚染性も重
要になってきている。
Although the above reverse osmosis composite membrane has high desalination performance and water permeation performance, recent water treatment systems require even higher membrane performance and do not always satisfy the following performance. For example, in the field of ultrapure water production, operation at ultra-low pressure and high salt removal rate, etc., and in desalination applications such as brackish water, since the raw water contains many types of ions, high desalination with various mixed ions Performance is required. In addition, in the long-term operation of such a system, in order to prevent water quality deterioration due to propagation of various bacteria and the like, a bacterial agent such as sodium hypochlorite is used. There is a demand for even higher antimicrobial resistance.
Furthermore, high pollution resistance is also important in order to prevent the amount of permeated water and salt rejection from being reduced by pollutants during long-term operation of the system.

【0006】上記問題の解決法として、逆浸透膜を後処
理する方法も種々提案されている。例えば、保護層やゲ
ル化層として水不溶性の有機重合体を用いる例が提案さ
れている(特開昭62−197105号公報、特開昭6
4−10241号公報)。
As a solution to the above problem, various methods for post-treating a reverse osmosis membrane have been proposed. For example, there has been proposed an example in which a water-insoluble organic polymer is used as a protective layer or a gelling layer (JP-A-62-197105, JP-A-6-197105).
No. 4-10241).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記特
開昭62−197105号公報記載の保護層を形成する
手法は塩除去率を向上させることができるが、用いられ
ている有機重合体、例えば、ポリ酢酸ビニルはそのケン
化度が10〜60%であり、疎水性部分が多いことに起
因し汚染物質が吸着しやすく、耐汚染性に関しては十分
な保護層であるとは言えず、又、透過水量も必ずしも高
いと言えない。特開昭64−10241号公報に関して
は、分離活性層と多孔性支持膜の間にゲル化層を形成さ
せているため、膜表面での汚染を防ぐ構造にはなってい
ない。
However, the method of forming a protective layer described in JP-A-62-197105 can improve the salt removal rate, but the organic polymer used, for example, Polyvinyl acetate has a degree of saponification of 10 to 60% and is apt to adsorb contaminants due to a large number of hydrophobic parts, and cannot be said to be a sufficient protective layer with respect to stain resistance. The amount of permeated water is not always high. In JP-A-64-10241, a gelling layer is formed between the separation active layer and the porous support membrane, so that the structure is not designed to prevent contamination on the membrane surface.

【0008】逆浸透複合膜の汚染の一因として挙げられ
るのが表面の荷電性である。通常使用されるpH領域で
表面電位が0であれば各種イオン性の汚染物質は吸着さ
れず、耐汚染性が向上すると考えられるが、この様な見
地から検討されていなかった。特に、近年、下水に代表
されるような種々の界面活性剤等の汚染物質を含む水処
理への逆浸透膜の応用が期待されているが、この場合、
透過水量を長期期間保持するために高い耐汚染性が必要
になる。これらの要求を満たすためには現在の逆浸透複
合膜では不十分であり、表面状態を考慮した高性能な逆
浸透複合膜が求められている。
[0008] One of the causes of contamination of the reverse osmosis composite membrane is the surface charge. If the surface potential is 0 in a pH range usually used, various ionic contaminants are not adsorbed, and it is considered that the contamination resistance is improved. However, it has not been studied from such a viewpoint. In particular, in recent years, the application of a reverse osmosis membrane to water treatment containing contaminants such as various surfactants represented by sewage has been expected. In this case,
High contamination resistance is required to maintain the amount of permeated water for a long period of time. The present reverse osmosis composite membrane is not enough to satisfy these requirements, and a high-performance reverse osmosis composite membrane taking into account the surface condition is required.

【0009】本発明は、前記従来の問題を解決するた
め、高塩阻止率、高透水性と高耐汚染性を伴せ有し、比
較的低圧で実用性のある脱塩を可能にする逆浸透複合膜
を提供することを目的とする。
In order to solve the above-mentioned conventional problems, the present invention has a high salt rejection rate, a high water permeability and a high stain resistance, and enables a practical desalination at a relatively low pressure. It is an object to provide an osmotic composite membrane.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
本発明の第1番目の逆浸透複合膜は、多孔性支持膜の表
面に分離活性層を有する逆浸透複合膜において、pH
6.0のときの前記分離活性層の表面ゼータ電位が、−
15mV以上5mV以下の範囲であることを特徴とす
る。
Means for Solving the Problems To achieve the above object, a first reverse osmosis composite membrane of the present invention is a reverse osmosis composite membrane having a separation active layer on the surface of a porous support membrane.
When the surface zeta potential of the separation active layer at 6.0 is-
It is in the range of 15 mV or more and 5 mV or less.

【0011】次に本発明の第2番目の逆浸透複合膜は、
多孔性支持膜の表面に分離活性層を有する逆浸透複合膜
において、pH6.0のときの表面ゼータ電位が−15
mV未満、又は5mVを越える分離活性層内部に、非イ
オン系の親水性基を有する水不溶性の有機重合体を形成
させ、pH6.0のときの表面ゼータ電位を−15mV
以上5mV以下の範囲としたことを特徴とする。
Next, the second reverse osmosis composite membrane of the present invention is:
In a reverse osmosis composite membrane having a separation active layer on the surface of a porous support membrane, the surface zeta potential at pH 6.0 was −15.
A water-insoluble organic polymer having a nonionic hydrophilic group is formed inside the separation active layer of less than 5 mV or more than 5 mV, and the surface zeta potential at pH 6.0 is -15 mV.
The range is not less than 5 mV.

【0012】次に本発明の第3番目の逆浸透複合膜は、
多孔性支持膜の表面に分離活性層を有する逆浸透複合膜
において、pH6.0のときの表面ゼータ電位が−15
mV未満、又は、5mVより大きい分離活性層表面に非
イオン系の親水性基を有する水不溶性の有機重合体を形
成させ、pH6.0のときの表面ゼータ電位を−15m
V以上5mV以下の範囲としたことを特徴とする。
Next, the third reverse osmosis composite membrane of the present invention is:
In a reverse osmosis composite membrane having a separation active layer on the surface of a porous support membrane, the surface zeta potential at pH 6.0 was −15.
A water-insoluble organic polymer having a nonionic hydrophilic group is formed on the surface of the separation active layer of less than 5 mV or greater than 5 mV, and the surface zeta potential at pH 6.0 is -15 m
It is characterized by being in a range from V to 5 mV.

【0013】前記第2〜3番目の逆浸透複合膜において
は、1500ppmのNacl溶液を用い、15Kgf
/cm2の操作圧力で逆浸透試験した際に、25℃にお
いて透過水量が1.5(m3/m2/日)以上、かつNa
cl阻止率が99%以上であることが好ましい。
In the second and third reverse osmosis composite membranes, a 1500 kg NaCl solution was used, and 15 kgf
When the reverse osmosis test was carried out at an operating pressure of 25 / cm 2 , the permeated water amount was 1.5 (m 3 / m 2 / day) or more at 25 ° C.
It is preferable that the cl rejection be 99% or more.

【0014】前記第1〜3番目の逆浸透複合膜において
は、1500ppmのNacl溶液を用い、15Kgf
/cm2の操作圧力で逆浸透試験した際に、その透過水
量が0.5(m3/m2/日)以上であることが好まし
い。
In the first to third reverse osmosis composite membranes, a 1500 kg NaCl solution was used, and 15 kgf
When a reverse osmosis test is performed at an operating pressure of / cm 2 , the amount of permeated water is preferably 0.5 (m 3 / m 2 / day) or more.

【0015】前記第1〜3番目の逆浸透複合膜において
は、1500ppmのNacl溶液を用い、15Kgf
/cm2の操作圧力で逆浸透試験した際に、その透過水
量が0.8(m3/m2/日)以上であることが好まし
い。
In the first to third reverse osmosis composite membranes, a 1500 kg NaCl solution was used, and 15 kgf
When a reverse osmosis test is performed at an operating pressure of / cm 2 , the amount of permeated water is preferably 0.8 (m 3 / m 2 / day) or more.

【0016】前記本発明の第1〜3番目の逆浸透複合膜
によれば、高塩阻止率、高透水性と高耐汚染性を伴せ有
し、比較的低圧で実用性のある脱塩を可能にする逆浸透
複合膜を実現できる。
According to the first to third reverse osmosis composite membranes of the present invention, desalting having a high salt rejection rate, a high water permeability and a high contamination resistance, and a relatively low pressure and practical use A reverse osmosis composite membrane that enables

【0017】[0017]

【発明の実施の形態】本発明の実質に非イオン系の親水
性基を有する水不溶性の有機重合体とは、水、塩類を含
む水溶液、または少量の有機物を含む水溶液に対して不
溶な有機重合体であり、ビニル系重合体、縮合系重合
体、付加系重合体に非イオン系の親水性基を持つものか
ら選ばれるものである。かかる非イオン系の親水性基と
は、例えば、下記式(化1)に代表されるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The water-insoluble organic polymer having a substantially nonionic hydrophilic group according to the present invention is an organic polymer insoluble in water, an aqueous solution containing salts, or an aqueous solution containing a small amount of organic substances. It is a polymer selected from a vinyl polymer, a condensation polymer, and an addition polymer having a nonionic hydrophilic group. The nonionic hydrophilic group is, for example, one represented by the following formula (Formula 1).

【0018】[0018]

【化1】 Embedded image

【0019】有機重合体にはこれらの内の少なくとも1
つを含んでいれば良く、好適には、−OH基を有するポ
リビニルアルコールが用いられる。ポリビニルアルコー
ルはポリ酢酸ビニルをケン化することで得られ、そのケ
ン化度により水に対する溶解性が異なる。
The organic polymer includes at least one of these.
And polyvinyl alcohol having an -OH group is preferably used. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate, and the solubility in water varies depending on the degree of saponification.

【0020】特開昭62−197105号公報記載では
親水性モノマーと疎水性モノマーの共重合体を開示して
おり、ポリ酢酸ビニルをケン化度10〜60%に制御す
ることで水不溶化している。即ち、この場合は疎水性の
ポリ酢酸ビニルと親水性のポリビニルアルコールを共重
合させ、その疎水性部分の寄与により水に不溶化し保護
層として使用している。ケン化度が60%以上になる
と、水に可溶になり保護層としては用いられない。しか
しながら、けん化度が90〜100%の場合、好ましく
はケン化度が95〜100%の場合は、ポリビニルアル
コール鎖が相互の水素結合により水不溶性になる。この
ような高いケン化度を有するポリビニルアルコールを用
いることにより、前者の様なケン化度が10〜60%の
ポリ酢酸ビニルとは異なり、処理水と接する膜表面での
−OH基が多いことに起因した親水性の増加により、汚
染物質に対する耐性が高くなり、又、透過水量も多くな
り非常に好適な膜性能を付加することができる。耐汚染
性に関しては、特開昭62−197105号公報記載の
ケン化度を10〜60%に制御したポリ酢酸ビニルの耐
汚染性は疎水性部分が多いことに起因し、汚染物が疎水
性相互作用により膜表面に付着しやすく好適とは言えな
い。
Japanese Patent Application Laid-Open No. 62-197105 discloses a copolymer of a hydrophilic monomer and a hydrophobic monomer. Polyvinyl acetate is insoluble in water by controlling the saponification degree to 10 to 60%. I have. That is, in this case, hydrophobic polyvinyl acetate and hydrophilic polyvinyl alcohol are copolymerized and insoluble in water due to the contribution of the hydrophobic portion, and used as a protective layer. When the saponification degree is 60% or more, it becomes soluble in water and is not used as a protective layer. However, when the degree of saponification is 90 to 100%, preferably when the degree of saponification is 95 to 100%, the polyvinyl alcohol chains become water-insoluble due to mutual hydrogen bonds. By using polyvinyl alcohol having such a high degree of saponification, unlike the former case of polyvinyl acetate having a degree of saponification of 10 to 60%, a large number of -OH groups are present on the film surface in contact with the treated water. Due to the increase in hydrophilicity, resistance to contaminants increases, and the amount of permeated water increases, so that very favorable membrane performance can be added. Concerning stain resistance, the stain resistance of polyvinyl acetate whose saponification degree is controlled to 10 to 60% described in Japanese Patent Application Laid-Open No. 62-197105 is caused by a large number of hydrophobic parts. It is not preferable because it easily adheres to the film surface due to the interaction.

【0021】上記重合体は逆浸透複合膜の活性被膜層に
ダメージを与えることの少ない溶媒、好ましくは低級ア
ルコール、又は水と、少なくとも一種の低級アルコール
との混合溶媒に溶解することも上記重合体を表面又は分
離活性層内に存在させるために必要である。かかる溶媒
としてはハロゲン化炭化水素、脂肪族炭化水素、アセト
ン、アセトニトリル等があり、好適に用いられる低級ア
ルコールとしては、メタノール、エタノール、プロパノ
ール、ブタノールなどの脂肪族アルコール、エチレンク
ロルヒドリン等のハロゲン化脂肪族アルコール、メトキ
シメタノール、メトキシエタノールなどから選ぶことが
できる。より好ましくは下記に示す複合膜を形成する多
孔性支持体や、活性スキン層にダメージを与えることの
少ない、メタノール、エタノール、イソプロパノールの
少なくとも一種の水の混合溶媒を挙げることができる。
混合溶媒の場合、水に対する低級アルコールの比率は特
に限定されないが、好ましくは、水の比率が0重量%〜
90重量%であることが好ましい。
The above polymer can be dissolved in a solvent which does not damage the active coating layer of the reverse osmosis composite membrane, preferably a lower alcohol or a mixed solvent of water and at least one lower alcohol. Is required to be present on the surface or in the separation active layer. Such solvents include halogenated hydrocarbons, aliphatic hydrocarbons, acetone, acetonitrile and the like, and preferably used lower alcohols include aliphatic alcohols such as methanol, ethanol, propanol and butanol, and halogens such as ethylene chlorohydrin. It can be selected from fluorinated aliphatic alcohols, methoxymethanol, methoxyethanol and the like. More preferably, a mixed solvent of water of at least one of methanol, ethanol and isopropanol, which does not damage the porous support forming the following composite membrane or the active skin layer, can be exemplified.
In the case of a mixed solvent, the ratio of the lower alcohol to water is not particularly limited, but preferably, the ratio of water is 0% by weight or less.
Preferably it is 90% by weight.

【0022】上記溶媒を用いて調整される前記の有機重
合体濃度は0.01重量%〜20重量%、好ましくは、
0.05〜5重量%の範囲が薄層形成には好適である。
以下に非イオン系の親水性基を有する水溶性の有機重合
体を表面又は分離活性層内に有する逆浸透複合膜の具体
的製膜法を以下に示す。
The concentration of the organic polymer adjusted using the above solvent is 0.01% by weight to 20% by weight, preferably
The range of 0.05 to 5% by weight is suitable for forming a thin layer.
Hereinafter, a specific method for producing a reverse osmosis composite membrane having a water-soluble organic polymer having a nonionic hydrophilic group on the surface or in the separation active layer will be described below.

【0023】用いる逆浸透複合膜は特に限定されない
が、ポリアミド系、ポリウレア系等の界面重合体法によ
り製膜されたものがある。これらの膜は従来の公知の方
法等によって、容易に得ることができる。例えば、多孔
質ポリスルホン支持膜を用い、メタフェニレンジアミ
ン、ピペラジン、ポリエチレンイミン等の反応性アミノ
基を有するモノマー又はポリマーの水溶液を前記多孔性
ポリスルホン支持膜の少なくとも片面に塗布した後、ト
リメシン酸クロライド、イソフタル酸クロライド等の多
官能酸クロライド又はトリレンジイソシアネート等の多
官能イソシアネート、又はこれらの混合物のヘキサン等
の溶媒と接触させることで、多孔性ポリスルホン支持膜
上で界面重合を行なわせ脱塩性能を有する被膜を形成さ
せ逆浸透複合膜とすることができる。
The reverse osmosis composite membrane to be used is not particularly limited, but may be a polyamide-based or polyurea-based membrane formed by an interfacial polymer method. These films can be easily obtained by a conventionally known method or the like. For example, using a porous polysulfone support membrane, metaphenylene diamine, piperazine, after applying an aqueous solution of a monomer or polymer having a reactive amino group such as polyethyleneimine to at least one surface of the porous polysulfone support membrane, trimesic acid chloride, By contacting a polyfunctional isocyanate such as isophthalic acid chloride or a polyfunctional isocyanate such as tolylene diisocyanate, or a mixture of these with a solvent such as hexane, interfacial polymerization is performed on the porous polysulfone support membrane to improve the desalination performance. To form a reverse osmosis composite membrane.

【0024】このようにして得られた逆浸透複合膜上
に、非イオン系の親水性基を有する水不溶性の有機重合
体、好適には水不溶性なケン化度が90〜100%、好
ましくはケン化度が95〜100%のポリビニルアルコ
ールを水/低級アルコールに溶解させて塗布し、その後
に乾燥させて最終的な逆浸透複合膜を得ることができ
る。
On the reverse osmosis composite membrane thus obtained, a water-insoluble organic polymer having a nonionic hydrophilic group, preferably a water-insoluble saponification degree of 90 to 100%, preferably Polyvinyl alcohol having a saponification degree of 95 to 100% is dissolved in water / lower alcohol, applied, and then dried to obtain a final reverse osmosis composite membrane.

【0025】かかる、塗布方法には特に限定されない
が、ディッピング法、転写法、噴霧法等が好適に用いら
れる。又、塗布後の乾燥手段、及び、乾燥温度も特に限
定されないが、20℃〜200℃、好ましくは50℃〜
150℃の範囲が好適である。
The coating method is not particularly limited, but a dipping method, a transfer method, a spraying method and the like are preferably used. The drying means after the application and the drying temperature are not particularly limited either, but are preferably 20 ° C to 200 ° C, preferably 50 ° C to
A range of 150 ° C. is preferred.

【0026】このようにして逆浸透複合膜上に得られた
薄膜の厚みは、0.001〜1μm、好ましくは0.0
05〜0.5μm程度の厚みが、塗布による透水量の低
下を抑制する上で好適である。膜厚の制御法は特に限定
されないが、溶液濃度等でコントロールすることができ
る。
The thickness of the thin film thus obtained on the reverse osmosis composite membrane is 0.001 to 1 μm, preferably 0.01 to 1 μm.
A thickness of about 0.5 to 0.5 μm is suitable for suppressing a decrease in water permeability due to coating. The method for controlling the film thickness is not particularly limited, but can be controlled by a solution concentration or the like.

【0027】一方、非イオン系の親水性基を有する水不
溶性の有機重合体を分離活性層内に有する逆浸透複合膜
の調製法は特に限定されないが、このような有機重合体
を前記の反応性アミノ基を有するモノマー又はポリマー
の水溶液、又は酸クロライド、又はイソシアネートの例
えばヘキサン溶液に混合し、前記の手法に従い逆浸透複
合膜を製膜することで可能である。この際、該有機重合
体の溶解性を与えるために、前述の低級アルコールを有
機重合体を添加する上記の少なくとも一方の溶液に加え
ることが好ましい。
On the other hand, a method for preparing a reverse osmosis composite membrane having a water-insoluble organic polymer having a nonionic hydrophilic group in the separation active layer is not particularly limited. It is possible to form a reverse osmosis composite membrane according to the above-mentioned method by mixing with an aqueous solution of a monomer or polymer having a functional amino group, or acid chloride, or isocyanate, for example, in a hexane solution. At this time, in order to impart the solubility of the organic polymer, it is preferable to add the lower alcohol to at least one of the above solutions to which the organic polymer is added.

【0028】この際の溶液に添加する非イオン系の親水
性基を有する水不溶性の有機重合体は、反応性アミノ基
を有するモノマー又はポリマーの水溶液、酸クロライド
又はイソシアネートの例えばヘキサン溶液のどちらの場
合も0.01重量%〜80重量%、好ましくは0.1重
量%〜50重量%が良い。添加量が0.01重量%より
小さいと耐汚染性の効果が少なく、又80重量%より大
きいと逆浸透複合膜の膜性能が大きく低下する。
The water-insoluble organic polymer having a nonionic hydrophilic group to be added to the solution at this time may be an aqueous solution of a monomer or a polymer having a reactive amino group, an acid chloride or an isocyanate such as a hexane solution. Also in this case, the content is preferably 0.01% to 80% by weight, more preferably 0.1% to 50% by weight. If the amount is less than 0.01% by weight, the effect of stain resistance is small, and if it is more than 80% by weight, the membrane performance of the reverse osmosis composite membrane is greatly reduced.

【0029】当然であるが、非イオン系の親水性基を有
する水不溶性の有機重合体の分離活性層の表面と内部の
両方に有していることも耐汚染性の効果を高める上では
好適である。
Naturally, the presence of a water-insoluble organic polymer having a nonionic hydrophilic group on both the surface and the inside of the separation active layer is also preferable for enhancing the effect of stain resistance. It is.

【0030】このようにして調製された膜の表面電位は
溶液を用い測定以下の様に求めることができる。測定法
は特に限定されないが、例えば、膜の様な平膜状サンプ
ルの表面電位によって接するpH6.0の液体に生ずる
電気浸透流を利用して膜表面のゼータ電位を定めること
ができる。
The surface potential of the membrane thus prepared can be determined using a solution as follows. The measuring method is not particularly limited. For example, the zeta potential on the membrane surface can be determined by using an electroosmotic flow generated in a pH 6.0 liquid in contact with the surface potential of a flat membrane sample such as a membrane.

【0031】[0031]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例に何ら限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited to these examples.

【0032】(実施例1)m−フェニレンジアミン
3.0重量%、ラウリル硫酸ナトリウム 0.15重量
%、トリエチルアミン 3.0重量%、カンファースル
ホン酸 6.0重量%、イソプロピルアルコール 10
重量%を含有した水溶液を溶液Aとして、微多孔性ポリ
スルホン支持膜に接触させて、余分の溶液Aを除去して
支持膜上に上記溶液Aの層を形成した。
Example 1 m-phenylenediamine
3.0% by weight, sodium lauryl sulfate 0.15% by weight, triethylamine 3.0% by weight, camphorsulfonic acid 6.0% by weight, isopropyl alcohol 10
An aqueous solution containing the weight% was used as a solution A, and was brought into contact with the microporous polysulfone support membrane to remove an excess of the solution A to form a layer of the solution A on the support membrane.

【0033】次いで、かかる支持膜の表面に、トリメシ
ン酸クロライド 0.20重量%を含むヘキサン溶液を
溶液Bとして調整し、溶液Aと接触させ、その後120
℃の熱風乾燥機の中で3分間保持して、支持膜上に重合
体薄膜(ポリアミド系スキン層)を形成させ、逆浸透膜
を得た。
Next, a hexane solution containing 0.20% by weight of trimesic acid chloride was prepared as a solution B on the surface of the support membrane, and the solution was brought into contact with the solution A.
C. for 3 minutes in a hot air drier to form a polymer thin film (polyamide skin layer) on the support film to obtain a reverse osmosis membrane.

【0034】一方、ケン化度99%のポリビニルアルコ
ール(PVA)をイソプロピルアルコール(IPA)と
水の3:7溶液に溶解させ、0.13重量%のPVA溶
液を得た。この溶液を前記逆浸透膜上にディッピング法
により塗布し、130℃で5分間乾燥して薄層を形成さ
せた。
On the other hand, polyvinyl alcohol (PVA) having a saponification degree of 99% was dissolved in a 3: 7 solution of isopropyl alcohol (IPA) and water to obtain a 0.13% by weight PVA solution. This solution was applied on the reverse osmosis membrane by a dipping method, and dried at 130 ° C. for 5 minutes to form a thin layer.

【0035】得られた膜を十分に洗浄した後に大塚電子
社製、電気泳動光散乱装置ELS−800を用いて得ら
れた膜をpH6.0のNacl溶液にて電気泳動測定を
行った。求めた電気移動度よりSmoluchousk
iの下記式(数1)を用いてゼータ電位を算出した。
After sufficiently washing the obtained film, the obtained film was subjected to electrophoretic measurement using a pH 6.0 NaCl solution using an electrophoretic light scattering device ELS-800 manufactured by Otsuka Electronics Co., Ltd. Smoluchousk from the obtained electric mobility
The zeta potential was calculated using the following equation (i) of i.

【0036】[0036]

【数1】 (Equation 1)

【0037】具体的には、膜資料を約30×60mmに
カットし、電気泳動光散乱装置ELS−800付属の平
板資料用セルに設置し測定した。電気泳動させるための
標準粒子は表面をヒドロキシプロピルセルロースでコー
ティングしたポリスチレン粒子(520nm)を10m
MのNacl溶液に分散させたものを用いた。
Specifically, the membrane sample was cut into a size of about 30 × 60 mm, placed in a flat plate sample cell attached to the electrophoretic light scattering device ELS-800, and measured. Standard particles for electrophoresis were 10 m polystyrene particles (520 nm) coated on the surface with hydroxypropyl cellulose.
M was dispersed in a NaCl solution.

【0038】結果を表1に示す。又耐汚染性の評価とし
て、社内の工業用水の5μmのフィルターの透過水用い
てFlux低下を測定した。測定方法は平膜セルに該膜
をセットし15kgf/cm2の圧力下で28時間加圧
循環し、評価開始5分後のFluxとの比較を行なっ
た。結果を後にまとめて表1に示す。
The results are shown in Table 1. As an evaluation of stain resistance, flux reduction was measured using permeated water of a 5 μm filter of industrial water in the company. The measuring method was as follows. The membrane was set in a flat membrane cell, circulated under pressure at a pressure of 15 kgf / cm 2 for 28 hours, and compared with Flux 5 minutes after the start of evaluation. The results are summarized in Table 1 below.

【0039】[0039]

【比較例】実施例1記載のPVA層形成前の膜の測定を
実施し、結果を図1、表1に示した。
COMPARATIVE EXAMPLE The film before the formation of the PVA layer described in Example 1 was measured, and the results are shown in FIG.

【0040】[0040]

【表1】 [Table 1]

【0041】表1から明らかな通り、本実施例の逆浸透
複合膜は、工業用水通水後28時間後のFluxの保持
率が高いことが確認できた。
As is clear from Table 1, it was confirmed that the reverse osmosis composite membrane of this example had a high flux retention after 28 hours from the passage of water for industrial use.

【0042】[0042]

【発明の効果】以上説明した通り、本発明の第1〜3番
目の逆浸透複合膜によれば、高塩阻止率、高透水性と高
耐汚染性を伴せ有し、比較的低圧で実用性のある脱塩を
可能にする逆浸透複合膜を提供できる。
As described above, according to the first to third reverse osmosis composite membranes of the present invention, they have high salt rejection, high water permeability and high contamination resistance, and have a relatively low pressure. It is possible to provide a reverse osmosis composite membrane that enables practical desalination.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 多孔性支持膜の表面に分離活性層を有す
る逆浸透複合膜において、pH6.0のときの前記分離
活性層の表面ゼータ電位が、−15mV以上5mV以下
の範囲であることを特徴とする逆浸透複合膜。
1. A reverse osmosis composite membrane having a separation active layer on the surface of a porous support membrane, wherein the surface zeta potential of the separation active layer at pH 6.0 is in the range of −15 mV to 5 mV. Characterized by reverse osmosis composite membrane.
【請求項2】 多孔性支持膜の表面に分離活性層を有す
る逆浸透複合膜において、pH6.0のときの表面ゼー
タ電位が−15mV未満、又は5mVを越える分離活性
層内部に、非イオン系の親水性基を有する水不溶性の有
機重合体を形成させ、pH6.0のときの表面ゼータ電
位を−15mV以上5mV以下の範囲としたことを特徴
とする逆浸透複合膜。
2. A reverse osmosis composite membrane having a separation active layer on the surface of a porous support membrane, wherein the surface zeta potential at pH 6.0 is less than -15 mV or more than 5 mV. A reverse osmosis composite membrane, wherein a water-insoluble organic polymer having a hydrophilic group is formed and the surface zeta potential at pH 6.0 is in the range of -15 mV to 5 mV.
【請求項3】 多孔性支持膜の表面に分離活性層を有す
る逆浸透複合膜において、pH6.0のときの表面ゼー
タ電位が−15mV未満、又は、5mVより大きい分離
活性層表面に非イオン系の親水性基を有する水不溶性の
有機重合体を形成させ、pH6.0のときの表面ゼータ
電位を−15mV以上5mV以下の範囲としたことを特
徴とする逆浸透複合膜。
3. A reverse osmosis composite membrane having a separation active layer on the surface of a porous support membrane, wherein the surface zeta potential at pH 6.0 is less than −15 mV or greater than 5 mV and the surface of the separation active layer is nonionic. A reverse osmosis composite membrane, wherein a water-insoluble organic polymer having a hydrophilic group is formed, and the surface zeta potential at pH 6.0 is in the range of -15 mV to 5 mV.
【請求項4】 逆浸透複合膜が、1500ppmのNa
cl溶液を用い、15Kgf/cm2の操作圧力で逆浸
透試験した際に、25℃において透過水量が1.5(m
3/m2/日)以上、かつNacl阻止率が99%以上で
ある請求項2または3に項記載の逆浸透複合膜。
4. A reverse osmosis composite membrane comprising 1500 ppm of Na
When a reverse osmosis test was performed using a cl solution at an operating pressure of 15 kgf / cm 2 , the amount of permeated water was 1.5 (m
3 / m 2 / day) or more, and Nacl rejection of at least 99% claim 2 or 3 binary reverse osmosis composite membrane according.
【請求項5】 逆浸透複合膜が、1500ppmのNa
cl溶液を用い、15Kgf/cm2の操作圧力で逆浸
透試験した際に、その透過水量が0.5(m3/m2
日)以上である請求項1,2または3項に記載の逆浸透
複合膜。
5. A reverse osmosis composite membrane comprising 1500 ppm of Na
When a reverse osmosis test was performed at an operating pressure of 15 kgf / cm 2 using a cl solution, the amount of permeated water was 0.5 (m 3 / m 2 /
The reverse osmosis composite membrane according to claim 1, 2, or 3.
【請求項6】 逆浸透複合膜が、1500ppmのNa
cl溶液を用い、15Kgf/cm2の操作圧力で逆浸
透試験した際に、その透過水量が0.8(m3/m2
日)以上である請求項1,2または3項に記載の逆浸透
複合膜。
6. The reverse osmosis composite membrane comprises 1500 ppm of Na
When a reverse osmosis test was performed using a cl solution at an operating pressure of 15 kgf / cm 2 , the amount of permeated water was 0.8 (m 3 / m 2 /
The reverse osmosis composite membrane according to claim 1, 2, or 3.
JP22413996A 1996-08-26 1996-08-26 Reverse osmosis composite membrane Pending JPH1066845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22413996A JPH1066845A (en) 1996-08-26 1996-08-26 Reverse osmosis composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22413996A JPH1066845A (en) 1996-08-26 1996-08-26 Reverse osmosis composite membrane

Publications (1)

Publication Number Publication Date
JPH1066845A true JPH1066845A (en) 1998-03-10

Family

ID=16809168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22413996A Pending JPH1066845A (en) 1996-08-26 1996-08-26 Reverse osmosis composite membrane

Country Status (1)

Country Link
JP (1) JPH1066845A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535648A (en) * 2005-03-09 2008-09-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nanocomposite membranes and methods of making and using the same
JP2010201303A (en) * 2009-03-02 2010-09-16 Toray Ind Inc Composite semipermeable membrane
CN102580579A (en) * 2012-03-12 2012-07-18 邓子华 Inorganic pollution resistance antibacterial reverse osmosis membrane and preparation method thereof
JP2013022580A (en) * 2011-07-26 2013-02-04 Daicen Membrane Systems Ltd Nf membrane, and method for manufacturing the same
CN102921315A (en) * 2012-11-02 2013-02-13 北京碧水源膜科技有限公司 Anti-pollution reverse osmosis membrane and preparation method thereof
CN103537201A (en) * 2013-11-01 2014-01-29 无锡海特新材料研究院有限公司 Novel reverse osmosis membrane material
WO2014133133A1 (en) * 2013-02-28 2014-09-04 東レ株式会社 Composite semipermeable membrane
WO2014133130A1 (en) * 2013-02-28 2014-09-04 東レ株式会社 Composite semipermeable membrane and production thereof
CN104028114A (en) * 2014-05-16 2014-09-10 浙江大学 Preparation method of nanofiltration membrane based on nano betaine type carboxymethyl cellulose
CN104028118A (en) * 2014-05-16 2014-09-10 浙江大学 Preparation method of polyamide reverse osmosis membrane containing amphoteric carboxymethylcellulose sodium complex
CN104028117A (en) * 2014-05-16 2014-09-10 浙江大学 Preparation method of amphoteric polyelectrolyte complex surface-modified polyamide reverse osmosis membrane
CN104069749A (en) * 2014-07-21 2014-10-01 山东九章膜技术有限公司 Hyperbranched polymer polyamide composite reverse osmosis membrane and preparation method thereof
CN104394968A (en) * 2012-04-09 2015-03-04 3M创新有限公司 Thin film composite membrane structures
WO2018084061A1 (en) * 2016-11-07 2018-05-11 オルガノ株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP2019522562A (en) * 2016-10-20 2019-08-15 エルジー・ケム・リミテッド Reverse osmosis membrane protective layer forming composition, reverse osmosis membrane production method using the same, reverse osmosis membrane and water treatment module

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618013B2 (en) 2005-03-09 2020-04-14 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
JP2008535648A (en) * 2005-03-09 2008-09-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nanocomposite membranes and methods of making and using the same
JP2010201303A (en) * 2009-03-02 2010-09-16 Toray Ind Inc Composite semipermeable membrane
JP2013022580A (en) * 2011-07-26 2013-02-04 Daicen Membrane Systems Ltd Nf membrane, and method for manufacturing the same
CN102580579A (en) * 2012-03-12 2012-07-18 邓子华 Inorganic pollution resistance antibacterial reverse osmosis membrane and preparation method thereof
CN104394968A (en) * 2012-04-09 2015-03-04 3M创新有限公司 Thin film composite membrane structures
CN102921315B (en) * 2012-11-02 2014-12-10 北京碧水源膜科技有限公司 Anti-pollution reverse osmosis membrane and preparation method thereof
CN102921315A (en) * 2012-11-02 2013-02-13 北京碧水源膜科技有限公司 Anti-pollution reverse osmosis membrane and preparation method thereof
WO2014133133A1 (en) * 2013-02-28 2014-09-04 東レ株式会社 Composite semipermeable membrane
KR20150121006A (en) * 2013-02-28 2015-10-28 도레이 카부시키가이샤 Composite semipermeable membrane and production thereof
US10427109B2 (en) 2013-02-28 2019-10-01 Toray Industries, Inc. Composite semipermeable membrane and production thereof
JPWO2014133130A1 (en) * 2013-02-28 2017-02-02 東レ株式会社 Composite semipermeable membrane and method for producing the same
WO2014133130A1 (en) * 2013-02-28 2014-09-04 東レ株式会社 Composite semipermeable membrane and production thereof
CN103537201A (en) * 2013-11-01 2014-01-29 无锡海特新材料研究院有限公司 Novel reverse osmosis membrane material
CN104028114B (en) * 2014-05-16 2016-01-13 浙江大学 A kind of preparation method based on nanometer betaine type CMC filter membrane
CN104028118A (en) * 2014-05-16 2014-09-10 浙江大学 Preparation method of polyamide reverse osmosis membrane containing amphoteric carboxymethylcellulose sodium complex
CN104028114A (en) * 2014-05-16 2014-09-10 浙江大学 Preparation method of nanofiltration membrane based on nano betaine type carboxymethyl cellulose
CN104028117A (en) * 2014-05-16 2014-09-10 浙江大学 Preparation method of amphoteric polyelectrolyte complex surface-modified polyamide reverse osmosis membrane
CN104069749A (en) * 2014-07-21 2014-10-01 山东九章膜技术有限公司 Hyperbranched polymer polyamide composite reverse osmosis membrane and preparation method thereof
JP2019522562A (en) * 2016-10-20 2019-08-15 エルジー・ケム・リミテッド Reverse osmosis membrane protective layer forming composition, reverse osmosis membrane production method using the same, reverse osmosis membrane and water treatment module
US11577971B2 (en) 2016-10-20 2023-02-14 Lg Chem, Ltd. Composition for forming reverse osmosis membrane protection layer, method for preparing reverse osmosis membrane using same, reverse osmosis membrane, and water treatment module
WO2018084061A1 (en) * 2016-11-07 2018-05-11 オルガノ株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JPWO2018084061A1 (en) * 2016-11-07 2019-04-11 オルガノ株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
CN109890764A (en) * 2016-11-07 2019-06-14 奥加诺株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system

Similar Documents

Publication Publication Date Title
JP3379963B2 (en) Reverse osmosis composite membrane and reverse osmosis treatment method of water using the same
US6413425B1 (en) Reverse osmosis composite membrane and reverse osmosis treatment method for water using the same
US10427104B2 (en) Double crosslinked sodium alginate/polyvinyl alcohol composite nanofiltration membrane and preparation method thereof
JPH1066845A (en) Reverse osmosis composite membrane
CN111514769B (en) Nanofiltration membrane for chlorine-resistant and pollution-resistant soft water and preparation method thereof
KR100781625B1 (en) Producing method of the polyamide reverse osmosis membrane having fouling resistence and improved durability
CN113289498B (en) Positively charged nanofiltration membrane and preparation method thereof
CN104190272A (en) Anti-pollution composite reverse osmosis membrane and preparation method thereof
US20160151748A1 (en) Reverse osmosis or nanofiltration membranes and method for production thereof
EP3354333B1 (en) Water treatment membrane and method for manufacturing same
KR100692394B1 (en) Method of producing reverse osmosis membrane with boron removal effect
JP2001286741A (en) Reverse osmosis composite membrane and manufacturing method therefor
EP1007194A1 (en) Polyion complex separation membrane with a double structure
CN113939358A (en) Zwitterionic charged copolymer membranes
JPH10337454A (en) Reverse osmotic multipie membrane and reverse osmosis treatment of water using the same
CN110354682B (en) Reverse osmosis membrane resisting biological pollution and preparation method and application thereof
KR100583136B1 (en) Silane-polyamide composite membrane and method thereof
JPH1128466A (en) Reverse osmosis treatment of water with reverse osmosis composite membrane
JPH04265125A (en) Method for purifying and concentrating biologically active substance and its solvent stabilizing membrane
CN111715083B (en) Modified polyamide desalting layer, reverse osmosis membrane and preparation method and application thereof
JPH0790152B2 (en) Composite reverse osmosis membrane
CN113797774A (en) Antibacterial reverse osmosis composite membrane and preparation method thereof
JPH05329344A (en) Production of composite semipermeable membrane
JPH1147566A (en) Water treatment system
JPH11226367A (en) Reverse osmosis composite membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

A131 Notification of reasons for refusal

Effective date: 20040621

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041201